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MOMENTS OF k-HOP COUNTS IN THE
RANDOM-CONNECTION MODEL
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Abstract

We derive moment identities for the stochastic integrals of multiparameter processes in
a random-connection model based on a point process admitting a Papangelou intensity.
The identities are written using sums over partitions, and they reduce to sums over
non-flat partition diagrams if the multiparameter processes vanish on diagonals. As
an application, we obtain general identities for the moments of k-hop counts in the
random-connection model, which simplify the derivations available in the literature.
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1. Introduction

The random-connection model, see, e.g., [12, Chapter 6], is a classical model in continuum
percolation. It consists of a random graph built on the vertices of a point process on R? by
adding edges between two distinct vertices x and y with probability H(]lx — y||). In the case
of the Rayleigh fading Hg(||x — y||) = e By with x, y € R?, the mean value of the number
N,f’y of k-hop paths connecting x € R? to y € R? has been computed in [9], together with the
variance of 3-hop counts. However, this argument does not extend to k > 3 as the proof of the
variance identity for 3-hop counts in [9] relies on the known Poisson distribution of the 2-hop
count. As shown in [9], the knowledge of moments can provide accurate numerical estimates
of the probability P(N,f’y > () of at least one k-hop path by expressing it as a series of factorial
moments, and the need for a general theory of such moments was pointed out therein.

On the other hand, moment identities for Poisson stochastic integrals with random inte-
grands have been obtained in [18] based on moment identities for Skorohod’s integral on the
Poisson space; see [16, 17], and also [19] for a review. These moment identities have been
extended to point processes with Papangelou intensities in [5], and to multiparameter processes
in [2]. Factorial moments have also been computed in [4] for point processes with Papangelou
intensities.

In this paper we derive closed-form expressions for the moments of the number of k-hop
paths in the random-connection model. In Proposition 4 the moment of order n of the k-hop
count is given as a sum over non-flat partitions of {1, ..., nk} in a general random-connection
model based on a point process admitting a Papangelou intensity. Those results are then
specialized to the case of Poisson point processes, with an expression for the variance of the
k-hop count given in Corollary 2 using a sum over integer sequences. Finally, in the case of
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Rayleigh fadings we show that some results of [9], such as the computation of variance for
3-hop counts, can be recovered via a shorter argument; see Corollary 4.

We proceed as follows. After presenting some background notation on point processes
and Campbell measures, see [8], in Section 2 we review the derivation of moment identities
for stochastic integrals using sums over partitions. In the multiparameter case we rewrite
those identities for processes vanishing on diagonals, based on non-flat partition diagrams.
In Section 3 we apply those results to the computation of the moments of k-hop counts in
the random-connection model, and we specialize such computations to the case of Poisson
point processes in Section 4. Section 5 is devoted to explicit computations in the case of
Rayleigh fadings, which result in simpler derivations than the current literature on moments in
the random-connection model.

1.1. Notation on point processes
Let X be a Polish space with Borel o-algebra B(X), equipped with a o -finite non-atomic
measure A(dx). We let
QX = {w = {xj}ies C X : #(A Nw) < oo for all compact A € B(X)}

denote the space of locally finite configurations on X whose elements w € QX are identified
with the Radon point measures w = er » €x» wWhere €, denotes the Dirac measure at x € X.
A point process is a probability measure P on Q¥ equipped with the o-algebra F generated by
the topology of vague convergence.

Point processes can be characterized by their Campbell measure C defined on B(X) ® F by

CA xB)::E[/ 1p(w \ {x}) a)(dx)i|, AeBX), Be F,
A

which satisfies the Georgii—-Nguyen—Zessin [14] identity

E[/ u(x; a))w(dx)i| :E|:/ /u(x;wUx)C(dx, da)):| (D)
X QX Jx

for all measurable processes u : X x QX — R such that both sides of (1) make sense.
In the following we deal with point processes whose Campbell measure C(dx, dw) is
absolutely continuous with respect to A ® P, i.e.

C(dx, dw) = c(x; w)A(dx)P(dw),

where the density c(x; w) is called the Papangelou density. We will also use the random measure
A"(dy,,) defined on X" by

N (drp) = &(tn; @)A(dxy) - - - A(dxy),

where &(x,; @) is the compound Campbell density ¢: Q3 x Q¥ — R, defined inductively on
the set Q¥ of finite configurations in QX by

c({xr, .oy xm yh o) = ey )e(x, - 0 Uy, n=0; (@)

see Relation (1) in [S]. In particular, the Poisson point process with intensity A(dx) is a point
process with Campbell measure C =A ® P and c(x; w) =1, and in this case the identity (1)
becomes the Slivnyak—Mecke formula [20, 11]. Determinantal point processes are examples
of point processes with Papangelou intensities, see, e.g., [6, Theorem 2.6], and they can be
used for modeling wireless networks with repulsion; see, e.g., [7, 10, 13].
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2. Moment identities

The moment of order n>1 of a Poisson random variable Z, with parameter o > 0 is
given by

n
EZg1=)_okS(n. k), neN, (3)
k=0
where the Stirling number of the second kind S(n, k) is the number of ways to partition a set of
n objects into k non-empty subsets; see, e.g., [3, Proposition 3.1]. Regarding Poisson stochastic
integrals of deterministic integrands, in [1] the moment formula

E[(/Xf(x)w(dx)>n] =n! Z ﬁ <(k!)1krk!(/ka(x))»(dx))’k> 4

r+2rp+etnm=n k=1
Flyeens m=>0

has been proved for deterministic functions f € ﬂpzl LP(X, )).

The identity (4) has been rewritten in the language of sums over partitions, and extended to
Poisson stochastic integrals of random integrands in [18, Proposition 3.1], and further extended
to point processes admitting a Panpangelou intensity in [5, Theorem 3.1]; see also [4]. In the
following, given 3, = (z1, - . . , Z») € X", we will use the shorthand notation 8; for the operator

(&) F)@)=F(@U{z1, ..., z)}), weQ,

where F is any random variable on QX. Given p={p1,..., px} € [1[n] a partition of
{1, ..., n} of size |p| =k, we let |p;| denote the cardinality of each block p;, i=1,..., k.

Proposition 1. Let u: X x QX — R be a (measurable) process. For all n > 1 we have

n lp] A
E[(fxu(x; w)w(dX)> ]= > E[/Xp €0 E”pll(@))‘lpl(délpl)}

pell[n]
where the sum runs over all partitions p of {1, ..., n} with cardinality |p|.

Proposition 1 has also been extended, together with joint moment identities, to multiparam-
eter processes (Uz;. .. 7. )(z,..z)ex"s €€ [2, Theorem 3.1]. For this, let IT[n x r] denote the set of
all partitions of the set

Apxr={1,....n}x{1,....r}={k, D:k=1,...,n, I=1,...,r},

identified to {1, ..., nr}, and let & := (;y, ..., m,) € [1[n X r] denote the partition made of
the n blocks my :={(k, 1), ..., (k,r)} of size r, for k=1, ...,n. Given p={p1,..., pm} a
partition of A, x,, welet £ : A,x, —> {1, ..., m} denote the mapping defined as

{p(k,l):pifandonlyif(k,l)epp, k=1,...,n, I=1,...,r, p=1,...,m.  (5)

In other words, ¢”(k, [) denotes the index p of the block p, C A, to which (k, I) belongs.

Next, we restate Theorem 3.1 of [2] by noting that, in the same way as in Proposition 1,
it extends to point processes admitting a Papangelou intensity using the arguments of [4, 5].
When (u(z1, . .., Zk; ®))z,....;ex 1s @ multiparameter process, we will write

equ, ..z e)=u@, L zseUlzn o wd), a=@ e, ) €XT
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and in this case we may drop the variable w € QX by writing e;;u(zl, ..., Zkx; o) instead of
efuz, ..., u ).

Proposition 2. Let u: X" x QX — R be a (measurable) r-process. We have

E[( / M(Zl,...,Zr;w)w(dm)'“w(dzr)) }= > E[ fX e Hu(z§k>if"(dz,p|)] ©)
! k=1

" pelnxr]
with Zf,k = (2o, 1)y - - -5 2Pk, k=1, ..., .

Proof. The main change in the proof argument of [2] is to rewrite the proof of Lemma 2.1
therein by applying (2) recursively, as in the proof of [5, Theorem 3.1], while the main
combinatorial argument remains identical. U

When n = 1, Proposition 2 yields a multivariate version of the Georgii—-Nguyen—Zessin identity
(1), i.e.

E|:/ w(zy, ...,z w)w(dzy) - - - a)(dzr)}

= Z E|:[ 8;— lu(Z;p(l’l), ey zgp(l,,);a)))tp(dgp)}.
. xlol 27

pell[lxr

2.1. Non-flat partitions

In the following we write v < o when a partition v € I1[n x r] is finer than another partition
o €Il[n x r], i.e. when every block of v is contained in a block of o, and we let O =
{{1, 1}, ..., {n, r}} denote the partition of A,., made of singletons. We write p Av =0
when p =0 is the only partition u € I1[n x r] such that u <v and u < p, i.e. [vy N <1,
k=1,...,n,l=1,...,|p|. In this case we say that the partition diagram I"(v, p) of v and p
is non-flat; see [15, Chapter 4].

Here, a partition p € I1[n X r] is said to be non-flat if the partition diagram I' (i, p) of p and
the partition m is non-flat, where w := (my, ..., w,) € [1[n x r] with . :={(k, 1), . . ., (k, )},
k=1, ..., n. Figure 1 shows an example of a non-flat partition with n =35, r =4, and

A={(1,2),(2,1),(2,2),3,3), 4 2)},

O={1,D,3, 1D, 44,3,

D={(1.3). 2.4).(3.3). 4, 1). (5, 4)},

0 ={(1,4),(2,2)},

x=1{(2,3),3,4),42),6, D}

k= {(k, 1), (k, 2), (k, 3), (k, 4), (k, 5)}, k=1,2,3,4,5.

2.2. Processes vanishing on diagonals

The next consequence of Proposition 2 shows that when u(z1, . . ., z,; @) vanishes on the
diagonals in X", the moments of

/ uzy, ..., zrs w)o(dzy) - - - w(dzy)

reduce to sums over non-flat partition diagrams.
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FIGURE 1: Example of a non-flat partition.
Proposition 3. Assume that u(zy, . .., z; w) =0whenever z; =z, 1 <i#j<r,we QX. Then
we have
n n
E[( / w2 e)ed) - oldz) =Y E[ / e 11 u(zzk)k"“'(dmm)].
X" pell[nxr] 17! k=1
p/\JT:ﬁ
Proof. Assume that u(zy, . . ., zr; @) vanishes on diagonals, and let p € I1[n]. Then, for any
Z1, ..., 2 € X We have

n

n
1_[ uzy, ) = l_[ W(Zer(,1ys - -+ 2eP(r) =0

k=1 k=1

whenever p :=¢P(k, a) = ¢k, b) for some k€ {l,...,n}anda#be{l,...,r}. According
to (5) this implies that (k, a) € p, and (k, b) € pp; therefore p is not a non-flat partition, and it
should be excluded from the sum over I1[n]. O

When n = 1, the first moment in Proposition 3 yields the Georgii—-Nguyen—Zessin identity

B [ e ziome own] = Y Ef /X P RC AN

pell[lxr]
pAT=0

B E[ /X sz w)i’(da»]; (7

see [9, Lemma IV.1] and [2, Lemma 2.1] for different versions based on the Poisson point
process. In the case of second moments, we find that

E[(f uzi, - . ., zr; @o(dzy) - - 'w(er)>2]

= X [ [ e meE )i )
peliizxr] VX"
pAJ‘[:G

and since the non-flat partitions in I1[2 x r] are made of pairs and singletons, this identity can
be rewritten as the following consequence of Proposition 3, in which for simplicity of notation
wewriter; ={1,...,rfandmy ={r+1, ..., 2r}L
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Corollary 1. Assume that u(zi, ..., z;; w) =0 whenever z;=z;, 1 <i#j<r, w€ QX. Then
the second moment of the integral of k-processes is given by

EK/,M(ZL...,zr;w)w(dZ1)"""(dZ’))2]: 2 (r—;lz‘\l)'

ACm
X Z E /zrfwe?;;rfwu(zm W(Zy (r+1)s - -+ Zy(Zr))izr_‘Al(dﬁzr—IN)]’
Y AU[r+1,...2r—A]) X
where the above sum is over all bijections y :mp — AU{r+1,...,2r—|A|}.

Proof. We express the partitions p €Il[n x r] with non-flat diagrams I'(w, p) in
Proposition 4 as the collections of pairs and singletons,

p={i, y(D}iea U {iYien, iea U ({D}}iem,i¢ya)s

for all subsets A C m; ={1, ..., r} and bijections y : 1, > AU{r+1,...,2r —|A|}. U

In the case of 2-processes, Corollary 1 shows that
2
[( [, ter. mxrozoe) |
X2

n
> E[ /lel e [ TuGerwy. zerw)il” '(d3|p|>]
pell[nx2] k=1

p/\ﬂ:()

1 24—
S il Lo e 2, s )]

ACm
y:{3,4}—=AU{3,...,4—|A|}

— [ [ e e 2]

B[ [ e st |+ B] [ e zue. 20 @)

X3 3 X3 3

e[ [ et 2| B] [ e 2n, 20 @)
X3 X3

B[ [ et . 202w 4B [ e . 20ian |
X X
Similarly, in the case of 3-processes we find

E[( /x Lz, 22, Z3;w)w(dm)w(dzz)w(dm))z]

1 ~
= Z (3——|A|)'E[ /5 6; u(z1, 22, 23)U(Zy @), Zy(5) Zy(6)))\5(d35)]
AC{1,2,3} S S

y:{4,5,6}—AU{4,...,6—|A[}
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ZE[/G e uz1, 22, 23)u(z, 25, z6)5»6(d36)]
X

1 A
+ 3 Z E[/xs G;M(Zl, 22, 23)u(zZy ), Zy(S)va(6)))\5(d35):|
y:{4,5,6})—{1,5,6}

+ E-./xi e uz1, 22, 2)uzy @), 265, Zy(é))is(d55)_

N =

y:{4,5,6}—{2,5,6}

Z E_/S G;M(Zl, 22, 23)U(Zy @), Zy(5)» Zy(6))5~5(d35)_
:(4,5,6)—(3,5.6) X

+ Z E /4 E;u(m,Zz,Zs)u(zy(4),Zy(S),Zy(6))5»4(d54)
y:(4,5,6)—{1,2,6) X -

+ 2

—
y:{4.5,6}—{1,3,6}
—

+

| =

E /4 GZM(ZI, 22, 230Uz @)s Zy(5)s Zy(6)A (d34)
L X .

+ 2

E /x4 G;M(ZI, 22, 23)U(Zy (4)s 2y (5)» Zy(6))5\4(d34)_
V:14,5,6)

{2,3,6}

+
g

E f ; G;Z”(Zlﬁzzv23)”(1y<4>’zy<5),Zy(s))i3(d33)].
y:{4,5,6)—{1,2,3}

3. Random-connection model

Two point process vertices x # y are independently connected in the random-connection
graph with the probability H(x, y) given € ¥, where H : X x X —> [0, 1]. In particular, the
1-hop count 1,y is a Bernoulli random variable with parameter H(x, y), and we have the

relation
r r
EI:.E; 1_[ I{Zi<—>2i+1}(w) ‘ 0):| = 1_[ H(zi, ziy1)
i=0 i=0
for any subset {zo, ..., z-4+1} of distinct elements of X, where 3, ={z1,...,2} and x <y
means that x € X is connected to y € X.
Given x, y € X, the number of (r 4+ 1)-hop sequences z, . . ., z, € @ of vertices connecting

x to y in the random graph is given by the multiparameter stochastic integral
N = / (@i, . ... 2 w)o(dzy) - - - o(dz,)
XV

of the {0, 1}-valued r-process

r

wzi, ..., s 0) = 1{z,~7ézj, l§i<j§r}1{zl,...,zrea)} l_[ 1{Zi<—>z,’+1}(w)7 U, ..., €X, (8)
i=0

which vanishes on the diagonals in X", with zg := x and z,| :=y. In addition, for any distinct

21y .-, 2r€Xand u(zy, . .., zr; w) given by (8) we have
E[G;;M(Z], )| w]l= E|:€;; l_[ l{zi<—>zi+1}(w) ’ a)] = l_[H(Zia Zi—i—l)a (©)]
i=0 i=0
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and therefore the first-order moment of the (r 4 1)-hop count between x € X and y € X is
given as

E[/ u(z1, ...,Zr§a))0)(dZ1)"'CO(er)] =E|:/X HH(Zi,Zi+1)5»r(d3r)] (10)
i=0

(see also [9, Theorem II.1]) as a consequence of the Georgii—-Nguyen—Zessin identity (7).

In the next proposition we compute the moments of all orders of r-hop counts as sums over
non-flat partition diagrams. The role of the powers 1 /nf ;in (11) is to ensure that all powers of
H(x, y) in (11) are equal to one, since all powers of 1.,y in (12) below are equal to 1., }.

Proposition 4. The moment of order n of the (r + 1)-hop count between x € X and y € X is
given by

E[(N )" = [ /X ; H ]‘[H‘/ Li(Zen(iys Zen . ,+1>>A'p<dz|p|)} (11)

pel‘[[nxr
PAT= 0

where 20 =X, zr+1 =Y, (P(,0)=0, ¢P(, r+1)=r+1, and
nf,:#{(l?aj)E{lmn,n} X0, ...,y P D), ¢P Ui+ DY = (P (. ), ¢P(p.j+ DY,
1<l<nO0<i<r

Proof. Since u(zy,...,zr;®) vanishes whenever z;=z; for some 1<i<j<r, by
Proposition 3 we have

E[(/ u(m,...,Zr;a))w(dZ1)--~w(dzr)> }

Bl [ H]‘[l{z;m,)ew,m}k @i (1)

pel'[ n><r]
PAT= 0

[/ ll_“_[H Mitegou i 2o z+1))k'”'(d5|p|)]
Xlp

pel’[[nxr]
p/\n_()

where we applied (9). U

As in Corollary 1, we have the following consequence of Proposition 4, which is obtained by
expressing the partitions p € I1[n x r] with non-flat diagrams I'(;r, o) as a collection of pairs
and singletons.

Corollary 2. The second moment of the (r + 1)-hop count between x € X and y € X is given by

x, 1
L T

ACm
y{l,...,r}=AU{r+1,....2r—|Al}

[/2 " HHI/ lt(Z“Zl“)nH I 202y 2y G+1)A> A (d52r— |A|)i|
X2

j=0
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where the above sum is over all bijections y :{1,...,r} >AU{r+1,...,2r—|A|} with
y(0):=0, y(r+ 1) =:r+1, z0 =:x, and z,4+1 :=Yy, and
ny=#Ge{0, ...} {i i+ B ={y(). G+ DI},
n;j.:#{ie{o, oG i D =00, v+ D)),
forO<i<r.

3.1. Variance of 3-hop counts

When n=2 and r =2, Corollary 2 allows us to express the variance of the 3-hop count
between x € X and y € X as follows:

Var[N3"]

1
- 2 Q2 —A])!

@#AC{1,2}
y:{1,2)>AU3, 4—\A|}

XE[/X4 " HH /n“(z"ZH)HH I 24(2y > 2y rn)A A dga |A|)]

Jj=0

= > [/ HH” Li(z, z,+1)1_[H m "2z ), ZyG41)A (dz1, dza, dm)]

y:{1,2}—>{1,4} 0
+ Z |:/ HHl/ 1I(Zz,Zz+1)l_[H /n ZJ(ZV(/) ZV(I'H)))‘ (dz1, dza, dZ4)]
y:{1,2}—{2.4) =0

V. 1 V. ~

+ E[ / ZHHU”“(Z,',ZI'H)HH/"va(zy(,'),ZyU+1))A2(dZ1,dzz)}.
1,211,207 X oo =0

3.2. Variance of 4-hop counts

When r =3 and n =2, Corollary 2 yields

D#ACT]
y:{l,...3}>AU{4,....6—|Al}

3

, 1 y
Var[N] = Y ———F / [[a""i@,
ar[N,~'] G 1A [ Py (@i, Zit1)

3
1 }/l Ag
X HH /"Z'J(Zy(j), Zy(j+1)A° Al(d36—|A):|
=0

3 [/ l_[Hl/ iz, Zig1)

y{l, ?}—>{1 5,6}

Y A
X l_[ Hl/nz'f(zy(/), Zy+1)A>(dz1, dz, dz3, dzs, dza)}
j=0
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1
+§ |:/ HH/ ll(Zz ZlJr])
,,,,, 3}—){256
/my . .
X HH (2y (s Zy(+1)A° (dz1, dza, dz3, dzs, dZ6):|
j=0
i1 / HH/“(Z Zi+1)
2 1y &1
yi{l,..., 3}—){356

% ]_[H /n} 20(2y)» Zy(+1)A"(dz1, dza, dz3, dzs, dZ6)1|
j=0

3
v
+ > E[/X [TH"" i zign)

4
y{l,....3}—>{1,2,6} i=0

3
1 ' A
X l_[ H""i(z,), 213 (dz1, dza, dz3, dZ6):|
j=0

+ [f HHI/ bz, Zig1)

ydl,.., 3}—>{1 3,6}

X l_[H /n ZJ(Z),(,) Zy(/—&-l)))& (dz1, dzp, dz3, dZ6)j|
j=0

i [/ HHU""(Z Zi+1)

yill,o 3}—>{236

X l_[H I 20(2y s ZpG+1)AH(dz1, dza, dza, dZ6):|
j=0

+ U ]"[H” Li(zi, Zig1)
X’%

vl }—>{1
1 V. A
X HH /nz'f(zy(j), Zy(j+1)))»3(dz1, dzo, dZ3)}.

=0

4. Poisson case

In this section and the next one we will work in the Poisson random-connection model,
using a Poisson point process on X = R? with intensity A(dx) on RY. We let

.
HOox)i= [ o [ TTHG 0@ Ao, a0 €RY iz 1.
R4 Rd
i=0
a3
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The 2-hop count between x € R? and y € R? is given by the first-order stochastic integral

/ u(z wldz) = f Lo Lz oy (@2(dz1) = f Lersy L oy 0(d21).
R4 R4 R4

and its moment of order n is

E[(/ M(z1;w)w(dz1)> ]=E[</ 1{x<—>zl}1{zl<—>y}w(dZ1)> }
R4 R4

Ipl

- 2 /Xl \ [T H& 2HG@. )z, .. dzp)
17X =1

pell[nx1

n k
= Z S(n, k)( / H(x, 2)H(z, y)k(dz))
k=1 R4

=" S b (H @, )"

k=1

therefore, from (3), the 2-hop count between x € R? and y € R? is a Poisson random variable
with mean

H(z)(x, V)= /d H(x, 2)H(z, y)\(dz).
R

By (10), the first-order moment of the r-hop count is given by

r—1

H(x, y) =/ 1 HH(Zi, Zi+1))»r_1(dzl, ...dzy_1).
X =0

Corollary 3. The variance of the r-hop count between x € R? and y € R? is given by

r—1
Var[Nf’y]zz Z Z ,/x> l_[ H% 1=k (7 7i01)

p=1 1<k <--<ky<r oex[p] X" 0<i<p
I<sh<--<lp<r

X 1_[ A0 70) (75,00 26 G41)A (d3)p),
0sj=p
lo )y =lo i1 —ki>2
or {j.j+1}#{o (), 0 (j+1)}

with ko =1o =0, kyy1 =111 =71, 0(0)=0, and o(r)=r, where the above sum is over all
permutations o € X[pl of {1, ..., p}.

Proof. We rewrite the result of Corollary 2 by denoting the set ACm; as A=
{k1, ..., kp},for 1 <ky <--- <k, <r—1, and we identify y(A) CAU{r+1,...,2r —|Al}
with {1, ..., [}, which requires a sum over the permutations of {1, ..., p} since 1 <I; <
---<l, <r—1,where 1 <p <r— 1.Inaddition, the multiple integrals over contiguous index
sets in A€ are evaluated using (13). O
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4.1. Variance of 3-hop counts

When n=2 and r =2 Corollary 3 allows us to compute the variance of the 3-hop count
between x € R? and yE R4, as follows:

Var[N”] =2 /H; HOx ) H @1, DH @, )
+2 / JHG HP(x, 20)HP (21, YH(z1, y)M(dz1)
R

+ f H, 2DH(1, 2)H(@2, YH(, 2)H G, VA2 (dzr, dzo) + HO(x, y).  (14)
X

By Corollary 3 the variance of 4-hop counts can be similarly computed explicitly as a sum of
33 terms.

5. Rayleigh fading

In this section we consider a Poisson point process on X = R? with flat intensity A(dx) = Adx
on R, ) > 0, and a Rayleigh fading function of the form

Hyg(x,y):=e P’y yeRd, g>o0.

Lemmas 1 and 2 can be used to evaluate the integrals appearing in Corollary 3 and in the
variance (14) of the 3-hop counts.

Lemma 1. Foralln>1,y,...,ya€R% and i, ..., B> 0 we have

n
/R T THp Gy
i=1

1
_< i >d/2ri—[Hﬁ o (y 1 ﬂ1y1+~~+/3iyi)
=\ i1 (BB , 0 |.
Bt +h) T T B

Proof. We start by showing that for all n > 1 we have
n

[ ]HeCx. v

i=1

ﬁ1y1+'~'+l3nyn) ( /31y1+~'~+/3iyi)
= Hp g, (. Hp, , PPV sy
o +’5( B+ bn U e U TR

Clearly, this relation holds for n = 1. In addition, at the rank n =2 we have

Hyg, (x, y1)Hg, (x, y2) = ¢! lyr=xI? g =Bz lx—y211*

exp{—Billy1 > = Bally2ll* + 2(Biy1 + Bayz. x) — (B1 + B2)lIx[1*}

exp{—BilIy1 1> = Bally2ll* — (B1 + B2)llx — (Biy1 + B2y2)/(B1 + Bl
Byt + Bay2l2/(B1 + B2}

exp{—(B1 + B)llx — (Bivi + Boy2)/(B1 + BN — BiBallyt — y2lI?/(B1 + B2)}

ﬂ1y1+ﬂ2y2)
Hg, | (x,— H g, (y1,2).
prtpe B1+ B2 Fithy
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Next, assuming that (15) holds at the rank n > 1, we have

n+1
[ [ Hp v =Hp,o, (%, Yok DHpy 445, (x,
i=1

n—1
Biyr + -+ -+ Biyi
X H gy 81+-+8) (y-+1, —_——
l_[ fJfrll+~~1~+ﬁi+1 ' ﬂl +--- 4+ ﬂi

_ g <x Biyi+--- +,Bn+1yn+1>
= N—s .
ﬂl ﬁ+1 ﬁl+"'+ﬁn

n
Byt +-- -+ Biyi
X | | H iy 8r+-480 <y' 1, — .
1_[ ;11+"1‘+ﬁ,'+1 al ,3] +--- 4+ /3i

ﬂ1y1+-~~+ﬁnyn>
it +h

i=1

i=1

As a consequence, we find that

n n—1
,31y1+~-~+,3iyi>
Hg,(x, yydx = [ | Hpoyor st  yig1, —o—— 2L
/Rdg g yde = [ | Hper s +ﬂ><yz+1 Bt 1 h

i=1 Br++Bit1

" fRd T (x, Biyi+- - +ﬁnyn)dx

Bi+-+b
d/2n=1
T Biyr +- -+ Biyi
=\ - 4 Hﬁ,‘ (By+-- ﬁ,‘)(_y' 1’—>~ O
e B | L O e

In particular, applying Lemma 1 for n =2 yields

P dJ2
Hpy (1, )Hpy (5, y2)de = ) H s 01,32
/I.Rd 1Y B2\ X5 Y 81+ B ﬁyy
P /2
:( ) e BBl BBy e R (16)
B1+ B2
and the 2-hop count between x € R? and y € R? is a Poisson random variable with mean
HP(x,y) = | Hg(x, 2)Hs(z, y)d
gy = RdﬁvZﬂZ»)’Z
NEA N
= <ﬁ> g/2(x, y)
_ A(l)"/ze—nx—yuz/;
2B

By an induction argument similar to that of Lemma 1, we obtain the following lemma.

Lemma 2. Forallnzl,xo,...,xneRd, and By, ..., Bn > 0 we have

n
/d"'deHﬂi(xi—l,xi)dxl-~~dxn—1
R R =1

< -l )d/2

= H B1-p (X0, yn)-
7 BB X0, Yn

Doim1 B Bic1Biv1 - Ba D TEST PRy
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Proof. Clearly the relation holds at the rank n = 1. Assuming that it holds at the rank n > 1
and using (16), we have

n+1

/ f HH/gi(xi_l,Xi)d.XL..an
RS IR

n
:/ Hﬁ,lJrl(Xn,anrl)/ / l_[H,Bi(xl'*l’xi)dxl <o dxy,
Rd R4 R4 1

ﬂ”_l d/2
B (Z;-Ll B Bic1Bis1 - ﬂ)

X H B1-Pn (x0, xn)Hﬁ,,+1 (Xns Xut1) dxy
RE X BuBi1Biv1Bn

=1 dj2
(s )
T d/2
S ( ﬁl"'ﬁn ) H ﬁl"'lgn«#l (x()’ xn-H)- |:|
Yoimt BrBic1 Bit1--Bn + i1 SO BBt Bt Bt

In particular, the first-order moment of the r-hop count between xo € R? and x, € R? is
given by

r—1
Hy (xo, x/) /R R /R T THs G 3@ - Al
i=0

| 7.[r—l dj2
= A < — ) Hﬁ/r(x, y)

-1 \d/2 ,
_ ,\’1< ) e Pl e R, (17)

5.1. Variance of 3-hop counts

Corollary 3 and Lemma 2 allow us to recover Theorem I1.3 of [9] for the variance of 3-hop
counts by a shorter argument, while extending it from the plane X = R? to X = R?.

Corollary 4. The variance of the 3-hop count between x € R? and y € R? is given by

3 2
Var[N;'] = 2)\3<§?)d/zefﬂnxfyu2/2+ ﬁ(%)d/zefﬂl\xfyHZB

3 2
4223 (n_)d/ze%ﬂ\leyllzﬂ + )LZ(jT_)d/zefﬁfosz.
1283 82
Proof. By (17) and Lemma 2 we have
[, Hpte 20t @ e
R4

2.\dp2
(X >
= (4/32> /R Hp(x, 20)Hp (21, y)A(dz1)
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73 \d

2,42 /2
=1 (25)" [ Hpt G e =23 (525) " Haats

[R Hp(x 2)H (e 20Hg @1 y)Hp (e, y)Mdz)
3

_Az( i )d/2 / H ( YH- ( A(dzy) = k3( i )d/zH (x,y)
= Y 9 'x? = A2 x? ;
152 - 38/2(21, Y)H3p/2(x, z1)A(dz1 1257 3g/4(x, y

/2 Hp(x, z0)Hp(z1, 22)Hp (22, YHp(x, 22)Hp(z1, y)A*(dz1, dzo)
X

7 \d/2
—1(35) " Hox) [ Haatea, o3/ D g, 5+ /D0

2

= Az(;?)dﬂHﬂ(x, ¥);

and we conclude by (14). O
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