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Abstract

We derive moment identities for the stochastic integrals of multiparameter processes in
a random-connection model based on a point process admitting a Papangelou intensity.
The identities are written using sums over partitions, and they reduce to sums over
non-flat partition diagrams if the multiparameter processes vanish on diagonals. As
an application, we obtain general identities for the moments of k-hop counts in the
random-connection model, which simplify the derivations available in the literature.
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1. Introduction

The random-connection model, see, e.g., [12, Chapter 6], is a classical model in continuum
percolation. It consists of a random graph built on the vertices of a point process on R

d by
adding edges between two distinct vertices x and y with probability H(‖x − y‖). In the case
of the Rayleigh fading Hβ (‖x − y‖) = e−β‖x−y‖2

with x, y ∈R
2, the mean value of the number

Nx,y
k of k-hop paths connecting x ∈R

d to y ∈R
d has been computed in [9], together with the

variance of 3-hop counts. However, this argument does not extend to k ≥ 3 as the proof of the
variance identity for 3-hop counts in [9] relies on the known Poisson distribution of the 2-hop
count. As shown in [9], the knowledge of moments can provide accurate numerical estimates
of the probability P(Nx,y

k > 0) of at least one k-hop path by expressing it as a series of factorial
moments, and the need for a general theory of such moments was pointed out therein.

On the other hand, moment identities for Poisson stochastic integrals with random inte-
grands have been obtained in [18] based on moment identities for Skorohod’s integral on the
Poisson space; see [16, 17], and also [19] for a review. These moment identities have been
extended to point processes with Papangelou intensities in [5], and to multiparameter processes
in [2]. Factorial moments have also been computed in [4] for point processes with Papangelou
intensities.

In this paper we derive closed-form expressions for the moments of the number of k-hop
paths in the random-connection model. In Proposition 4 the moment of order n of the k-hop
count is given as a sum over non-flat partitions of {1, . . . , nk} in a general random-connection
model based on a point process admitting a Papangelou intensity. Those results are then
specialized to the case of Poisson point processes, with an expression for the variance of the
k-hop count given in Corollary 2 using a sum over integer sequences. Finally, in the case of
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Rayleigh fadings we show that some results of [9], such as the computation of variance for
3-hop counts, can be recovered via a shorter argument; see Corollary 4.

We proceed as follows. After presenting some background notation on point processes
and Campbell measures, see [8], in Section 2 we review the derivation of moment identities
for stochastic integrals using sums over partitions. In the multiparameter case we rewrite
those identities for processes vanishing on diagonals, based on non-flat partition diagrams.
In Section 3 we apply those results to the computation of the moments of k-hop counts in
the random-connection model, and we specialize such computations to the case of Poisson
point processes in Section 4. Section 5 is devoted to explicit computations in the case of
Rayleigh fadings, which result in simpler derivations than the current literature on moments in
the random-connection model.

1.1. Notation on point processes

Let X be a Polish space with Borel σ -algebra B(X), equipped with a σ -finite non-atomic
measure λ(dx). We let

�X = {ω = {xi}i∈I ⊂ X : #(A ∩ ω) < ∞ for all compact A ∈B(X)}
denote the space of locally finite configurations on X whose elements ω ∈ �X are identified
with the Radon point measures ω = ∑

x∈ω εx, where εx denotes the Dirac measure at x ∈ X.
A point process is a probability measure P on �X equipped with the σ -algebra F generated by
the topology of vague convergence.

Point processes can be characterized by their Campbell measure C defined on B(X) ⊗F by

C(A × B) := E

[ ∫
A

1B(ω \ {x}) ω(dx)

]
, A ∈B(X), B ∈F ,

which satisfies the Georgii–Nguyen–Zessin [14] identity

E

[ ∫
X

u(x; ω)ω(dx)

]
= E

[ ∫
�X

∫
X

u(x; ω ∪ x)C(dx, dω)

]
(1)

for all measurable processes u : X × �X →R such that both sides of (1) make sense.
In the following we deal with point processes whose Campbell measure C(dx, dω) is

absolutely continuous with respect to λ ⊗ P, i.e.

C(dx, dω) = c(x; ω)λ(dx)P(dω),

where the density c(x; ω) is called the Papangelou density. We will also use the random measure
λ̂n(dxn) defined on Xn by

λ̂n(dxn) = ĉ(xn; ω)λ(dx1) · · · λ(dxn),

where ĉ(xn; ω) is the compound Campbell density ĉ : �X
0 × �X −→R+ defined inductively on

the set �X
0 of finite configurations in �X by

ĉ({x1, . . . , xn, y}; ω) := c(y; ω)ĉ({x1, . . . , xn}; ω ∪ {y}), n ≥ 0; (2)

see Relation (1) in [5]. In particular, the Poisson point process with intensity λ(dx) is a point
process with Campbell measure C = λ ⊗ P and c(x; ω) = 1, and in this case the identity (1)
becomes the Slivnyak–Mecke formula [20, 11]. Determinantal point processes are examples
of point processes with Papangelou intensities, see, e.g., [6, Theorem 2.6], and they can be
used for modeling wireless networks with repulsion; see, e.g., [7, 10, 13].
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2. Moment identities

The moment of order n ≥ 1 of a Poisson random variable Zα with parameter α > 0 is
given by

E[Zn
α] =

n∑
k=0

αkS(n, k), n ∈N, (3)

where the Stirling number of the second kind S(n, k) is the number of ways to partition a set of
n objects into k non-empty subsets; see, e.g., [3, Proposition 3.1]. Regarding Poisson stochastic
integrals of deterministic integrands, in [1] the moment formula

E
[( ∫

X
f (x)ω(dx)

)n] = n!
∑

r1+2r2+···+nrn=n
r1,...,rn≥0

n∏
k=1

( 1

(k!)rk rk!
( ∫

X
f k(x)λ(dx)

)rk
)

(4)

has been proved for deterministic functions f ∈ ⋂
p≥1 Lp(X, λ).

The identity (4) has been rewritten in the language of sums over partitions, and extended to
Poisson stochastic integrals of random integrands in [18, Proposition 3.1], and further extended
to point processes admitting a Panpangelou intensity in [5, Theorem 3.1]; see also [4]. In the
following, given zn = (z1, . . . , zn) ∈ Xn, we will use the shorthand notation ε+

zn
for the operator

(ε+
zn

F)(ω) = F(ω ∪ {z1, . . . , zn}), ω ∈ �,

where F is any random variable on �X . Given ρ = {ρ1, . . . , ρk} ∈ �[n] a partition of
{1, . . . , n} of size |ρ| = k, we let |ρi| denote the cardinality of each block ρi, i = 1, . . . , k.

Proposition 1. Let u : X × �X −→R be a (measurable) process. For all n ≥ 1 we have

E
[( ∫

X
u(x; ω)ω(dx)

)n] =
∑

ρ∈�[n]

E

[ ∫
X|ρ|

ε+
z|ρ|

|ρ|∏
l=1

u|ρl|(zl)λ̂
|ρ|(dz|ρ|)

]
,

where the sum runs over all partitions ρ of {1, . . . , n} with cardinality |ρ|.
Proposition 1 has also been extended, together with joint moment identities, to multiparam-

eter processes (uz1,...zr )(z1,...zr)∈Xr ; see [2, Theorem 3.1]. For this, let �[n × r] denote the set of
all partitions of the set

�n×r := {1, . . . , n} × {1, . . . , r} = {(k, l) : k = 1, . . . , n, l = 1, . . . , r},
identified to {1, . . . , nr}, and let π := (π1, . . . , πn) ∈ �[n × r] denote the partition made of
the n blocks πk := {(k, 1), . . . , (k, r)} of size r, for k = 1, . . . , n. Given ρ = {ρ1, . . . , ρm} a
partition of �n×r, we let ζ ρ : �n×r −→ {1, . . . , m} denote the mapping defined as

ζ ρ(k, l) = p if and only if (k, l) ∈ ρp, k = 1, . . . , n, l = 1, . . . , r, p = 1, . . . , m. (5)

In other words, ζ ρ(k, l) denotes the index p of the block ρp ⊂ �n×r to which (k, l) belongs.
Next, we restate Theorem 3.1 of [2] by noting that, in the same way as in Proposition 1,

it extends to point processes admitting a Papangelou intensity using the arguments of [4, 5].
When (u(z1, . . . , zk; ω))z1,...,zk∈X is a multiparameter process, we will write

ε+
zk

u(z1, . . . , zk; ω) := u(z1, . . . , zk; ω ∪ {z1, . . . , zk}), zn = (z1, . . . , zn) ∈ Xn,
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and in this case we may drop the variable ω ∈ �X by writing ε+
zk

u(z1, . . . , zk; ω) instead of
ε+
zk

u(z1, . . . , zk; ω).

Proposition 2. Let u : Xr × �X −→R be a (measurable) r-process. We have

E

[( ∫
Xr
u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

)n]
=

∑
ρ∈�[n×r]

E

[ ∫
X|ρ|

ε+
z|ρ|

n∏
k=1

u(zρ
πk

)λ̂|ρ|(dz|ρ|)
]

(6)

with zρ
πk := (zζ ρ (k,1), . . . , zζ ρ (k,r)), k = 1, . . . , n.

Proof. The main change in the proof argument of [2] is to rewrite the proof of Lemma 2.1
therein by applying (2) recursively, as in the proof of [5, Theorem 3.1], while the main
combinatorial argument remains identical. �
When n = 1, Proposition 2 yields a multivariate version of the Georgii–Nguyen–Zessin identity
(1), i.e.

E

[ ∫
Xr

u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

]

=
∑

ρ∈�[1×r]

E

[ ∫
X|ρ|

ε+
z|ρ|u(zζ ρ (1,1), . . . , zζ ρ (1,r); ω)λ̂|ρ|(dz|ρ|)

]
.

2.1. Non-flat partitions

In the following we write ν � σ when a partition ν ∈ �[n × r] is finer than another partition
σ ∈ �[n × r], i.e. when every block of ν is contained in a block of σ , and we let 0̂ :=
{{1, 1}, . . . , {n, r}} denote the partition of �n×r made of singletons. We write ρ ∧ ν = 0̂
when μ = 0̂ is the only partition μ ∈ �[n × r] such that μ � ν and μ � ρ, i.e. |νk ∩ ρl| ≤ 1,
k = 1, . . . , n, l = 1, . . . , |ρ|. In this case we say that the partition diagram �(ν, ρ) of ν and ρ

is non-flat; see [15, Chapter 4].
Here, a partition ρ ∈ �[n × r] is said to be non-flat if the partition diagram �(π, ρ) of ρ and

the partition π is non-flat, where π := (π1, . . . , πn) ∈ �[n × r] with πk := {(k, 1), . . . , (k, r)},
k = 1, . . . , n. Figure 1 shows an example of a non-flat partition with n = 5, r = 4, and

� = {(1, 2), (2, 1), (2, 2), (3, 3), (4, 2)},
� = {(1, 1), (3, 1), (4, 4), (5, 3)},
� = {(1, 3), (2, 4), (3, 3), (4, 1), (5, 4)},
� = {(1, 4), (2, 2)},
× = {(2, 3), (3, 4), (4, 2), (5, 1)}
πk = {(k, 1), (k, 2), (k, 3), (k, 4), (k, 5)}, k = 1, 2, 3, 4, 5.

2.2. Processes vanishing on diagonals

The next consequence of Proposition 2 shows that when u(z1, . . . , zr; ω) vanishes on the
diagonals in Xr, the moments of∫

Xr
u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

reduce to sums over non-flat partition diagrams.
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π1

π2

π3

π4

π5

FIGURE 1: Example of a non-flat partition.

Proposition 3. Assume that u(z1, . . . , zr; ω) = 0 whenever zi = zj, 1 ≤ i �= j ≤ r, ω ∈ �X. Then
we have

E
[( ∫

Xr
u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

)n] =
∑

ρ∈�[n×r]
ρ∧π=0̂

E

[ ∫
X|ρ|

ε+
z|ρ|

n∏
k=1

u(zρ
πk

)λ̂|ρ|(dz|ρ|)
]

.

Proof. Assume that u(z1, . . . , zr; ω) vanishes on diagonals, and let ρ ∈ �[n]. Then, for any
z1, . . . , zr ∈ X we have

n∏
k=1

u(zρ
πk

) =
n∏

k=1

u(zζ ρ (k,1), . . . , zζ ρ (k,r)) = 0

whenever p := ζ ρ(k, a) = ζ ρ(k, b) for some k ∈ {1, . . . , n} and a �= b ∈ {1, . . . , r}. According
to (5) this implies that (k, a) ∈ ρp and (k, b) ∈ ρp; therefore ρ is not a non-flat partition, and it
should be excluded from the sum over �[n]. �
When n = 1, the first moment in Proposition 3 yields the Georgii–Nguyen–Zessin identity

E
[ ∫

Xr
u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

]
=

∑
ρ∈�[1×r]
ρ∧π=0̂

E
[ ∫

X|ρ|
ε+
z|ρ|u(zρ

π1
)λ̂|ρ|(dz|ρ|)

]

= E
[ ∫

Xr
ε+
zr

u(z1, . . . , zr; ω)λ̂r(dzr)
]
; (7)

see [9, Lemma IV.1] and [2, Lemma 2.1] for different versions based on the Poisson point
process. In the case of second moments, we find that

E
[( ∫

Xr
u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

)2]

=
∑

ρ∈�[2×r]
ρ∧π=0̂

E
[ ∫

X|ρ|
ε+
z|ρ|u(zρ

π1
)u(zρ

π2
)λ̂|ρ|(dz|ρ|)

]
,

and since the non-flat partitions in �[2 × r] are made of pairs and singletons, this identity can
be rewritten as the following consequence of Proposition 3, in which for simplicity of notation
we write π1 = {1, . . . , r} and π2 = {r + 1, . . . , 2r}.
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Corollary 1. Assume that u(z1, . . . , zr; ω) = 0 whenever zi = zj, 1 ≤ i �= j ≤ r, ω ∈ �X. Then
the second moment of the integral of k-processes is given by

E
[( ∫

Xr
u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

)2] =
∑

A⊂π1

1

(r − |A|)!

×
∑

γ :π2→A∪{r+1,...,2r−|A|}
E
[ ∫

X2r−|A|
ε+
z2r−|A|u(zπ1 )u(zγ (r+1), . . . , zγ (2r))λ̂

2r−|A|(dz2r−|A|)
]
,

where the above sum is over all bijections γ : π2 → A ∪ {r + 1, . . . , 2r − |A|}.
Proof. We express the partitions ρ ∈ �[n × r] with non-flat diagrams �(π, ρ) in

Proposition 4 as the collections of pairs and singletons,

ρ = {i, γ (i)}}i∈A ∪ {{i}}i∈π1,i/∈A ∪ {{i}}i∈π2,i/∈γ (A),

for all subsets A ⊂ π1 = {1, . . . , r} and bijections γ : π2 → A ∪ {r + 1, . . . , 2r − |A|}. �

In the case of 2-processes, Corollary 1 shows that

E
[( ∫

X2
u(z1, z2; ω)ω(dz1)ω(dz2)

)2]

=
∑

ρ∈�[n×2]
ρ∧π=0̂

E
[ ∫

X|ρ|
ε+
z|ρ|

n∏
k=1

u(zζ ρ (k,1), zζ ρ (k,2))λ̂
|ρ|(dz|ρ|)

]

=
∑

A⊂π1
γ :{3,4}→A∪{3,...,4−|A|}

1

(r − |A|)!E
[ ∫

X4−|A|
ε+
z4−|A|u(z1, z2)u(zγ (3), zγ (4))λ̂

4−|A|(dz4−|A|)
]

= E
[ ∫

X4
ε+
z4

(u(z1, z2)u(z3, z4))λ̂4(dz4)
]

+ E
[ ∫

X3
ε+
z3

(u(z1, z2)u(z1, z3))λ̂3(dz3)
]
+ E

[ ∫
X3

ε+
z3

(u(z2, z1)u(z3, z1))λ̂3(dz3)
]

+ E
[ ∫

X3
ε+
z3

(u(z1, z2)u(z2, z3))λ̂3(dz3)
]
+ E

[ ∫
X3

ε+
z3

(u(z2, z1)u(z3, z2))λ̂3(dz3)
]

+ E
[ ∫

X2
ε+
z2

(u(z1, z2)u(z1, z2))λ̂2(dz2)
]
+ E

[ ∫
X2

ε+
z2

(u(z1, z2)u(z2, z1))λ̂2(dz2)
]
.

Similarly, in the case of 3-processes we find

E
[( ∫

X3
u(z1, z2, z3; ω)ω(dz1)ω(dz2)ω(dz3)

)2]

=
∑

A⊂{1,2,3}
γ :{4,5,6}→A∪{4,...,6−|A|}

1

(3 − |A|)!E
[ ∫

X5
ε+
ε+
z5

u(z1, z2, z3)u(zγ (4), zγ (5), zγ (6))λ̂
5(dz5)

]
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= E
[ ∫

X6
ε+
z6

u(z1, z2, z3)u(z4, z5, z6)λ̂6(dz6)
]

+ 1

2

∑
γ :{4,5,6}→{1,5,6}

E
[ ∫

X5
ε+
z5

u(z1, z2, z3)u(zγ (4), zγ (5), zγ (6))λ̂
5(dz5)

]

+ 1

2

∑
γ :{4,5,6}→{2,5,6}

E
[ ∫

X5
ε+
z5

u(z1, z2, z3)u(zγ (4), zγ (5), zγ (6))λ̂
5(dz5)

]

+ 1

2

∑
γ :{4,5,6}→{3,5,6}

E
[ ∫

X5
ε+
z5

u(z1, z2, z3)u(zγ (4), zγ (5), zγ (6))λ̂
5(dz5)

]

+
∑

γ :{4,5,6}→{1,2,6}
E
[ ∫

X4
ε+
z4

u(z1, z2, z3)u(zγ (4), zγ (5), zγ (6))λ̂
4(dz4)

]

+
∑

γ :{4,5,6}→{1,3,6}
E
[ ∫

X4
ε+
z4

u(z1, z2, z3)u(zγ (4), zγ (5), zγ (6))λ̂
4(dz4)

]

+
∑

γ :{4,5,6}→{2,3,6}
E
[ ∫

X4
ε+
z4

u(z1, z2, z3)u(zγ (4), zγ (5), zγ (6))λ̂
4(dz4)

]

+
∑

γ :{4,5,6}→{1,2,3}
E
[ ∫

X3
ε+
z3

zu(z1, z2, z3)u(zγ (4), zγ (5), zγ (6))λ̂
3(dz3)

]
.

3. Random-connection model

Two point process vertices x �= y are independently connected in the random-connection
graph with the probability H(x, y) given ω ∈ �X , where H : X × X −→ [0, 1]. In particular, the
1-hop count 1{x↔y} is a Bernoulli random variable with parameter H(x, y), and we have the
relation

E

[
ε+
zr

r∏
i=0

1{zi↔zi+1}(ω)
∣∣∣ ω

]
=

r∏
i=0

H(zi, zi+1)

for any subset {z0, . . . , zr+1} of distinct elements of X, where zr = {z1, . . . , zr} and x ↔ y
means that x ∈ X is connected to y ∈ X.

Given x, y ∈ X, the number of (r + 1)-hop sequences z1, . . . , zr ∈ ω of vertices connecting
x to y in the random graph is given by the multiparameter stochastic integral

Nx,y
r+1 =

∫
Xr

u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

of the {0, 1}-valued r-process

u(z1, . . . , zr; ω) := 1{zi �=zj, 1≤i<j≤r}1{z1,...,zr∈ω}
r∏

i=0

1{zi↔zi+1}(ω), z1, . . . , zr ∈ X, (8)

which vanishes on the diagonals in Xr, with z0 := x and zr+1 := y. In addition, for any distinct
z1, . . . , zr ∈ X and u(z1, . . . , zr; ω) given by (8) we have

E[ε+
zr

u(z1, . . . , zr; ω) | ω] = E

[
ε+
zr

r∏
i=0

1{zi↔zi+1}(ω)
∣∣∣ ω

]
=

r∏
i=0

H(zi, zi+1), (9)
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and therefore the first-order moment of the (r + 1)-hop count between x ∈ X and y ∈ X is
given as

E
[ ∫

Xr
u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

]
= E

[ ∫
Xr

r∏
i=0

H(zi, zi+1)λ̂r(dzr)

]
(10)

(see also [9, Theorem II.1]) as a consequence of the Georgii–Nguyen–Zessin identity (7).
In the next proposition we compute the moments of all orders of r-hop counts as sums over

non-flat partition diagrams. The role of the powers 1/nρ
l,i in (11) is to ensure that all powers of

H(x, y) in (11) are equal to one, since all powers of 1{z↔z′} in (12) below are equal to 1{z↔z′}.

Proposition 4. The moment of order n of the (r + 1)-hop count between x ∈ X and y ∈ X is
given by

E[(Nx,y
r+1)n] =

∑
ρ∈�[n×r]
ρ∧π=0̂

E

[ ∫
X|ρ|

n∏
l=1

r∏
i=0

H1/nρ
l,i(zζ ρ (l,i), zζ ρ (l,i+1))λ̂

|ρ|(dz|ρ|)
]
, (11)

where z0 = x, zr+1 = y, ζ ρ(l, 0) = 0, ζ ρ(l, r + 1) = r + 1, and

nρ
l,i = #{(p, j) ∈ {1, . . . , n} × {0, . . . , r} : {ζ ρ(l, i), ζ ρ(l, i + 1)} = {ζ ρ(p, j), ζ ρ(p, j + 1)}},

1 ≤ l ≤ n, 0 ≤ i ≤ r.

Proof. Since u(z1, . . . , zr; ω) vanishes whenever zi = zj for some 1 ≤ i < j ≤ r, by
Proposition 3 we have

E

[( ∫
Xr

u(z1, . . . , zr; ω)ω(dz1) · · · ω(dzr)

)n]

=
∑

ρ∈�[n×r]
ρ∧π=0̂

E

[ ∫
X|ρ|

n∏
l=1

r∏
i=0

1{zζρ (l,i)↔zζρ (l,i+1)}λ̂
|ρ|(dz|ρ|)

]
(12)

=
∑

ρ∈�[n×r]
ρ∧π=0̂

E

[ ∫
X|ρ|

n∏
l=1

r∏
i=0

H1/nρ
l,i(zζ ρ (l,i), zζ ρ (l,i+1))λ̂

|ρ|(dz|ρ|)
]
,

where we applied (9). �
As in Corollary 1, we have the following consequence of Proposition 4, which is obtained by
expressing the partitions ρ ∈ �[n × r] with non-flat diagrams �(π, σ ) as a collection of pairs
and singletons.

Corollary 2. The second moment of the (r + 1)-hop count between x ∈ X and y ∈ X is given by

E[(Nx,y
r+1)2] =

∑
A⊂π1

γ :{1,...,r}→A∪{r+1,...,2r−|A|}

1

(r − |A|)!

× E

[ ∫
X2r−|A|

r∏
i=0

H1/nγ

1,i(zi, zi+1)
r∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
2r−|A|(dz2r−|A|)

]
,
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where the above sum is over all bijections γ : {1, . . . , r} → A ∪ {r + 1, . . . , 2r − |A|} with
γ (0) := 0, γ (r + 1) =: r + 1, z0 =: x, and zr+1 := y, and

nγ

1,i = #{j ∈ {0, . . . , r} : {i, i + 1} = {γ (j), γ (j + 1)}},
nγ

2,j = #{i ∈ {0, . . . , r} : (i, i + 1) = (γ (j), γ (j + 1))},

for 0 ≤ i ≤ r.

3.1. Variance of 3-hop counts

When n = 2 and r = 2, Corollary 2 allows us to express the variance of the 3-hop count
between x ∈ X and y ∈ X as follows:

Var[Nx,y
3 ]

=
∑

∅ �=A⊂{1,2}
γ :{1,2}→A∪{3,4−|A|}

1

(2 − |A|)!

× E

[ ∫
X4−|A|

2∏
i=0

H1/nγ

1,i(zi, zi+1)
2∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
4−|A|(dz4−|A|)

]

=
∑

γ :{1,2}→{1,4}
E

[ ∫
X3

2∏
i=0

H1/nγ

1,i(zi, zi+1)
2∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
3(dz1, dz2, dz4)

]

+
∑

γ :{1,2}→{2,4}
E

[ ∫
X3

2∏
i=0

H1/nγ

1,i(zi, zi+1)
2∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
3(dz1, dz2, dz4)

]

+
∑

γ :{1,2}→{1,2}
E

[ ∫
X2

2∏
i=0

H1/nγ

1,i(zi, zi+1)
2∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
2(dz1, dz2)

]
.

3.2. Variance of 4-hop counts

When r = 3 and n = 2, Corollary 2 yields

Var[Nx,y
4 ] =

∑
∅ �=A⊂π1

γ :{1,...,3}→A∪{4,...,6−|A|}

1

(3 − |A|)!E

[ ∫
X6−|A|

3∏
i=0

H1/nγ

1,i(zi, zi+1)

×
3∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
6−|A|(dz6−|A|)

]

= 1

2

∑
γ :{1,...,3}→{1,5,6}

E

[ ∫
X5

3∏
i=0

H1/nγ

1,i(zi, zi+1)

×
3∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
5(dz1, dz2, dz3, dz5, dz6)

]
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+ 1

2

∑
γ :{1,...,3}→{2,5,6}

E

[ ∫
X5

3∏
i=0

H1/nγ

1,i(zi, zi+1)

×
3∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
5(dz1, dz2, dz3, dz5, dz6)

]

+ 1

2

∑
γ :{1,...,3}→{3,5,6}

E

[ ∫
X5

3∏
i=0

H1/nγ

1,i(zi, zi+1)

×
3∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
5(dz1, dz2, dz3, dz5, dz6)

]

+
∑

γ :{1,...,3}→{1,2,6}
E

[ ∫
X4

3∏
i=0

H1/nγ

1,i(zi, zi+1)

×
3∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
4(dz1, dz2, dz3, dz6)

]

+
∑

γ :{1,...,3}→{1,3,6}
E

[ ∫
X4

3∏
i=0

H1/nγ

1,i(zi, zi+1)

×
3∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
4(dz1, dz2, dz3, dz6)

]

+
∑

γ :{1,...,3}→{2,3,6}
E

[ ∫
X4

3∏
i=0

H1/nγ

1,i(zi, zi+1)

×
3∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
4(dz1, dz2, dz3, dz6)

]

+
∑

γ :{1,...,3}→{1,...,3}
E

[ ∫
X3

3∏
i=0

H1/nγ

1,i(zi, zi+1)

×
3∏

j=0

H1/nγ

2,j(zγ (j), zγ (j+1))λ̂
3(dz1, dz2, dz3)

]
.

4. Poisson case

In this section and the next one we will work in the Poisson random-connection model,
using a Poisson point process on X =R

d with intensity λ(dx) on R
d. We let

H(n)(x0, xn) :=
∫
Rd

· · ·
∫
Rd

n−1∏
i=0

H(xi, xi+1)λ(dx1) · · · λ(dxn−1), x0, xn ∈R
d, n ≥ 1.

(13)
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The 2-hop count between x ∈R
d and y ∈R

d is given by the first-order stochastic integral

∫
Rd

u(z; ω)ω(dz) =
∫
Rd

1{x↔z1}1{z1↔y}(ω)ω(dz1) =
∫
Rd

1{x↔z1}1{z1↔y}ω(dz1),

and its moment of order n is

E

[( ∫
Rd

u(z1; ω)ω(dz1)

)n]
= E

[( ∫
Rd

1{x↔z1}1{z1↔y}ω(dz1)

)n]

=
∑

ρ∈�[n×1]

∫
X|ρ|

|ρ|∏
l=1

(
H(x, zl)H(zl, y)

)
λ|ρ|(dz1, . . . , dz|ρ|)

=
n∑

k=1

S(n, k)

( ∫
Rd

H(x, z)H(z, y)λ(dz)

)k

=
n∑

k=1

S(n, k)
(
H(2)(x, y)

)k;

therefore, from (3), the 2-hop count between x ∈R
d and y ∈R

d is a Poisson random variable
with mean

H(2)(x, y) =
∫
Rd

H(x, z)H(z, y)λ(dz).

By (10), the first-order moment of the r-hop count is given by

H(r)(x, y) =
∫

Xr−1

r−1∏
i=0

H(zi, zi+1)λr−1(dz1, . . . dzr−1).

Corollary 3. The variance of the r-hop count between x ∈R
d and y ∈R

d is given by

Var[Nx,y
r ] =

r−1∑
p=1

∑
1≤k1<···<kp<r
1≤l1<···<lp<r

∑
σ∈�[p]

∫
Xp

∏
0≤i≤p

H(ki+1−ki)(zi, zi+1)

×
∏

0≤j≤p
lσ (j+1)−lσ (j)+kj+1−kj>2
or {j,j+1}�={σ (j),σ (j+1)}

H(lσ (j+1)−lσ (j))(zσ (j), zσ (j+1))λ
p(dzp),

with k0 = l0 = 0, kp+1 = lp+1 = r, σ (0) = 0, and σ (r) = r, where the above sum is over all
permutations σ ∈ �[p] of {1, . . . , p}.

Proof. We rewrite the result of Corollary 2 by denoting the set A ⊂ π1 as A =
{k1, . . . , kp}, for 1 ≤ k1 < · · · < kp ≤ r − 1, and we identify γ (A) ⊂ A ∪ {r + 1, . . . , 2r − |A|}
with {l1, . . . , lp}, which requires a sum over the permutations of {1, . . . , p} since 1 ≤ l1 <

· · · < lp ≤ r − 1, where 1 ≤ p ≤ r − 1. In addition, the multiple integrals over contiguous index
sets in Ac are evaluated using (13). �
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4.1. Variance of 3-hop counts

When n = 2 and r = 2 Corollary 3 allows us to compute the variance of the 3-hop count
between x ∈R

d and y ∈R
d, as follows:

Var[Nx,y
3 ] = 2

∫
Rd

H(x, z1)H(2)(z1, y)H(2)(z1, y)λ(dz1)

+ 2
∫
Rd

H(x, z1)H(2)(x, z1)H(2)(z1, y)H(z1, y)λ(dz1)

+
∫

X2
H(x, z1)H(z1, z2)H(z2, y)H(x, z2)H(z1, y)λ2(dz1, dz2) + H(3)(x, y). (14)

By Corollary 3 the variance of 4-hop counts can be similarly computed explicitly as a sum of
33 terms.

5. Rayleigh fading

In this section we consider a Poisson point process on X =R
d with flat intensity λ(dx) = λdx

on R
d, λ > 0, and a Rayleigh fading function of the form

Hβ (x, y) := e−β‖x−y‖2
, x, y ∈R

d, β > 0.

Lemmas 1 and 2 can be used to evaluate the integrals appearing in Corollary 3 and in the
variance (14) of the 3-hop counts.

Lemma 1. For all n ≥ 1, y1, . . . , yn ∈R
d, and β1, . . . , βn > 0 we have

∫
Rd

n∏
i=1

Hβi (x, yi)dx

=
(

π

β1 + · · · + βn

)d/2 n−1∏
i=1

H βi+1(β1+···+βi)
β1+···+βi+1

(
yi+1,

β1y1 + · · · + βiyi

β1 + · · · + βi

)
.

Proof. We start by showing that for all n ≥ 1 we have

n∏
i=1

Hβi (x, yi)

= Hβ1+···+βn

(
x,

β1y1 + · · · + βnyn

β1 + · · · + βn

) n−1∏
i=1

H βi+1(β1+···+βi)
β1+···+βi+1

(
yi+1,

β1y1 + · · · + βiyi

β1 + · · · + βi

)
. (15)

Clearly, this relation holds for n = 1. In addition, at the rank n = 2 we have

Hβ1 (x, y1)Hβ2 (x, y2) = e−β1‖y1−x‖2
e−β2‖x−y2‖2

= exp{−β1‖y1‖2 − β2‖y2‖2 + 2〈β1y1 + β2y2, x〉 − (β1 + β2)‖x‖2}
= exp{−β1‖y1‖2 − β2‖y2‖2 − (β1 + β2)‖x − (β1y1 + β2y2)/(β1 + β2)‖2

+‖β1y1 + β2y2‖2/(β1 + β2)}
= exp{−(β1 + β2)‖x − (β1y1 + β2y2)/(β1 + β2)‖2 − β1β2‖y1 − y2‖2/(β1 + β2)}
= Hβ1+β2

(
x,

β1y1 + β2y2

β1 + β2

)
H β1β2

β1+β2

(y1, y2).
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Next, assuming that (15) holds at the rank n ≥ 1, we have

n+1∏
i=1

Hβi (x, yi) = Hβn+1 (x, yn+1)Hβ1+···+βn

(
x,

β1y1 + · · · + βnyn

β1 + · · · + βn

)

×
n−1∏
i=1

H βi+1(β1+···+βi)
β1+···+βi+1

(
yi+1,

β1y1 + · · · + βiyi

β1 + · · · + βi

)

= Hβ1+···+βn+1

(
x,

β1y1 + · · · + βn+1yn+1

β1 + · · · + βn

)

×
n∏

i=1

H βi+1(β1+···+βi)
β1+···+βi+1

(
yi+1,

β1y1 + · · · + βiyi

β1 + · · · + βi

)
.

As a consequence, we find that

∫
Rd

n∏
i=1

Hβi (x, yi)dx =
n−1∏
i=1

H βi+1(β1+···+βi)
β1+···+βi+1

(
yi+1,

β1y1 + · · · + βiyi

β1 + · · · + βi

)

×
∫
Rd

Hβ1+···+βn

(
x,

β1y1 + · · · + βnyn

β1 + · · · + βn

)
dx

=
(

π

β1 + · · · + βn

)d/2 n−1∏
i=1

H βi+1(β1+···+βi)
β1+···+βi+1

(
yi+1,

β1y1 + · · · + βiyi

β1 + · · · + βi

)
. �

In particular, applying Lemma 1 for n = 2 yields∫
Rd

Hβ1 (y1, x)Hβ2 (x, y2)dx =
( π

β1 + β2

)d/2
H β1β2

β1+β2

(y1, y2)

=
( π

β1 + β2

)d/2
e−β1β2‖y1−y2‖2/(β1+β2), y1, y2 ∈R

d, (16)

and the 2-hop count between x ∈R
d and y ∈R

d is a Poisson random variable with mean

H(2)
β (x, y) = λ

∫
Rd

Hβ (x, z)Hβ (z, y)dz

= λ
( π

2β

)d/2
Hβ/2(x, y)

= λ
( π

2β

)d/2
e−‖x−y‖2/2.

By an induction argument similar to that of Lemma 1, we obtain the following lemma.

Lemma 2. For all n ≥ 1, x0, . . . , xn ∈R
d, and β1, . . . , βn > 0 we have

∫
Rd

· · ·
∫
Rd

n∏
i=1

Hβi (xi−1, xi) dx1 · · · dxn−1

=
(

πn−1∑n
i=1 β1 · · · βi−1βi+1 · · · βn

)d/2

H β1···βn∑n
i=1 β1···βi−1βi+1···βn

(x0, yn).
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Proof. Clearly the relation holds at the rank n = 1. Assuming that it holds at the rank n ≥ 1
and using (16), we have

∫
Rd

· · ·
∫
Rd

n+1∏
i=1

Hβi (xi−1, xi) dx1 · · · dxn

=
∫
Rd

Hβn+1 (xn, xn+1)
∫
Rd

· · ·
∫
Rd

n∏
i=1

Hβi (xi−1, xi) dx1 · · · dxn

=
(

πn−1∑n
i=1 β1 · · · βi−1βi+1 · · · βn

)d/2

×
∫
Rd

H β1···βn∑n
i=1 β1···βi−1βi+1···βn

(x0, xn)Hβn+1 (xn, xn+1) dxn

=
(

πn−1∑n
i=1 β1 · · · βi−1βi+1 · · · βn

)d/2

×
(

π
β1···βn∑n

i=1 β1···βi−1βi+1···βn
+ βn+1

)d/2

H β1···βn+1∑n+1
i=1 β1···βi−1βi+1···βn+1

(x0, xn+1). �

In particular, the first-order moment of the r-hop count between x0 ∈R
d and xr ∈R

d is
given by

H(r)
β (x0, xr) =

∫
Rd

· · ·
∫
Rd

r−1∏
i=0

Hβ (xi, xi+1)λ(dx1) · · · λ(dxr−1)

= λr−1
(

π r−1

rβr−1

)d/2

Hβ/r(x, y)

= λr−1
(

π r−1

rβr−1

)d/2

e−β‖x−y‖2/r, x, y ∈R
d. (17)

5.1. Variance of 3-hop counts

Corollary 3 and Lemma 2 allow us to recover Theorem II.3 of [9] for the variance of 3-hop
counts by a shorter argument, while extending it from the plane X =R

2 to X =R
d.

Corollary 4. The variance of the 3-hop count between x ∈R
d and y ∈R

d is given by

Var[Nx,y
3 ] = 2λ3

( π3

8β3

)d/2
e−β‖x−y‖2/2 + λ2

( π2

3β2

)d/2
e−β‖x−y‖2/3

+ 2λ3
( π3

12β3

)d/2
e−3β‖x−y‖2/4 + λ2

( π2

8β2

)d/2
e−β‖x−y‖2

.

Proof. By (17) and Lemma 2 we have∫
Rd

Hβ (x, z1)H(2)
β (z1, y)H(2)

β (z1, y)λ(dz1)

= λ2
( π2

4β2

)d/2
∫
Rd

Hβ (x, z1)H2
β/2(z1, y)λ(dz1)
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= λ3
( π2

4β2

)d/2
∫
Rd

Hβ (x, z1)Hβ (z1, y)λ(dz1) = λ3
( π3

8β3

)d/2
Hβ/2(x, y);

∫
Rd

Hβ (x, z1)H(2)
β (x, z1)H(2)

β (z1, y)Hβ (z1, y)λ(dz1)

= λ2
( π2

4β2

)d/2
∫
Rd

H3β/2(z1, y)H3β/2(x, z1)λ(dz1) = λ3
( π3

12β3

)d/2
H3β/4(x, y);

∫
X2

Hβ (x, z1)Hβ (z1, z2)Hβ (z2, y)Hβ (x, z2)Hβ (z1, y)λ2(dz1, dz2)

= λ
( π

3β

)d/2
Hβ (x, y)

∫
Rd

H2β/3(z2, (x + y)/2)H2β (z2, (x + y)/2)λ(dz2)

= λ2
( π2

8β2

)d/2
Hβ (x, y);

and we conclude by (14). �
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