Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-12T02:56:18.806Z Has data issue: false hasContentIssue false

Computable bounds of an 𝓁²-spectral gap for discrete Markov chains with band transition matrices

Published online by Cambridge University Press:  24 October 2016

Loï Hervé*
Affiliation:
INSA de Rennes
James Ledoux*
Affiliation:
INSA de Rennes
*
* Postal address: INSA de Rennes, IRMAR CNRS-UMR 6625, 20 avenue des Buttes de Coesmes, CS 70 839, 35708 Rennes cedex 7, France.
* Postal address: INSA de Rennes, IRMAR CNRS-UMR 6625, 20 avenue des Buttes de Coesmes, CS 70 839, 35708 Rennes cedex 7, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyse the 𝓁²(𝜋)-convergence rate of irreducible and aperiodic Markov chains with N-band transition probability matrix P and with invariant distribution 𝜋. This analysis is heavily based on two steps. First, the study of the essential spectral radius r ess(P |𝓁²(𝜋)) of P |𝓁²(𝜋) derived from Hennion’s quasi-compactness criteria. Second, the connection between the spectral gap property (SG2) of P on 𝓁²(𝜋) and the V-geometric ergodicity of P. Specifically, the (SG2) is shown to hold under the condition α0≔∑m=−N N lim supi→+∞(P(i,i+m)P *(i+m,i)1∕2<1. Moreover, r ess(P |𝓁²(𝜋)≤α0. Effective bounds on the convergence rate can be provided from a truncation procedure.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2016 

References

[1] Baxendale, P. H. (2005).Renewal theory and computable convergence rates for geometrically ergodic Markov chains.Ann. Appl. Prob. 15,700738.Google Scholar
[2] Chen, M.-F. (2004).From Markov Chains to Non-Equilibrium Particle Systems, 2nd edn.World Scientific ,River Edge, NJ.Google Scholar
[3] Hennion, H. (1993).Sur un théorème spectral et son application aux noyaux lipchitziens.Proc. Amer. Math. Soc. 118,627634.Google Scholar
[4] Hervé, L. and Ledoux, J. (2014).Approximating Markov chains and V-geometric ergodicity via weak perturbation theory.Stoch. Process. Appl. 124,613638.Google Scholar
[5] Hervé, L. and Ledoux, J. (2014).Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks.Adv. Appl. Prob. 46,10361058.Google Scholar
[6] Hervé, L. and Ledoux, J. (2015).Additional material on bounds of 𝓁²-spectral gap for discrete Markov chains with band transition matrices. Preprint. Available at http://arxiv.org/abs/1503.02206.Google Scholar
[7] Kontoyiannis, I. and Meyn, S. P. (2012).Geometric ergodicity and the spectral gap of non-reversible Markov chains.Prob. Theory Relat. Fields 154,327339.Google Scholar
[8] Mao, Y. H. and Song, Y. H. (2013).Spectral gap and convergence rate for discrete-time Markov chains.Acta Math. Sin. (Engl. Ser.) 29,19491962.Google Scholar
[9] Roberts, G. O. and Rosenthal, J. S. (1997).Geometric ergodicity and hybrid Markov chains.Electron. Commun. Prob. 2,1325.CrossRefGoogle Scholar
[10] Rosenblatt, M. (1971).Markov Processes: Structure and Asymptotic Behavior.Springer,New York.CrossRefGoogle Scholar
[11] Stadje, W. and Wübker, A. (2011).Three kinds of geometric convergence for Markov chains and the spectral gap property.Electron. J. Prob. 16,10011019.CrossRefGoogle Scholar
[12] Wu, L. (2004).Essential spectral radius for Markov semigroups. I. Discrete time case.Prob. Theory Relat. Fields 128,255321.Google Scholar
[13] Wübker, W. (2012).Spectral theory for weakly reversible Markov chains.J. Appl. Prob. 49,245265.CrossRefGoogle Scholar
[14] Yuan, W. K. (2000).Applications of geometric bounds to the convergence rate of Markov chains on ℝ n .Stoch. Process. Appl. 87,123.Google Scholar