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Abstract

We analyse the �2(π)-convergence rate of irreducible and aperiodic Markov chains
with N -band transition probability matrix P and with invariant distribution π . This
analysis is heavily based on two steps. First, the study of the essential spectral radius
ress(P|�2(π)) of P|�2(π) derived from Hennion’s quasi-compactness criteria. Second,
the connection between the spectral gap property (SG2) of P on �2(π) and the
V -geometric ergodicity of P . Specifically, the (SG2) is shown to hold under the
condition α0 := ∑N

m=−N lim supi→+∞(P (i, i +m)P ∗(i +m, i))1/2 < 1. Moreover,
ress(P|�2(π)) ≤ α0. Effective bounds on the convergence rate can be provided from a
truncation procedure.
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1. Introduction

Let P := (P (i, j))(i,j)∈N2 be a Markov kernel on the countable state-space N. Throughout
the paper we assume thatP is irreducible and aperiodic, thatP has a unique invariant probability
measure denoted by π := (π(i))i∈N, and, finally, that P satifies the following condition:

(AS1) there exist i0 ∈ N,N ∈ N
∗ such that, for all i ≥ i0, |i−j | > N implies thatP(i, j) = 0.

We denote by (�2(π), ‖ · ‖2) the Hilbert space of sequences (f (i))i∈N ∈ C
N such that ‖f ‖2 :=

[∑i≥0|f (i)|2π(i)]1/2 < ∞. Then P defines a linear contraction on �2(π), and its adjoint
operator P ∗ on �2(π) is defined by P ∗(i, j) := π(j)P (j, i)/π(i). If π(f ) := ∑

i≥0f (i)π(i)

then the kernel P is said to have the spectral gap property on �2(π) if there exists ρ ∈ (0, 1)
and C ∈ (0,+∞) such that the following holds:

(SG2) for all n ≥ 1, f ∈ �2(π), ‖Pnf −�f ‖2 ≤ Cρn‖f ‖2 with �f := π(f ) 1N,

where 1 denotes the indicator. A standard issue is to compute the value (or to find an upper
bound) of

�2 := inf{ρ ∈ (0, 1) such that (SG2) holds}. (1.1)
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In this work the quasi-compactness criteria of [3] is used to study (SG2) and to estimate �2.
In Section 2 it is proved that (SG2) holds when the following condition holds:

(AS2) α0 := ∑N
m=−N lim supi→+∞(P (i, i +m)P ∗(i +m, i))1/2 < 1.

Moreover, ress(P|�2(π)) ≤ α0. We refer the reader to [3] for the definition of the essential
spectral radius ress(T ) and for quasi-compactness of a bounded linear operator T on a Banach
space. Under the following assumptions:

(AS3) for all m = −N, . . . , N , P(i, i +m) → am ∈ [0, 1] as i → +∞;

(AS4) π(i + 1)/π(i) → τ ∈ [0, 1) as i → +∞;

(NERI)
∑N
k=−Nkak < 0;

property (AS2) holds (hence, (SG2)) and α0 can be explicitly computed as a function of τ and
the am. Moreover, using ress(P|�2(π)) ≤ α0, (SG2) is proved to be connected to theV -geometric
ergodicity of P for V := (π(n)−1/2)n∈N. In particular, denoting the minimal V -geometrical
ergodic rate by �V , it is proved that, either �2 and �V are both less than α0, or �2 = �V .
As a result, an accurate bound of �2 can be obtained for random walks (RW) with identically
distributed bounded increments using the results of [5]. Actually, any estimation of �V , for
instance that derived in Section 3 from the truncation procedure of [4], provides an estimation
of �2. We point out that all the previous results hold without any reversibility properties.

The spectral gap property for Markov processes has been widely investigated in the discrete
and continuous-time cases (see, e.g. [2] and [10]). There exist different definitions of the
spectral gap property according to whether we are concerned with the discrete or continuous-
time case (see, e.g. [8] and [14]). The focus of our paper is on the discrete-time case. In the
reversible case, the equivalence between the geometrical ergodicity and (SG2) was proved in [9]
and �2 ≤ �V was obtained in [1, Theorem 6.1.]. This equivalence fails in the nonreversible
case (see [7]). The link between �2 and �V stated in our Proposition 2.1 is obtained with no
reversibility condition. Formulae for �2 are provided in [11] and [13] in terms of isoperimetric
constants which are related to P in the reversible case and to P and P ∗ in the nonreversible
case. However, to the best of the authors’ knowledge, no explicit value (or upper bounds) of �2
can be derived from these formulae for discrete Markov chains with band transition matrices.
Our explicit bound ress(P|�2(π)) ≤ α0 in Theorem 2.1 is the preliminary key result in this work.
Recall that ress(P|�2(π)) is a natural lower bound of �2 (apply [5, Proposition 2.1] with the
Banach space �2(π)). The essential spectral radius of Markov operators on an L

2-type space
was investigated for Markov chains with general state-space in [12], but no explicit bound for
ress(P|�2(π)) can be derived a priori from these theoretical results for Markov chains with band
transition matrices, except in the reversible case [12, Theorem 5.5.].

2. Property (SG2) and V -geometrical ergodicity

Theorem 2.1. If (AS2) holds then P satisfies (SG2). Moreover, we have ress(P|�2(π)) ≤ α0.

Proof. Let us introduce �1(π) := {(f (i))i∈N ∈ C
N : ‖f ‖1 := ∑

i≥0|f (i)|π(i) < ∞}.
Lemma 2.1. For any α > α0, there exists a positive constant L ≡ L(α) such that

‖Pf ‖2 ≤ α‖f ‖2 + L‖f ‖1 for all f ∈ �2(π).
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Since the identity map is compact from �2(π) into �1(π) (from the Cantor diagonal pro-
cedure), it follows from Lemma 2.1 and from [3] that P is quasi-compact on �2(π) with
ress(P|�2(π)) ≤ α. Since α can be chosen arbitrarily close to α0, we obtain ress(P|�2(π)) ≤ α0.
Then (SG2) is deduced from aperiodicity and irreducibility assumptions. �

Proof of Lemma 2.1. Under (AS1), define

βm(i) := (P (i, i +m)P ∗(i +m, i))1/2 for all i ≥ i0, m = −N, . . . , N. (2.1)

Let α > α0, with α0 given in (AS2). Fix � ≡ �(α) ≥ i0 such that
∑N
m=−N supi≥� βm(i) ≤ α.

For f ∈ �2(π), we have, from Minkowski’s inequality and the band structure of P , for i ≥ �,

‖Pf ‖2 ≤
[∑
i<�

|(Pf )(i)|2π(i)
]1/2

+
[∑
i≥�

∣∣∣∣
N∑

m=−N
P (i, i +m)f (i +m)

∣∣∣∣
2

π(i)

]1/2

≤ L
∑
i<�

|(Pf )(i)|π(i)+
[∑
i≥�

∣∣∣∣
N∑

m=−N
P (i, i +m)f (i +m)

∣∣∣∣
2

π(i)

]1/2

, (2.2)

where L ≡ L� > 0 comes from the equivalence of norms on C
�. Moreover, we have∑

i<�

|(Pf )(i)|π(i) ≤ ‖Pf ‖1 ≤ ‖f ‖1.

To control the second term in (2.2), define Fm = (Fm(i))i∈N ∈ �2(π) by

Fm(i) := P(i, i +m)f (i +m)(1 − 1{0,...,�−1}(i)) for −N ≤ m ≤ N.

Then

[∑
i≥�

∣∣∣∣
N∑

m=−N
P (i, i +m)f (i +m)

∣∣∣∣
2

π(i)

]1/2

=
∥∥∥∥

N∑
m=−N

Fm

∥∥∥∥
2

≤
N∑

m=−N
‖Fm‖2.

and

‖Fm‖2
2 =

∑
i≥�

P (i, i +m)2|f (i +m)|2π(i)

=
∑
i≥�

P (i, i +m)
π(i)P (i, i +m)

π(i +m)
|f (i +m)|2π(i +m)

≤ sup
i≥�

βm(i)
2‖f ‖2

2

from the definition of P ∗ and from (2.1). The statement in Lemma 2.1 can be deduced from
the previous inequality and from (2.2). �

The core of our approach to estimate �2 is the relationship between (SG2) and the V -
geometric ergodicity. Indeed, specify Theorem 2.1 in terms of the V -geometric ergodicity with
V := (π(n)−1/2)n∈N. Let (BV , ‖ · ‖V ) denote the space of sequences (g(n))n∈N ∈ C

N such
that ‖g‖V := supn∈N V (n)

−1|g(n)| < ∞. Recall that P is said to be V -geometrically ergodic
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if P satisfies the spectral gap property on BV ; namely, there exist C ∈ (0,+∞) and ρ ∈ (0, 1)
such that the following condition holds:

(SGV ) ‖Pnf −�f ‖V ≤ Cρn‖f ‖V for all n ≥ 1, f ∈ BV .

When this property holds, we define

�V := inf{ρ ∈ (0, 1) such that (SGV ) holds}. (2.3)

Remark 2.1. Under (AS3) and (AS4), we have

α0 :=
N∑

m=−N
lim sup
i→+∞

(P (i, i +m)P ∗(i +m, i))1/2 =

⎧⎪⎪⎨
⎪⎪⎩

N∑
m=−N

amτ
−m/2 if τ ∈ (0, 1),

a0 if τ = 0.

(2.4)

Indeed, if (AS4) holds with τ ∈ (0, 1), then the claimed formula follows from the definition
of P ∗. If τ = 0 in (AS4), then am = 0 for every m = 1, . . . , N from∑N

m=−N P (i +m, i)π(i +m)

π(i)
= 1.

Thus, a−m = 0 when m < 0. Hence, α0 = a0.

Proposition 2.1. If P and π satisfy assumptions (AS3), (AS4), and (NERI), then P satis-
fies (AS2) (with α0 < 1 given in (2.4)). Moreover, when P satisfies both (SG2) and (SGV )
with V := (π(n)−1/2)n∈N, we have max(ress(P|BV

), ress(P|�2(π))) ≤ α0, and the following
assertions hold:

(i) if �V ≤ α0 then �2 ≤ α0;

(ii) if �V > α0 then �2 = �V .

Proof. If τ = 0 in (AS4) then α0 = a0 < 1 from (2.4) and (NERI). Now assume that
(AS4) holds with τ ∈ (0, 1). Then α0 = ∑N

m=−Namτ−m/2 = ψ(
√
τ), where, for all t >

0, ψ(t) := ∑N
k=−Nakt−k . Moreover, it easily follows from the invariance of π that ψ(τ) = 1.

The inequality α0 = ψ(
√
τ) < 1 is deduced from the following assertions. For all t ∈ (τ, 1),

ψ(t) < 1, and for all t ∈ (0, τ )∪ (1,+∞), we have ψ(t) > 1. To prove these properties, note
that ψ(τ) = ψ(1) = 1 and ψ is convex on (0,+∞). Moreover, we have limt→+∞ ψ(t) =
+∞ since ak > 0 for some k < 0 (use ψ(τ) = ψ(1) = 1 and τ ∈ (0, 1)). Similarly,
limt→0+ ψ(t) = +∞ since ak > 0 for some k > 0. This gives the desired properties on ψ
since ψ ′(1) > 0 from (NERI).

Condition (SG2) and ress(P|�2(π)) ≤ α0 follow from Theorem 2.1. Next, (SGV ) is deduced
from the well-known link between geometric ergodicity and the following drift inequality:

for all α ∈ (α0, 1), there exists L ≡ Lα > 0 such that PV ≤ αV + L 1N . (2.5)

This inequality holds from the fact that limi (PV )(i)/V (i) = α0.
Then (SGV ) is derived from (2.5) using aperiodicity and irreducibility. It also follows

from (2.5) that ress(P|BV
) ≤ α (see [5, Proposition 3.1]). Thus, ress(P|BV

) ≤ α0.
Now we prove Propositions 2.1(i) and 2.1(ii) using the spectral properties of [5, Proposi-

tion 2.1] of both P|�2(π) and P|BV
(due to quasi-compactness, see [3]). We will also use the
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following obvious inclusion: �2(π) ⊂ BV . In particular, every eigenvalue of P|�2(π) is also
an eigenvalue for P|BV

. First, assume that �V ≤ α0. Then there is no eigenvalue for P|BV

in the annulus � := {λ ∈ C : α0 < |λ| < 1} since ress(P|BV
) ≤ α0. From �2(π) ⊂ BV ,

it follows that there is also no eigenvalue for P|�2(π) in this annulus. Hence, �2 ≤ α0 since
ress(P|�2(π)) ≤ α0. Second, assume that �V > α0. Then P|BV

admits an eigenvalue λ ∈ C such
that |λ| = �V . Let f ∈ BV , f �= 0, such that Pf = λf . We know from [5, Proposition 2.2]
that there exists some β ≡ βλ ∈ (0, 1) such that |f (n)| = O(V (n)β) = O(π(n)−β/2), so that
|f (n)|2π(n) = O(π(n)(1−β)); thus, f ∈ �2(π) from (AS4). We have proved that �2 ≥ �V .
Finally, the converse inequality holds since every eigenvalue ofP|�2(π) is an eigenvalue forP|BV

.
Thus, �2 = �V . �

From Proposition 2.1, any estimation of �V provides an estimation of �2. This is illustrated
in Example 2.1 and Corollary 3.1. The Markov chains in Example 2.1 have been studied in
detail in [5, Section 3]; we also mention that further technical details can be found in [6].

Example 2.1. (RWs with identically distributed bounded increments.) Let P be defined as
follows. There exist some positive integers c, g, d ∈ N

∗ such that

c∑
j=0

P(i, j) = 1 for all i ∈ {0, . . . , g − 1},

P (i, j) =
{
aj−i if i − g ≤ j ≤ i + d,

0 otherwise,
for all i ≥ g, j ∈ N,

and (a−g, . . . , ad) ∈ [0, 1]g+d+1 such that a−g > 0, ad > 0,
∑d
k=−gak = 1. Assume that P

is aperiodic and irreducible, and satisfies (NERI). Then P has a unique invariant distribution
π . It can be derived from standard results of a linear difference equation that π(n) ∼ cτn

when n → +∞, with τ ∈ (0, 1) defined by ψ(τ) = 1, where ψ(t) := ∑N
k=−Nakt−k . Thus,

if γ := τ−1/2 then BV = {(g(n))n∈N ∈ C
N, supn∈N γ

−n|g(n)| < ∞}. Then we know from
[5, Proposition 3.2] that ress(P|BV

) = α0 with α0 given in (2.4), and that �V can be computed
from an algebraic polynomial elimination. From this computation, Proposition 2.1 provides an
accurate estimation of �2. Property (SG2) was proved in [13, Theorem 2] under an extra weak
reversibility assumption (with no explicit bound on �2). However, except in the g = d = 1
case, where reversibility is automatic, an RW with identically distributed bounded increments
is not reversible or even weak reversible in general. No reversibility condition is required here.

3. Bound for �2 via truncation

Let P be any Markov kernel on N, and let us consider the kth truncated (and augmented on
the last column) matrix Pk associated with P as in [4]. If σ(Pk) denotes the set of eigenvalues
of Pk , define ρk := max{|λ|, λ ∈ σ(Pk), |λ| < 1}. The weak perturbation method in [4]
provides the following general result where (AS1) is not required and V is any unbounded
increasing sequence.

Proposition 3.1. Let P be an irreducible and aperiodic Markov kernel on N satisfying the
following drift inequality for some unbounded increasing sequence (V (n))n∈N: there exist
δ ∈ [0, 1), L > 0, such that

PV ≤ δV + L 1N . (3.1)
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Let �V be defined in (2.3). Then, either �V ≤ δ and lim supk ρk ≤ δ, or �V > δ and
�V = limk ρk .

Proof. Condition (3.1) ensures that the assumptions of [4, Lemma 6.1] are satisfied, so that
ress(P|BV

) ≤ δ. Then, using standard duality arguments, the spectral rank-stability property
[4, Lemma 7.2] applies to P|BV

and Pk . If �V ≤ δ then, for each r such that δ < r < 1,
λ = 1 is the unique eigenvalue of P|BV

in Cr := {λ ∈ C : r < |λ| ≤ 1} (see [3]). From [4,
Lemma 7.2] this property holds for Pk when k is large enough, so that lim supk ρk ≤ r . Thus,
lim supk ρk ≤ δ since r is arbitrarily close to δ. Now assume that �V > δ, and let r be such
that δ < r < �V . Then P|BV

has a finite number of eigenvalues in Cr , say λ0, λ1, . . . , λN ,
with λ0 = 1, |λ1| = �V , and |λj | ≤ �V for j = 2, . . . , N (see [3]). For a ∈ C and ε > 0, we
defineD(a, ε) := {z ∈ C : |z− a| < ε}. Now consider any ε > 0 such that the disksD(λj , ε)
for j = 0, . . . , N are disjoint and are contained in Cr for j ≥ 1. From [4, Lemma 7.2], for
large enough k, 1 is the only eigenvalue of Pk inD(1, ε), the others eigenvalues of Pk in Cr are
contained in

⋃N
j=1D(λj , ε), and, finally, eachD(λj , ε) contains at least one eigenvalue of Pk .

Thus, each eigenvalue λ �= 1 of Pk in Cr has modulus less than �V + ε, so that ρk ≤ �V + ε.
Moreover, the diskD(λ1, ε) contains at least an eigenvalue λ of Pk , so that ρk ≥ |λ| ≥ �V − ε.
Thus, for large enough k, we have �V − ε ≤ ρk ≤ �V + ε. �

Under the assumptions of Proposition 2.1 we deduce the following result from Proposi-
tion 3.1.

Corollary 3.1. If P satisfies the assumptions of Proposition 2.1, then the following properties
hold with α0 given in (2.4):

(i) �2 ≤ α0 if and only if �V ≤ α0, and in this case, we have lim supk ρk ≤ α0;

(ii) �2 > α0 if and only if �V > α0, and in this case, we have �2 = �V = limk ρk .

As usual the reversible case is simpler. In particular, we can takeC = 1 and ρ = �2 in (SG2).
Details and numerical illustrations for Metropolis–Hastings kernels can be found in [6].
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