1. Introduction
Let S (resp. B) be a non-singular projective surface (resp. curve) defined over
$\mathbb{C}$
and
$f\colon S\to B$
a relatively minimal fibration whose general fiber F is a non-hyperelliptic curve of genus 4. According to [Reference Ashikaga and Yoshikawa2], we say that f is Eisenbud–Harris special or E-H special for short (resp. Eisenbud–Harris general) if F has a unique
$\mathfrak{g}^{1}_{3}$
(resp. two distinct
$\mathfrak{g}^{1}_{3}$
’s), or equivalently, the canonical image of F lies on a quadric surface of rank 3 (resp. rank 4) in
$\mathbb{P}^3$
.
For E-H general fibrations of genus 4, two important local invariants, the local signature and the Horikawa index, are introduced in the appendix in [Reference Ashikaga and Yoshikawa2]. The purpose of this short note is to show that an analogous result also holds for E-H special fibrations of genus 4, that is, to show the following:
Theorem 1.1. Let
$\mathcal{A}$
be the set of fiber germs of relatively minimal E-H special fibrations of genus 4. Then, the Horikawa index
$\textrm{Ind}\colon \mathcal{A}\to \mathbb{Q}_{\ge 0}$
and the local signature
$\sigma\colon \mathcal{A}\to \mathbb{Q}$
are defined so that for any relatively minimal E-H special fibration
$f\colon S\to B$
of genus 4, the slope equality
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn1.png?pub-status=live)
and the localization of the signature
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn2.png?pub-status=live)
hold.
Note that the above slope equality was established in [Reference Takahashi7] under the assumption that the multiplicative map
$\textrm{Sym}^{2}f_{*}\omega_f\to f_{*}\omega_f^{\otimes 2}$
is surjective, and that for non-hyperelliptic fibrations of genus 4, the slope inequality
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn3.png?pub-status=live)
was shown independently in [Reference Chen3] and [Reference Konno6].
2. Proof of theorem
In this section, we prove Theorem 1.1. Let
$f\colon S\to B$
be a relatively minimal E-H special fibration of genus 4. Since the general fiber F of f is non-hyperelliptic, the multiplicative map
$\textrm{Sym}^{2}f_{*}\omega_f\to f_{*}\omega_f^{\otimes 2}$
is generically surjective from Noether’s theorem. Thus, we have the following exact sequences of sheaves of
$\mathcal{O}_B$
-modules:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_eqn1.png?pub-status=live)
where the kernel
$\mathcal{L}$
is a line bundle on B and the cokernel
$\mathcal{T}$
is a torsion sheaf on B. Then, the first injection defines a section
$q\in H^{0}(B,\textrm{Sym}^{2}f_{*}\omega_f\otimes \mathcal{L}^{-1})=H^{0}(\mathbb{P}_{B}(f_{*}\omega_f),2T-\pi^{*}\mathcal{L})$
, where
$\pi\colon \mathbb{P}_{B}(f_{*}\omega_f)\to B$
is the projection and
$T=\mathcal{O}_{\mathbb{P}_{B}(f_{*}\omega_f)}(1)$
is the tautological line bundle on
$\mathbb{P}_{B}(f_{*}\omega_f)$
. The section q can be regarded as a relative quadratic form
$q\colon (f_{*}\omega_f)^{*}\to f_{*}\omega_f\otimes \mathcal{L}^{-1}$
, which defines the determinant
$\textrm{det}(q)\colon \textrm{det}(f_{*}\omega_f)^{-1}\to \textrm{det}(f_{*}\omega_f)\otimes \mathcal{L}^{-4}$
. Note that for a non-hyperelliptic fibration f of genus 4,
$\textrm{det}(q)=0$
if and only if f is E-H special. On the other hand,
$Q=(q)\in |2T-\pi^{*}\mathcal{L}|$
is regarded as the unique relative quadric on
$\mathbb{P}_{B}(f_{*}\omega_f)$
containing the image of the relative canonical map
$\Phi_f\colon S\dashrightarrow \mathbb{P}_{B}(f_{*}\omega_f)$
. Since f is E-H special, the general fiber of
$\pi|_{Q}\colon Q\to B$
is a quadric of rank 3 on
$\mathbb{P}(H^{0}(F,K_F))=\mathbb{P}^3$
. The closure of the set of vertexes of general fibers of
$\pi|_{Q}$
defines a section
$v\colon B\to Q$
, which corresponds to some quotient line bundle
$\mathcal{F}$
of
$f_{*}\omega_f$
. Let
$\mathcal{E}$
be the kernel of the surjection
$f_{*}\omega_f\to \mathcal{F}$
and put
$P=\mathbb{P}_{B}(f_{*}\omega_f)$
and
$P^{\prime}=\mathbb{P}_{B}(\mathcal{E})$
. Let
$\tau\colon \widetilde{P}\to P$
be the blow-up of P along the section v(B). Then, the relative projection
$P\dashrightarrow P^{\prime}$
from the section v(B) extends to the morphism
$\tau^{\prime}\colon \widetilde{P}\to P^{\prime}$
with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn4.png?pub-status=live)
where
$T^{\prime}=\mathcal{O}_{\mathbb{P}_{B}(\mathcal{E})}(1)$
is the tautological line bundle of
$\mathbb{P}_{B}(\mathcal{E})$
and E is the exceptional divisor of
$\tau$
. Let
$\widetilde{Q}$
denote the proper transform of Q on
$\widetilde{P}$
. It follows that in
$\textrm{Pic}(\widetilde{P})$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn5.png?pub-status=live)
where
$\pi^{\prime}\colon P^{\prime}\to B$
is the projection. Let
$Q^{\prime}=\tau^{\prime}(\widetilde{Q})$
be the image of
$\widetilde{Q}$
via
$\tau^{\prime}$
. It follows that
$Q^{\prime}\in |2T^{\prime}-\pi^{\prime*}\mathcal{L}|$
and
$\widetilde{Q}=\tau^{\prime*}Q^{\prime}$
. The general fiber of
$\pi^{\prime}|_{Q^{\prime}}\colon Q^{\prime}\to B$
is a conic on
$\mathbb{P}(H^{0}(F,\mathcal{E}|_{F}))=\mathbb{P}^2$
of rank 3, which is isomorphic to
$\mathbb{P}^1$
. Note that the composite
$\tau^{\prime}\circ \Phi_f\colon S\dashrightarrow Q^{\prime}\subset P^{\prime}$
of the relative canonical map
$\Phi_f\colon S\dashrightarrow P$
and the projection
$\tau^{\prime}\colon P\dashrightarrow P^{\prime}$
determines the unique trigonal structure of the general fiber F of f. Let
$q^{\prime}\in H^{0}(P^{\prime},2T^{\prime}-\pi^{\prime*}\mathcal{L})=H^{0}\!\left(B,\textrm{Sym}^{2}\mathcal{E}\otimes \mathcal{L}^{-1}\right)$
be a section which defines
$Q^{\prime}=(q^{\prime})$
. Then q
′ can be regarded as a relative quadratic form
$q^{\prime}\colon \mathcal{E}^{*}\to \mathcal{E}\otimes \mathcal{L}^{-1}$
, which has non-zero determinant
$\textrm{det}(q^{\prime})\colon \textrm{det}(\mathcal{E})^{-1}\to \textrm{det}(\mathcal{E})\otimes \mathcal{L}^{-3}$
since Q
′ is of rank 3. Thus,
$\textrm{det}(q^{\prime})\in H^{0}(B,\textrm{det}(\mathcal{E})^{\otimes 2}\otimes \mathcal{L}^{-3})$
defines an effective divisor
$\Delta_{Q^{\prime}}=(\textrm{det}(q^{\prime}))$
on B. The degree of
$\Delta_{Q^{\prime}}$
is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_eqn2.png?pub-status=live)
Let
$\rho\colon \widetilde{S}\to S$
be the minimal desingularization of the rational map
$\tau^{-1}\circ \Phi_f\colon S\dashrightarrow \widetilde{P}$
and
$\widetilde{\Phi}\colon \widetilde{S}\to \widetilde{P}$
the induced morphism. Put
$\Phi=\tau\circ\widetilde{\Phi}\colon \widetilde{S}\to P$
,
$\Phi^{\prime}=\tau^{\prime}\circ\widetilde{\Phi}\colon \widetilde{S}\to P^{\prime}$
,
$M=\Phi^{*}T$
and
$M^{\prime}=\Phi^{\prime*}T^{\prime}$
. Then we can write
$\rho^{*}K_f=M+Z$
for some effective vertical divisor Z on
$\widetilde{S}$
. Since
$M^{\prime}=M-\widetilde{\Phi}^{*}E$
, we can also write
$\rho^{*}K_f=M^{\prime}+Z^{\prime}$
, where
$Z^{\prime}=Z+\widetilde{\Phi}^{*}E$
is also an effective vertical divisor on
$\widetilde{S}$
. Since
$\Phi^{\prime}$
is of degree 3 onto the image Q
′, we have
$\Phi^{\prime}_{*}\widetilde{S}=3Q^{\prime}$
as cycles. It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn6.png?pub-status=live)
while we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn7.png?pub-status=live)
Hence, we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_eqn3.png?pub-status=live)
From (2.2) and (2.3), we can delete the term
$\textrm{deg}\mathcal{E}$
and then we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_eqn4.png?pub-status=live)
On the other hand, taking the degree of (2.1), we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_eqn5.png?pub-status=live)
Substituting (2.4) in the equation (2.5), we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn8.png?pub-status=live)
For a fiber germ
$f^{-1}(p)$
, we define
$\textrm{Ind}\!\left(f^{-1}(p)\right)$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn9.png?pub-status=live)
where
$Z=\sum_{p\in B}Z_p$
is the natural decomposition with
$(f\circ \rho)(Z_p)=\{p\}$
for any
$p\in B$
. For the definitions of M
′, Z
′, etc., we do not use the completeness of the base B. Thus, we can modify the definition of Ind for any fiber germ of relatively minimal E-H special fibrations of genus 4 which is invariant under holomorphically equivalence. Thus, we can define the Horikawa index
$\textrm{Ind}\colon \mathcal{A}\to \mathbb{Q}_{\ge 0}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn10.png?pub-status=live)
The non-negativity of
$\textrm{Ind}\!\left(f^{-1}(p)\right)$
is as follows. From the nefness of
$K_f$
, we have
$\rho^{*}K_fZ^{\prime}_p\ge 0$
. For a sufficiently ample divisor
$\mathfrak{a}$
on B, the linear system
$|M^{\prime}+(f\circ \rho)^{*}\mathfrak{a}|$
is free from base points. Thus, by Bertini’s theorem, there is a smooth horizontal member
$C\in |M^{\prime}+(f\circ \rho)^{*}\mathfrak{a}|$
and then
$M^{\prime}Z^{\prime}_p=(M^{\prime}+(f\circ \rho)^{*}\mathfrak{a})Z^{\prime}_p=CZ^{\prime}_p\ge 0$
.
Once the Horikawa index is introduced, we can define the local signature since
$\textrm{Sign}(S)=K^2_{f}-8\chi_f$
and
$e_f=12\chi_f-K_f^{2}$
is localized by using the topological Euler numbers of the singular fibers (cf. [Reference Ashikaga and Konno1, Section 2]). Indeed, we put
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809132808109-0749:S0017089522000295:S0017089522000295_ueqn11.png?pub-status=live)
where
$e_f\!\left(f^{-1}(p)\right)=e_{\textrm{top}}\!\left(f^{-1}(p)\right)+6$
is the Euler contribution at
$p\in B$
. Then we have
$\textrm{Sign}(S)=\sum_{p\in B}\sigma\!\left(f^{-1}(p)\right)$
.
Remark 2.1. In [Reference Enokizono5], we define a Horikawa index
$\textrm{Ind}_{g,n}$
for fibered surfaces of genus g admitting a cyclic covering of degree n over a ruled surface (called primitive cyclic covering fibrations of type (g, 0, n)). For
$g=4$
and
$n=3$
, these fibrations are non-hyperelliptic E-H special fibrations of genus 4. One can check the Horikawa index
$\textrm{Ind}_{4,3}\!\left(f^{-1}(p)\right)$
in [Reference Enokizono5, (4.5)] and
$\textrm{Ind}\!\left(f^{-1}(p)\right)$
in Theorem 1.1 are coincide by using the technique of [Reference Endo4, Appendix] which we left to the reader.
Acknowledgments
I would like to express special thanks to Prof. Kazuhiro Konno for a lot of discussions and supports. I also thank Prof. Tomokuni Takahashi for useful comments and discussions. The research is supported by JSPS KAKENHI No. 16J00889.