We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this article, we describe the embeddings of the Heisenberg group into the Cremona group.
Blanc, J. and Cantat, S., Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc.29(2) (2016), 415–471.CrossRefGoogle Scholar
[2]
Blanc, J. and Déserti, J., Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)14(2) (2015), 507–533.Google Scholar
[3]
Blanc, J. and Furter, J.-P., Topologies and structures of the Cremona groups, Ann. Math. (2)178(3) (2013), 1173–1198.CrossRefGoogle Scholar
[4]
Blanc, J. and Furter, J.-P., Length in the Cremona group, Ann. H. Lebesgue2 (2019), 187–257.CrossRefGoogle Scholar
[5]
Cantat, S., Dynamique des automorphismes des surfaces K3, Acta Math.187(1) (2001), 1–57.CrossRefGoogle Scholar
[6]
Cantat, S. and Cornulier, Y., Distortion in Cremona groups, Ann. Scuola Normale Sup. Pisa Cl. Sci.20(2) (2020), 827–858.Google Scholar
[7]
Déserti, J., Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer, Int. Math. Res. Not.27 (2006), Art. ID 71701.Google Scholar
[8]
Diller, J. and Favre, C., Dynamics of bimeromorphic maps of surfaces, Amer. J. Math.123(6) (2001), 1135–1169.CrossRefGoogle Scholar
[9]
Gizatullin, M. H., Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat.44(1) (1980), 110–144, 239.Google Scholar