THE EMBEDDINGS OF THE HEISENBERG GROUP INTO THE CREMONA GROUP

JULIE DÉSERTI

Université Côte d'Azur, CNRS, Laboratoire J.A. Dieudonné, UMR 7351, Nice, France e-mail: deserti@math.cnrs.fr

(Received 2 October 2020; revised 8 February 2021; accepted 8 February 2021; first published online 9 March 2021)

Abstract. In this article, we describe the embeddings of the Heisenberg group into the Cremona group.

2020 Mathematics Subject Classification. Primary 14E07; Secondary 14E05

1. Introduction. The Heisenberg group is the non-abelian nilpotent group given by:

$$\mathcal{H} = \langle f, g | [f, g] = h, [f, h] = [g, h] = id \rangle.$$

It has two generators, f and g, and h is the generator of the center of \mathcal{H} .

The Cremona group is the group $Bir(\mathbb{P}^2_{\mathbb{C}})$ of birational maps of the projective plane $\mathbb{P}^2_{\mathbb{C}}$ into itself. Such maps can be written in the form:

$$(x:y:z) \dashrightarrow (P_0(x,y,z):P_1(x,y,z):P_2(x,y,z)),$$

where $P_0, P_1, P_2 \in \mathbb{C}[x, y, z]$ are homogeneous polynomials of the same degree, and this degree is the degree of the map, if the polynomials have no common factor (of positive degree). Recall that if ϕ is a birational self-map of the complex projective plane, then one of the following holds ([9, 5, 8, 2]):

- \diamond the sequence $(\deg(\phi^n))_{n\in\mathbb{N}}$ is bounded, and ϕ is said to be *elliptic*;
- \diamond the sequence $(\deg(\phi^n))_{n\in\mathbb{N}}$ grows linearly with n, and ϕ is said to be a *Jonquières twist*;
- \diamond the sequence $(\deg(\phi^n))_{n\in\mathbb{N}}$ grows quadratically with n, and ϕ is said to be a *Halphen twist*;
- $\diamond (\deg(\phi^n))_{n \in \mathbb{N}}$ grows exponentially fast with n, and ϕ is said to be *hyperbolic*.

PROPOSITION A. Let ρ be an embedding of \mathcal{H} into the Cremona group. Then, $\rho(\mathcal{H})$ does not contain hyperbolic birational maps.

More precisely, $\rho(f)$ and $\rho(g)$ are either elliptic birational maps or Jonquières twists.

We describe the embeddings of \mathcal{H} into the Cremona group (in [7], we already looked at such embeddings but with the following assumption: the images of f and g are elliptic birational self maps).

THEOREM B. Let ρ be an embedding of $\mathcal H$ into the Cremona group. Then up to birational conjugacy:

 \diamond either $\rho(\mathcal{H})$ is a subgroup of PGL(3, \mathbb{C}) and

$$\rho(\mathbf{f}) = (x + \alpha y, y + \beta) \qquad \qquad \rho(\mathbf{g}) = (x + \gamma y, y + \delta)$$

with α , β , γ , δ in \mathbb{C} such that $\alpha\delta - \beta\gamma = 1$;

 \diamond or $\rho(\mathcal{H})$ is a subgroup of the group of polynomial automorphisms of \mathbb{C}^2 and $(\rho(\mathbf{f}), \rho(\mathbf{g}))$ is one of the following pairs:

$$((ax + Q(y), y + c), (\alpha x + P(y), y + \gamma)),$$

$$\left(\left(ax + Q(y), by + \frac{\gamma(b-1)}{\beta - 1}\right), (\alpha x + P(y), \beta y + \gamma)\right)$$

with a, α , b in \mathbb{C}^* , $\beta \in \mathbb{C}^* \setminus \{1\}$, c, γ in \mathbb{C} and P, Q in $\mathbb{C}[y]$;

 \diamond or $\rho(f)$ is a Jonquières twist and $(\rho(f), \rho(g))$ is one of the following pairs:

$$((x, \delta x^{\pm 1}y), (\gamma x, ya(x))), \qquad ((x, \delta x^{\pm 2}y), (\gamma x, ya(x))),$$
$$((-x, \delta x^{\pm 1}y), (\gamma x, yb(x))), \qquad ((\lambda x, yc(x)), (\delta x, yd(x)))$$

with δ , $\gamma \in \mathbb{C}^*$, $\lambda \in \mathbb{C}^* \setminus \{1, -1\}$ and a, b, c, $d \in \mathbb{C}(x)^*$ such that

$$\frac{b(x)}{b(-x)} \in \mathbb{C}^*, \qquad \frac{c(\delta x)d(x)}{c(x)d(\lambda x)} \in \mathbb{C}^*.$$

REMARK C. Note that the two last families are not empty. For instance,

$$((-x, \alpha x^{\pm 1}y), (\beta x, \gamma x^2y)),$$
 $((\lambda x, \alpha x^p y), (\gamma x, \beta x^q y))$

with $\alpha, \beta, \gamma \in \mathbb{C}^*$, $\lambda \in \mathbb{C}^* \setminus \{1, -1\}$, $p, q \in \mathbb{N}$ are such pairs.

2. Some recalls.

- **2.1.** About birational maps of the complex projective plane. Let ϕ be a birational self-map of the complex projective plane. Then one of the following holds ([9, 5, 8, 2]):
 - $\diamond \phi$ is *elliptic* if and only if the sequence $(\deg(\phi^n))_{n\in\mathbb{N}}$ is bounded. In this case, there exist a birational map $\psi: S \dashrightarrow \mathbb{P}^2_{\mathbb{C}}$ and an integer $k \ge 1$ such that $\psi^{-1} \circ \phi^k \circ \psi$ belongs to the connected component of the identity of the group $\operatorname{Aut}(S)$. Either ϕ is of finite order, or ϕ is conjugate to an automorphism of $\mathbb{P}^2_{\mathbb{C}}$, which restricts to one of the following automorphisms on some open subset isomorphic to \mathbb{C}^2 :
 - $(x, y) \mapsto (\alpha x, \beta y)$ where the kernel of the group morphism:

$$\mathbb{Z}^2 \to \mathbb{C}^2 \qquad \qquad (i,j) \mapsto \alpha^i \beta^j$$

is generated by (k, 0) for some $k \in \mathbb{Z}$;

- $(x, y) \mapsto (\alpha x, y + 1)$ where $\alpha \in \mathbb{C}^*$.
- $\diamond \phi$ is *parabolic* if and only if the sequence $(\deg(\phi^n))_{n\in\mathbb{N}}$ grows linearly or quadratically with n. If ϕ is parabolic, there exist a birational map $\psi: S \dashrightarrow \mathbb{P}^2_{\mathbb{C}}$ and a fibration $\pi: S \to B$ onto a curve B such that $\psi^{-1} \circ \phi \circ \psi$ permutes the fibers of π . If $(\deg(\phi^n))_{n\in\mathbb{N}}$ grows linearly, then the fibration π is rational and ϕ is said to be a *Jonquières twist*. If $(\deg(\phi^n))_{n\in\mathbb{N}}$ grows quadratically, then the fibration π is elliptic and ϕ is said to be a *Halphen twist*.
- ϕ is *hyperbolic* if and only if $(\deg(\phi^n))_{n\in\mathbb{N}}$ grows exponentially fast with n: there is a constant $c(\phi)$ such that $\deg(\phi^n) = c(\phi)\lambda(\phi)^n + O(1)$.

2.2. About distorted elements. If G is a group generated by a finite subset $F \subset G$ the F-length $|g|_F$ of an element g of G is defined as the least nonnegative integer ℓ such that g admits an expression of the form $g = f_1 f_2 \dots f_\ell$ where each f_i belongs to $F \cup F^{-1}$. We say that g is distorted if $\lim_{k \to +\infty} \frac{|g^k|_F}{k} = 0$ (note that the limit $\lim_{k \to +\infty} \frac{|g^k|_F}{k}$ always exists and is a real number since the sequence $k \mapsto |g^k|_F$ is subadditive). This notion actually does not depend on the chosen F, but only on the pair (g, G).

If G is any group, an element $g \in G$ is *distorted* if it is distorted in some finitely generated subgroup of G.

The element h of

$$\mathcal{H} = \langle f, g | [f, g] = h, [f, h] = [g, h] = id \rangle$$

satisfies the following property:

$$\forall k \in \mathbb{Z}$$
 $h^{k^2} = [f^k, g^k] = f^k g^k f^{-k} g^{-k}$

so
$$||\mathbf{h}^{k^2}|| \le 4k$$
 and $\lim_{k \to +\infty} \frac{||\mathbf{h}^k||}{k^2} = 0$. Hence, h is distorted.

An element $\phi \in \operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$ is said to be *algebraic* if it is contained in an algebraic subgroup of $\operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$. By [3, Section 2.6] the map $\phi \in \operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$ is algebraic if and only if the sequence $(\deg(\phi^n))_{n \in \mathbb{N}}$ is bounded. In other words, elliptic elements and algebraic elements coincide. By [2, Proposition 2.3], this is also equivalent to say that ϕ is of finite order or conjugate to an element of $\operatorname{Aut}(\mathbb{P}^2_{\mathbb{C}})$. A straightforward computation shows that every element of $\operatorname{Aut}(\mathbb{P}^2_{\mathbb{C}})$ is distorted in $\operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$ (see [4, Lemma 4.40]). As a consequence, every algebraic element of $\operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$ is distorted. The converse statement also holds

THEOREM 2.1 ([4, 6]). Any distorted element of Bir($\mathbb{P}^2_{\mathbb{C}}$) is elliptic.

COROLLARY 2.2. Let ρ be an embedding of \mathcal{H} into $Bir(\mathbb{P}^2_{\mathbb{C}})$. Then $\rho(h)$ is elliptic.

We will use this corollary and the following description of the centralizer of hyperbolic birational maps to prove Proposition A:

PROPOSITION 2.3 ([1]). Let $\phi \in \operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$ be an hyperbolic map. The infinite cyclic group generated by ϕ is a finite index subgroup of the centralizer of ϕ in $\operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$.

Proof of the first part of Proposition A. Assume that $\rho(\mathcal{H})$ contains an hyperbolic element ϕ . Since $\rho(h)$ is the generator of the center of $\rho(\mathcal{H})$, $\rho(h)$ commutes with ϕ . Proposition 2.3 implies that either $\rho(h)$ is hyperbolic or $\rho(h)$ is of finite order. But $\rho(h)$ is not hyperbolic (Corollary 2.2) and by definition $\rho(h)$ is of infinite order. As a result, $\rho(\mathcal{H})$ does not contain hyperbolic element.

2.3. About centralizers of elliptic birational maps. Let us recall the description of the centralizers of the elliptic birational self-maps of infinite order of the complex projective plane obtained in [2].

Consider ϕ an elliptic element of $Bir(\mathbb{P}^2_{\mathbb{C}})$. Assume that ϕ is of infinite order. As recalled in Section 2.1, the map ϕ is conjugate to an automorphism of $\mathbb{P}^2_{\mathbb{C}}$ which restricts to one of the following automorphisms on some open subset isomorphic to \mathbb{C}^2 :

- (1) $(\alpha x, \beta y)$ where α, β belong to \mathbb{C}^* ;
- (2) $(\alpha x, y + 1)$ where $\alpha \in \mathbb{C}^*$.

In case (1), the centralizer of ϕ in Bir(\mathbb{P}^2) is

$$\{(\eta(x), ya(x^k)) \mid a \in \mathbb{C}(x), \ \eta \in PGL(2, \mathbb{C}), \ \eta(\alpha x) = \alpha \eta(x)\};$$

in particular the elements of the centralizer of ϕ are elliptic birational maps or Jonquières twists. In case (2), the centralizer of ϕ in $\mathrm{Bir}(\mathbb{P}^2_{\mathbb{C}})$ is

$$\{(\eta(x), y + a(x)) \mid \eta \in PGL(2, \mathbb{C}), \ \eta(\alpha x) = \alpha \eta(x), \ a \in \mathbb{C}(x), \ a(\alpha x) = a(x)\};$$

in particular the elements of the centralizer of ϕ are elliptic birational maps.

Corollary 2.2 and the previous description imply

LEMMA 2.4. Let ρ be an embedding of \mathcal{H} into $Bir(\mathbb{P}^2_{\mathbb{C}})$. Then, $\rho(h)$ is elliptic and up to birational conjugacy:

 \diamond either $\rho(h) = (\alpha x, \beta y)$, where the kernel of the group morphism:

$$\mathbb{Z}^2 \to \mathbb{C}^2$$
 $(i,j) \mapsto \alpha^i \beta^j$

is generated by (k, 0) for some $k \in \mathbb{Z}$ and both $\rho(f)$, $\rho(g)$ belong to

$$\left\{ (\eta(x), ya(x^k)) \mid a \in \mathbb{C}(x), \ \eta \in \mathrm{PGL}(2, \mathbb{C}), \ \eta(\alpha x) = \alpha \eta(x) \right\};$$

 \diamond or $\rho(h) = (\alpha x, y + 1)$, and both $\rho(f)$, $\rho(g)$ belong to

$$\big\{(\eta(x), y + a(x)) \mid \eta \in \mathrm{PGL}(2, \mathbb{C}), \ \eta(\alpha x) = \alpha \eta(x), \ a \in \mathbb{C}(x), \ a(\alpha x) = a(x)\big\}.$$

In particular, $\rho(f)$ and $\rho(g)$ are elliptic birational maps or Jonquières twists.

It ends the proof of Proposition A.

3. Proof of Theorem B.

3.1. Assume that all the generators of $\rho(\mathcal{H})$ are elliptic. The group $\operatorname{Aut}(\mathbb{C}^2)$ of polynomial automorphisms of \mathbb{C}^2 is a subgroup of $\operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$. It is generated by the group:

$$A = \{(a_0x + a_1y + a_2, b_0x + b_1y + b_2) \mid a_i, b_i \in \mathbb{C}, a_0b_1 - a_1b_0 \neq 0\}$$

and

$$E = \{ (\alpha x + P(y), \beta y + \gamma) \mid \alpha, \beta \in \mathbb{C}^*, \gamma \in \mathbb{C}, P \in \mathbb{C}[y] \}.$$

Let us recall the following result obtained when we study the embeddings of $SL(n, \mathbb{Z})$ into the Cremona group:

LEMMA 3.1 ([7]). Let ρ be an embedding of \mathcal{H} into Bir($\mathbb{P}^2_{\mathbb{C}}$). If $\rho(f)$, $\rho(g)$, and $\rho(h)$ are elliptic, then up to birational conjugacy:

 \diamond either $\rho(\mathcal{H})$ is a subgroup of PGL(3, \mathbb{C}), and

$$\rho(f) = (x + \alpha v, v + \beta) \qquad \qquad \rho(g) = (x + \gamma v, v + \delta)$$

with α , β , γ , $\delta \in \mathbb{C}$ such that $\alpha \delta - \beta \gamma = 1$; \diamond or $\rho(\mathcal{H})$ is a subgroup of E and $\rho(h^2) = (x + P(y), y)$ for some $P \in \mathbb{C}[y]$.

This statement implies the following one:

PROPOSITION 3.2. Let ρ be an embedding from \mathcal{H} into $Bir(\mathbb{P}^2_{\mathbb{C}})$. Assume that $\rho(f)$, $\rho(g)$ and $\rho(h)$ are elliptic.

Then up to birational conjugacy:

 \diamond either $\rho(\mathcal{H})$ is a subgroup of PGL(3, \mathbb{C}), more precisely

$$\rho(f) = (x + \alpha y, y + \beta) \qquad \qquad \rho(g) = (x + \gamma y, y + \delta)$$

with α , β , γ , $\delta \in \mathbb{C}$ such that $\alpha\delta - \beta\gamma = 1$;

 \diamond or $\rho(\mathcal{H})$ is a subgroup of E and $(\rho(f), \rho(g))$ is one of the following pairs:

$$((ax + Q(y), y + c), (\alpha x + P(y), y + \gamma))$$
$$((ax + Q(y), by + \frac{\gamma(b-1)}{\beta-1}), (\alpha x + P(y), \beta y + \gamma))$$

with a, α , b in \mathbb{C}^* , c, γ in \mathbb{C} , $\beta \in \mathbb{C}^* \setminus \{1\}$ and P, Q in $\mathbb{C}[\gamma]$.

Proof. The first assertion follows from Lemma 3.1. Let us focus on the second one.

If $\rho(h)$ belongs to E and $\rho(h^2) = (x + P(y), y)$, then $\rho(h) = (\varepsilon x + Q(y), \eta(y))$ with $\varepsilon^2 = 1$, $Q \in \mathbb{C}[y]$ and $\eta(y) \in \{-y + \gamma, y\}$. But $\rho(f)$ and $\rho(g)$ belong to E so $[\rho(f), \rho(g)] = \rho(h)$ implies that $\varepsilon = 1$ and $\eta(y) = y$, that is, $\rho(h) = (x + Q(y), y)$. Set

$$\rho(\mathbf{f}) = (ax + R(y), by + c), \qquad \rho(\mathbf{g}) = (\alpha x + P(y), \beta y + \gamma).$$

The second component of $\rho(f)\rho(g)$ has to be equal to the second component of $\rho(h)\rho(g)\rho(f)$, that is,

$$\beta by + b\gamma + c = \beta by + \beta c + \gamma$$
;

in other words either $\beta = b = 1$, or $c = \frac{\gamma(b-1)}{\beta-1}$.

3.2. Assume that $\rho(f)$ is a Jonquières twist with trivial action on the basis of the Since $\rho(h)$ is elliptic, then up to birational conjugacy either $\rho(h) = (\alpha x, \beta y)$ or $\rho(h) = (\alpha x, y + 1)$ (see Section 2.1). But $\rho(f)$ belongs to the centralizer of $\rho(h)$ and is a Jonquières twist; therefore, according to Section 2.3, one has $\rho(h) = (\alpha x, \beta y), \rho(f)$ can be written as (x, ya(x)) and $\rho(g)$ as $(\mu(x), yb(x))$ with $\mu \in PGL(2, \mathbb{C})$ and $a, b \in \mathbb{C}(x)^*$.

Let us remark that if $\mu = id$, then $[\rho(f), \rho(g)] = \rho(h)$ implies $\alpha = \beta = 1$ so $\mu \neq id$.

The relation $[\rho(f), \rho(g)] = \rho(h)$ implies that $\alpha = 1$ and $a(\mu(x)) = \beta a(x)$. Let us first look at polynomials P such that $P(\mu(x)) = \beta P(x)$:

CLAIM 3.3. If P is a nonzero polynomial such that $P(\mu(x)) = \lambda^2 P(x)$, $\lambda^2 \neq 1$, then one of the following holds

$$\diamond P(x) = \delta\left(\frac{\gamma}{\lambda^2 - 1} + x\right), \ \mu(x) = \gamma + \lambda^2 x \ with \ a, \ \delta \in \mathbb{C};$$

$$\Rightarrow P(x) = \delta \left(\frac{\gamma}{\lambda+1} - x\right)^2, \ \mu(x) = \gamma - \lambda x \text{ with } \gamma \in \mathbb{C}, \text{ and } \delta \in \mathbb{C}^*;$$

$$\Rightarrow P(x) = \delta \left(\frac{\gamma}{\lambda - 1} + x \right)^2, \ \mu(x) = \gamma + \lambda x \ with \ \gamma \in \mathbb{C}, \ and \ \delta \in \mathbb{C}^*.$$

Proof. Let us consider the set $Z_P = \{z \mid P(z) = 0\}$ of roots of P. It is a finite set invariant by μ . As a result, $\mu_{|Z_P}^n = \operatorname{id}$ for some integer n. If $\#Z_P \ge 3$, then $\mu_{|Z_P}^n = \operatorname{id}$ implies $\mu^n = \operatorname{id}$. Recall that

$$\rho(f) = (x, va(x)), \qquad \rho(g) = (\mu(x), vb(x)), \qquad \rho(h) = (\alpha x, \beta v)$$

so

$$\rho(f)^{n} = (x, yA(x)), \quad \rho(g)^{n} = (\mu^{n}(x), yB(x)) = (x, yB(x)), \quad \rho(h)^{n^{2}} = (\alpha^{n^{2}}x, \beta^{n^{2}}y).$$

Then, $[\rho(f)^n, \rho(g)^n] = \rho(h)^{n^2}$ implies $\alpha^{n^2} = \beta^{n^2} = 1$, that is, $\rho(h)$ is of finite order: contradiction.

Hence, $\#Z_P \le 2$ so $\deg P \le 2$. A straightforward computation implies the statement.

Let us come back to $a(\mu(x)) = \beta a(x)$. As β is of infinite order and a belongs to $\mathbb{C}(x)^*$, we can rewrite this equality as follows: $\frac{P(\mu(x))}{Q(\mu(x))} = \frac{\lambda_1^2 P(x)}{\lambda_2^2 Q(x)}$ where

- $\diamond \lambda_1$ and λ_2 are two elements of $\mathbb{C} \setminus \{\pm 1\}$ such that $\beta = \frac{\lambda_1^2}{\lambda_2^2}$;
- \diamond P and Q are two polynomials without common factor.

As a result up to birational conjugacy, $(\rho(f), \rho(g))$ is one of the following pairs:

$$\left(\left(x, \delta xy\right), \left(\lambda x, yb(x)\right)\right) \qquad \left(\left(x, \delta x^2y\right), \left(\lambda x, yb(x)\right)\right) \\
\left(\left(x, \frac{y}{\delta x}\right), \left(\lambda x, yb(x)\right)\right) \qquad \left(\left(x, \frac{y}{\delta x^2}\right), \left(\lambda x, yb(x)\right)\right)$$

with $\delta \in \mathbb{C}^*$, $\lambda \in \mathbb{C}^*$ of infinite order and $b \in \mathbb{C}(x)$.

We can thus state

PROPOSITION 3.4. Let ρ be an embedding of \mathcal{H} into Bir($\mathbb{P}^2_{\mathbb{C}}$).

If $\rho(f)$ is a Jonquières twist with trivial action on the basis of the fibration, then up to birational conjugacy, $(\rho(f), \rho(g))$ is one of the following pairs:

$$\left(\left(x,\delta xy\right),\ \left(\lambda x,yb(x)\right)\right) \qquad \left(\left(x,\delta x^2y\right),\ \left(\lambda x,yb(x)\right)\right) \\
\left(\left(x,\frac{y}{\delta x}\right),\ \left(\lambda x,yb(x)\right)\right) \qquad \left(\left(x,\frac{y}{\delta x^2}\right),\ \left(\lambda x,yb(x)\right)\right)$$

with $\delta \in \mathbb{C}^*$, $\lambda \in \mathbb{C}^*$ of infinite order and $b \in \mathbb{C}(x)$.

3.3. Assume that $\rho(f)$ is a Jonquières twist with nontrivial action on the basis of the fibration. Since $\rho(h)$ is elliptic and of infinite order, then up to birational conjugacy either $\rho(h) = (\alpha x, \beta y)$ or $\rho(h) = (\alpha x, y + 1)$ (see Section 2.1). But $\rho(f)$ belongs to the centralizer of $\rho(h)$ and is a Jonquières twist; therefore according to Section 2.3, one has $\rho(h) = (\alpha x, \beta y)$, $\rho(f)$ can be written as $(\eta(x), ya(x))$ and $\rho(g)$ as $(\mu(x), yb(x))$ with η , μ in PGL(2, \mathbb{C}) and a, b in $\mathbb{C}(x)$.

Up to conjugacy by an element of
$$\left\{ \left(\frac{ax+b}{cx+d}, y \right) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PGL(2, \mathbb{C}) \right\}$$
, one can

assume that either $\eta(x) = x + 1$ or $\eta(x) = \lambda x$ (remark that this conjugacy does not preserve the first component of $\rho(h)$).

Note that a direct computation implies

$$\left\{ \nu \in \operatorname{PGL}(2, \mathbb{C}) \mid \nu(\alpha x) = \alpha \nu(x) \right\} = \begin{cases} \operatorname{PGL}(2, \mathbb{C}) \text{ if } \alpha = 1 \\ \left\{ \beta x^{\pm 1} \mid \beta \in \mathbb{C}^* \right\} \text{ if } \alpha = -1 \\ \left\{ \beta x \mid \beta \in \mathbb{C}^* \right\} \text{ if } \alpha^2 \neq 1 \end{cases} \tag{1}$$

so when η is an homothety, we will have to distinguish the cases $\lambda = -1$ and $\lambda \neq -1$.

3.3.1. Assume that $\eta(x) = x + 1$

Since $\rho(f)$ and $\rho(h)$ commute, $\rho(h)$ can be written as $(x + \gamma, \beta y)$.

If $\gamma \neq 0$, then $[\rho(f), \rho(h)] = id$ leads to $a(x + \gamma) = a(x)$, that is, $a(x) = a \in \mathbb{C}$: contradiction with the fact that $\rho(f)$ is a Jonquières twist.

If $\gamma = 0$, then $\rho(h) = (x, \beta y)$ and $[\rho(f), \rho(g)] = \rho(h)$ leads to $\rho(g) = (x + \mu, yb(x))$ and $b(x)a(x + \mu) = \beta a(x)b(x + 1)$. Let us write a as $\frac{P}{Q}$ and b as $\frac{R}{S}$ with P, Q, R, $S \in \mathbb{C}[y]$ then $b(x)a(x + \mu) = \beta a(x)b(x + 1)$ can be rewritten as:

$$P(x + \mu)Q(x)R(x)S(x + 1) = \beta P(x)Q(x + \mu)R(x + 1)S(x).$$
 (2)

Denote by p_i (resp. q_ℓ , resp. r_j , resp. s_k) the coefficient of the highest term of P (resp. Q, resp. R, resp. S). The coefficient of the highest term of the left-hand side of (2) has to be equal to the coefficient of the highest term of the right-hand side of (2), that is, $p_i q_\ell r_j s_k = \beta p_i q_\ell r_j s_k$. So $\beta = 1$, that is, $\rho(h) = (x, y)$: contradiction.

3.3.2. Suppose that $\eta(x) = -x$, that is, $\rho(f) = (-x, ya(x))$

REMARK 3.5. The map $\rho(f)^2 = (x, ya(x)a(-x))$ is a Jonquières twist that preserves fiberwise the rational fibration x = cst; consequently, Proposition 3.4 says that $\rho(f)^2$ is one of the following:

$$(x, \delta xy),$$
 $(x, \delta x^2y),$ $(x, \delta \frac{y}{x}),$ $(x, \delta \frac{y}{x^2})$

with $\delta \in \mathbb{C}^*$. Let us try to determine $\rho(f)$. If $\rho(f)^2 = (x, \delta xy)$, then we have to consider the equation $a(x)a(-x) = \delta x$. The right-hand side of this equation is invariant by $x \mapsto -x$, whereas the left-hand side not, so there is no solution. The same holds if $\rho(f)^2 = (x, \delta \frac{y}{x})$. Consequently, $\rho(f)^2$ is one of the following:

$$(x, \delta x^2 y),$$
 $(x, \delta \frac{y}{x^2})$

with $\delta \in \mathbb{C}^*$ and $\rho(f)$ is thus one of the following:

$$\left(-x,\zeta xy\right),$$
 $\left(-x,\zeta \frac{y}{x}\right)$

with $\zeta \in \mathbb{C}^*$.

Since f and h commute, then (1) implies that either $\rho(h) = \left(\frac{\alpha}{x}, \beta y\right)$ or $\rho(h) = (\alpha x, \beta y)$. Let us consider these two cases.

- \diamond Assume first that $\rho(h) = \left(\frac{\alpha}{x}, \beta y\right)$. Note that $\left(\frac{\alpha}{x}, \beta y\right)$ does not commute neither to $(-x, \zeta xy)$ nor to $\left(-x, \zeta \frac{y}{x}\right)$: contradiction with $[\rho(f), \rho(h)] = id$.
- \diamond Suppose now that $\rho(h) = (\alpha x, \beta y)$.
 - If $\alpha^2 \neq 1$, then $[\rho(g), \rho(h)] = id$ and (1) imply that $\rho(g) = (\gamma x, yb(x))$. Then, $[\rho(f), \rho(g)] = \rho(h)$ leads to $\alpha = 1$: contradiction with $\alpha^2 \neq 1$.
 - If $\alpha = -1$, that is $\rho(h) = (-x, \beta y)$, then according to $[\rho(g), \rho(h)] = id$ and (1) we get that either $\rho(g) = (\gamma x, yb(x))$ or $\rho(g) = (\frac{\gamma}{x}, yb(x))$. In both cases, the relation $[\rho(f), \rho(g)] = \rho(h)$ leads to a contradiction.
 - If $\alpha = 1$, that is, $\rho(h) = (x, \beta y)$, then $[\rho(f), \rho(g)] = \rho(h)$ implies that either $\rho(g) = (\gamma x, yb(x))$ or $\rho(g) = (\frac{\gamma}{x}, yb(x))$.

First, let us assume that $\rho(g) = (\gamma x, yb(x))$. If $\rho(f) = (-x, \zeta xy)$, then $[\rho(f), \rho(g)] = \rho(h)$ leads to $\gamma b(x) = \beta b(-x)$, that is $\frac{b(x)}{b(-x)}$ belongs to \mathbb{C}^* . If

 $\rho(\mathbf{f}) = \left(-x, \zeta \frac{y}{x}\right)$, then $[\rho(\mathbf{f}), \rho(\mathbf{g})] = \rho(\mathbf{h})$ implies $b(x) = \beta \gamma b(-x)$, that is $\frac{b(x)}{b(-x)}$ belongs to \mathbb{C}^* .

Finally, suppose that $\rho(g) = (\frac{\gamma}{x}, yb(x))$. If $\rho(f) = (-x, \zeta xy)$, then $[\rho(f), \rho(g)] = \rho(h)$ leads to $\gamma b(x) = \beta x^2 b(-x)$. Write b as $\frac{\rho}{Q}$ with P, Q in $\mathbb{C}[x]$; then $\gamma b(x) = \beta x^2 b(-x)$ is equivalent to

$$\gamma P(x)Q(-x) = \beta x^2 P(-x)Q(x)$$

and the degree of the left-hand side is $\deg P + \deg Q$, whereas the degree of the right-hand side is $\deg P + \deg Q + 2$: contradiction. If $\rho(f) = \left(-x, \zeta \frac{y}{x}\right)$, then a straightforward computation implies similarly a contradiction.

PROPOSITION 3.6. Let ρ be an embedding of \mathcal{H} into $Bir(\mathbb{P}^2_{\mathbb{C}})$.

If $\rho(f)$ is a Jonquières twist with a order 2 action on the basis of the fibration, then up to birational conjugacy, $(\rho(f), \rho(g))$ is one of the following pairs:

$$((-x, \alpha xy), (\beta x, ya(x))),$$
 $((-x, \alpha \frac{y}{x}), (\beta x, ya(x)))$

with α , $\beta \in \mathbb{C}^*$ and $a \in \mathbb{C}(x)^*$ such that $\frac{a(x)}{a(-x)} \in \mathbb{C}^*$.

3.3.3. Assume that $\eta(x) = \lambda x$, $\lambda^2 \neq 1$

Recall that

$$\rho(\mathbf{f}) = (\lambda x, ya(x)), \qquad \rho(\mathbf{g}) = (\mu(x), yb(x)), \qquad \rho(\mathbf{h}) = (\upsilon(x), \beta y)$$

with λ in $\mathbb{C}^* \setminus \{1, -1\}$, β in \mathbb{C}^* , μ and ν in PGL(2, \mathbb{C}), and a and b in $\mathbb{C}(x)^*$.

First, note that since $\rho(f)$ and $\rho(h)$ commute, $\upsilon(\lambda x) = \lambda \upsilon(x)$. According to (1), the homography υ is an homothety (recall that $\lambda^2 \neq 1$): $\upsilon(x) = \gamma x$ with $\gamma \in \mathbb{C}^*$.

The relations $[\rho(f), \rho(g)] = \rho(h), [\rho(f), \rho(h)] = [\rho(g), \rho(h)] = id$ imply the following ones:

$$a(x) = a(\gamma x) \tag{3}$$

$$b(x) = b(\gamma x) \tag{4}$$

$$\mu(\gamma x) = \gamma \,\mu(x) \tag{5}$$

$$\lambda \mu(x) = \gamma \mu(\lambda x) \tag{6}$$

$$b(x)a(\mu(x)) = \beta a(x)b(\lambda x). \tag{7}$$

We will distinguish the cases $\gamma = 1$, $\gamma = -1$, and $\gamma^2 \neq 1$.

- \diamond Assume that $\gamma^2 \neq 1$. Then, (1) and (5) lead to $\mu(x) = \mu x$ with $\mu \in \mathbb{C}^*$. Equation (6) can be rewritten $\lambda \mu x = \gamma \mu \lambda x$, that is, $\gamma = 1$: contradiction with the assumption $\gamma^2 \neq 1$.
- \diamond Suppose that $\gamma = 1$. Then, $\lambda^2 \neq 1$, (1) and (6) lead to $\mu(x) = \mu x$ with $\mu \in \mathbb{C}^*$. In other words,

$$\rho(\mathbf{f}) = (\lambda x, ya(x)),$$
 $\rho(\mathbf{g}) = (\mu x, yb(x))$

with λ in $\mathbb{C}^* \setminus \{1, -1\}$, μ in \mathbb{C}^* , and a and b in $\mathbb{C}(x)$ such that $\frac{a(\mu x)b(x)}{a(x)b(\lambda x)}$ belongs to \mathbb{C}^* .

- \diamond Assume that $\gamma = -1$. Then, (1) and (5) imply that $\mu(x) = \mu x^{\pm 1}$ with $\mu \in \mathbb{C}^*$. If $\mu(x) = \mu x$, then (6) can be rewritten as $\lambda \mu x = -\lambda \mu x$: contradiction. If $\mu(x) = \frac{\mu}{x}$, then (6) can be rewritten as $\frac{\lambda \mu}{x} = -\frac{\mu}{\lambda x}$; hence, $\lambda^2 = -1$.
 - If $\lambda = \mathbf{i}$, then $\rho(\mathbf{f}) = (\mathbf{i}x, ya(x))$ and $\rho(\mathbf{f})^4 = (x, ya(x)a(\mathbf{i}x)a(-x)a(-\mathbf{i}x))$ preserves fiberwise the fibration x = cst. According to Proposition 3.4, $\rho(\mathbf{f})^4$ can be written as $(x, \delta xy)$, or $(x, \delta x^2y)$, or $(x, \frac{y}{\delta x})$, or $(x, \frac{y}{\delta x^2})$. If $\rho(\mathbf{f})^4 = (x, \delta xy)$, then $\delta x = a(x)a(\mathbf{i}x)a(-x)a(-\mathbf{i}x)$, but the right-hand side of this equality is invariant by $x \mapsto \mathbf{i}x$ whereas the left-hand side is not. As a consequence, $\rho(\mathbf{f})^4$ can not be written $(x, \delta xy)$. Similarly, one sees that $\rho(\mathbf{f})^4$ can not be written as $(x, \delta x^2y)$, $(x, \frac{y}{\delta x})$, and $(x, \frac{y}{\delta x^2})$. Thus, $\lambda \neq \mathbf{i}$.
 - Similarly, one gets that the case $\lambda = -i$ does not happen.

PROPOSITION 3.7. Let ρ be an embedding of \mathcal{H} into $Bir(\mathbb{P}^2_{\mathbb{C}})$. If $\rho(f)$ is a Jonquières twist with an action on the basis of the fibration that is neither trivial nor of order 2, then up to birational conjugacy $(\rho(f), \rho(g))$ is one of the following pairs:

$$((\lambda x, ya(x)), (\mu x, yb(x)))$$
 with $\lambda \in \mathbb{C}^* \setminus \{1, -1\}$, $\mu \in \mathbb{C}^*$, and $a, b \in \mathbb{C}(x)^*$ such that $\frac{a(\mu x)b(x)}{a(x)b(\lambda x)} \in \mathbb{C}^*$.

ACKNOWLEDGEMENTS. Supported by the ANR grant Fatou ANR-17-CE40-0002-01 and the ANR grant Foliage ANR-16-CE40-0008-01.

REFERENCES

- 1. J. Blanc and S. Cantat, Dynamical degrees of birational transformations of projective surfaces, *J. Amer. Math. Soc.* **29**(2) (2016), 415–471.
- 2. J. Blanc and J. Déserti, Degree growth of birational maps of the plane, *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)* 14(2) (2015), 507–533.
- **3.** J. Blanc and J.-P. Furter, Topologies and structures of the Cremona groups, *Ann. Math. (2)* **178**(3) (2013), 1173–1198.
- 4. J. Blanc and J.-P. Furter, Length in the Cremona group, Ann. H. Lebesgue 2 (2019), 187–257.
- **5.** S. Cantat, Dynamique des automorphismes des surfaces *K*3, *Acta Math.* **187**(1) (2001), 1–57.
- **6.** S. Cantat and Y. Cornulier, Distortion in Cremona groups, *Ann. Scuola Normale Sup. Pisa Cl. Sci.* **20**(2) (2020), 827–858.
- 7. J. Déserti, Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer, *Int. Math. Res. Not.* **27** (2006), Art. ID 71701.
- **8.** J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, *Amer. J. Math.* **123**(6) (2001), 1135–1169.
- **9.** M. H. Gizatullin, Rational *G*-surfaces, *Izv. Akad. Nauk SSSR Ser. Mat.* **44**(1) (1980), 110–144, 239.