Hostname: page-component-6bf8c574d5-b4m5d Total loading time: 0 Render date: 2025-02-21T04:28:32.290Z Has data issue: false hasContentIssue false

Weak and strong formulations for the time-harmonic eddy-current problem in general multi-connected domains

Published online by Cambridge University Press:  30 July 2003

A. ALONSO RODRÍGUEZ
Affiliation:
Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy
P. FERNANDES
Affiliation:
Istituto per la Matematica Applicata del C.N.R., via De Marini 6, Torre di Francia, 16149 Genova, Italy
A. VALLI
Affiliation:
Dipartimento di Matematica, Università di Trento, 38050 Povo (Trento), Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The eddy-current problem for the time-harmonic Maxwell equations in domains and with conductors of general topology is considered. The existence of a unique magnetic field is proved for a suitable weak formulation. An equivalent strong formulation is then derived, where the conditions related to the specific geometry of the domain are made explicit. In particular, a new condition that must be satisfied by the magnetic field on the interface between a multiply-connected conductor and the non-conducting region is determined. Finally, the strong formulation of the problem for the electric field in the non-conducting region is derived, and the existence of a unique solution is proved. In conclusion, this leads to the determination of the complete set of equations describing the eddy-current problem in terms of the magnetic and the electric fields. Whether some commonly-used formulations satisfy the additional condition on the interface is also checked.

Type
Papers
Copyright
2003 Cambridge University Press