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The eddy-current problem for the time-harmonic Maxwell equations in domains and with

conductors of general topology is considered. The existence of a unique magnetic field is

proved for a suitable weak formulation. An equivalent strong formulation is then derived,

where the conditions related to the specific geometry of the domain are made explicit. In

particular, a new condition that must be satisfied by the magnetic field on the interface between

a multiply-connected conductor and the non-conducting region is determined. Finally, the

strong formulation of the problem for the electric field in the non-conducting region is

derived, and the existence of a unique solution is proved. In conclusion, this leads to the

determination of the complete set of equations describing the eddy-current problem in terms

of the magnetic and the electric fields. Whether some commonly-used formulations satisfy the

additional condition on the interface is also checked.

1 Introduction

Let us consider a bounded connected open set Ω ⊂ �3, with boundary ∂Ω. The unit

outward normal vector on ∂Ω will be denoted by n. We assume that Ω is split into two

parts, Ω = ΩC ∪ ΩI , where ΩC , a non-homogeneous non-isotropic conductor, and ΩI , a

perfect insulator, are open disjoint subsets, such that ΩC ⊂ Ω. For the sake of simplicity,

we also suppose that ΩI is connected1.

We denote by Γ := ∂ΩI ∩ ∂ΩC the interface between the two subdomains; note that,

in the present situation, ∂ΩC =Γ and ∂ΩI = ∂Ω ∪ Γ . Moreover, let Γj , j = 1, . . . , pΓ , be

the connected components of Γ , and (∂Ω)r , r= 0, 1, . . . , p∂Ω , be the connected components

of ∂Ω; in particular, we denote by (∂Ω)0 the exterior component. Finally, we indicate by

n∗
∂Ω the number of cycles on ∂Ω non-homotopic to zero in ΩI , and by n∗

Γ the number of

cycles on Γ non-homotopic to zero in ΩI .

1 The general case can be treated in a similar way, focusing on each connected component of

ΩI , but some technical modifications are needed when the boundary of a connected component

of ΩI has empty intersection with ∂Ω.
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388 A. Alonso Rodŕıguez et al.

As is well known, the complete Maxwell system of electromagnetism reads:




∂D
∂t

+ J = curl H
∂B
∂t

+ curl E = 0

div D = ρ

div B = 0,

where E and H are the electric and magnetic field, D and B the electric and mag-

netic induction, respectively, J is the total electric current density, and ρ is the charge

density.

We assume the constitutive relations D = εE, B = µH, where ε and µ are the dielectric

and magnetic permeability tensors, respectively, as well as the generalised Ohm’s law

J = σE + Je, where σ is the electric conductivity and Je is the given electric current

density, driving the problem. Notice that the generalised Ohm’s law holds for both

conductors and insulators (see, for instance, Bossavit [6, § 1.1.3; 7, § 1.2]).

The time-harmonic Maxwell equations are derived from the complete system assuming

that the electric field E, the magnetic field H and the given electric current density Je

are of the form

E(t, x) = Re[E(x) exp(iωt)]

H(t, x) = Re[H(x) exp(iωt)]

Je(t, x) = Re[Je(x) exp(iωt)],

where ω� 0 is a given angular frequency.

In this paper, we study the time-harmonic eddy-current problem, in which the displace-

ment current term ∂D
∂t

is neglected. In particular, we consider the magnetic boundary value

problem, in which the tangential component H × n of the magnetic field is assumed to

vanish on ∂Ω. Under these assumptions, from the complete Maxwell system one easily

finds the following equations:




curlH − σE = Je in Ω

curlE + iωµH = 0 in Ω

H × n = 0 on ∂Ω.

(1.1)

However, we shall see in § 5 that this problem has to be closed by additional equations,

involving the electric field in the insulator ΩI .

The magnetic permeability µ is assumed to be a symmetric tensor, uniformly positive

definite in Ω, with entries in L∞(Ω). The same assumption holds for the dielectric coefficient

ε in ΩI , which is not present in (1.1), but will appear in the final problem. Since ΩI is a

perfect insulator, we require that σ|ΩI ≡ 0; moreover, as ΩC is a non-homogeneous non-

isotropic conductor, σ|ΩC is assumed to be a symmetric tensor, uniformly positive definite

in ΩC , with entries in L∞(ΩC ). The driving current density Je is not assumed to vanish

in ΩC , so that not only eddy-currents induced by external windings can be modelled, but

also the skin effect in current-driven conductors and hybrid situations like that reported

in Bossavit [6, § 5.21, Figs. 5.3, 5.4].
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The same problem (1.1)1, (1.1)2, together with the electric boundary condition E × n = 0

on ∂Ω, has been considered in Alonso & Valli [2] (see also Bossavit [8]). However, the

resolution technique in Alonso & Valli [2] is based on the elimination of H; here, we

solve the problem by a different approach, based on the elimination of the electric field

E. A similar procedure, in the case ΩI = �3 \ ΩC , ΩI simply-connected, is presented in

Bossavit [6, Chapter 5].

Our aim is to give an existence and uniqueness result for the magnetic and the electric

fields H and E without assuming topological restrictions either on the domain Ω or on

the conductor ΩC .

The strong form of the eddy-current system is given in § 5: we note that, to our

knowledge, this complete set of equations has not yet been presented in the literature.

The proof that it is well-posed depends upon its reformulation as a couple of equivalent

problems. The first one, that will be called the magnetic eddy-current problem, is presented

in § 4. It only concerns the magnetic field H and can be solved independently, giving also

the electric field EC in ΩC . The second one gives the electric field EI in ΩI , and is solvable

once H and EC have been determined. To our knowledge, also the strong form of the

magnetic eddy-current problem has not yet appeared in the literature for topologically

general ΩC and ΩI . In particular, this general strong formulation could be interesting for

a numerical approximation algorithm based on finite differences or collocation methods.

Moreover, the standard way of developing widely-used vector potential formulations is

based on the introduction of potentials in strong formulations of this kind.

We want to focus attention especially on the possibility of ‘singular’ cycles on Γ , a

situation which, to our knowledge, has never been completely analysed before. They

lead to an additional interface condition between H|ΩI and H|ΩC , without which no

electric field exists that satisfies both the Ampère’s law (1.1)1 in ΩC and Faraday’s law

(1.1)2 in the whole of Ω. Hence, any correct formulation of the time-harmonic eddy-

current problem in term of the magnetic field must contain (implicitly or explicitly) this

additional interface condition. We want to underline that this is not the case, for instance,

in the formulation considered by Reissel [21], or else in the one reported in Kanayama

& Kikuchi [17] ((HC, JC )-HI formulation). On the other hand, the well-known vector

potential formulations A∗
C-AI , (AC, VC )-AI and (TC, ΦC )-AI reported in Bı́ró [5] furnish a

magnetic field H that implicitly satisfies the additional interface condition. Let us finally

point out that no ‘exotic’ configuration is required in order for singular cycles to exist.

In fact, they occur for any multiply-connected conductor, a rather common situation in

engineering practice.

In § 3 we show that the weak problem, obtained from (1.1) by a well-known procedure

(e.g. see Bossavit [6, Chapter 5]), has a unique solution, easily related to the magnetic field

H. Moreover, we prove in § 4 that the solution H is also the unique solution to a strong

problem, which, therefore, turns out to be equivalent to the weak problem. Concerning

with the unique solvability of the strong problem for the electric field E in ΩI , which

we study in § 5, we have only to quote the results given in Alonso & Valli [1], where a

suitable weak formulation is also presented. As a consequence, the complete eddy-current

problem also turns out to be well-posed. § 6 is devoted to the question of whether some

frequently-used formulations furnish a solution H that satisfies the additional interface

condition due to the presence of the singular cycles.
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2 Notation and preliminaries

As usual, we indicate by L2(Ω) the space of real or complex measurable functions which

are square-integrable in Ω, and we set H1(Ω) := {ϕ ∈ L2(Ω) | ∇ϕ ∈ (L2(Ω))3}.
The space H(curl;Ω) (respectively, H(div; µ;Ω)) indicates the set of the real or complex

vector functions φ ∈ (L2(Ω))3 such that curl φ ∈ (L2(Ω))3 (respectively, div(µφ) ∈ L2(Ω)).

By H0(curl;Ω), we indicate the subspace of H(curl;Ω) comprising those functions φ sat-

isfying (φ × n)|∂Ω = 0. Similarly, by H0(div; µ;Ω) we indicate the subspace of H(div; µ;Ω)

comprising those functions φ satisfying (µφ · n)|∂Ω = 0.

It is also useful to recall that a function φ belongs to H(curl;Ω) if and only if

its restrictions φ|ΩI and φ|ΩC belong to H(curl;ΩI ) and H(curl;ΩC), respectively, and

(φ|ΩI × nI )|Γ = (φ|ΩC × nI )|Γ , where we denote by nI the unit outward normal vector to ΩI
on Γ . Similarly, a function φ belongs to H(div; µ;Ω) if and only if its restrictions φ|ΩI and

φ|ΩC belong to H(div; µ|ΩI ;ΩI ) and H(div; µ|ΩC ;ΩC ), respectively, and (µ|ΩIφ|ΩI · nI )|Γ =

(µ|ΩCφ|ΩC · nI )|Γ .

The following Greens formulae are well known for continuously differentiable functions

and for a domain Ω with a boundary ∂Ω of class C1,1:

∫
Ω

(v · ∇ϕ+ ϕ div v) =

∫
∂Ω

v · nϕ|∂Ω (2.1)∫
Ω

(u · curlw − curl u · w) =

∫
∂Ω

(u × n) · (n × w × n). (2.2)

They still hold, in a suitable weak sense, for v ∈ H(div;Ω), ϕ ∈ H1(Ω), u, w ∈ H(curl;Ω)2,

and also when Ω is a polyhedral domain with a Lipschitz boundary3 (see Cessenat [13],

Buffa & Ciarlet [11, 12] and Buffa [10]).

Moreover, when λ is a vector field on ∂Ω satisfying λ · n = 0, we have∫
∂Ω

(divτλ)ϕ|∂Ω = −
∫

∂Ω

λ · (n × ∇ϕ× n), (2.3)

for all ϕ ∈ H1(Ω).

Finally, we recall that for all v ∈ H(curl;Ω) the following relation holds:

divτ(v × n) = curl v · n on ∂Ω. (2.4)

All these formulae will be frequently needed in the sequel: therefore, from now on we

assume that:

either the boundary ∂Ω is of class C1,1, or else Ω is a polyhedral

domain with a Lipschitz boundary.
(H1)

2 Since any vector field can be written on ∂Ω as w = (w · n) n + n × w × n, the right-hand side in

(2.2) could be written as
∫

∂Ω
(u × n) · w. However, we have preferred to keep the former expression,

which emphasizes that it is the tangential values of u and w that are the natural boundary conditions

for the space H(curl;Ω).
3 Note that a polyhedral domain can have a non-Lipschitz boundary: an example is furnished

by two bricks in a pile, where the upper one is rotated by an angle equal to π/2.
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Figure 1. The ‘cutting’ surfaces Σm, m = 1, 2, when the conductor ΩC is a torus (top) or a

double-torus (bottom).

We also introduce two linear spaces of harmonic vector fields. Since we want to construct

an explicit basis for each, it is useful to make some other geometrical assumptions on

ΩI . We assume that (e.g. see Foias & Temam [16], Picard [20], Amrouche et al. [4] and

Fernandes & Gilardi [15]):

there exist nΓ ‘cuts’ Σm, which are the interior of two-dimensional,

mutually disjoint, compact and connected Lipschitz manifolds Σm
with boundary ∂Σm, such that Σm ⊂ ΩI and ∂Σm ⊂ Γ , and such

that in the open set Ω̂I := ΩI \ ∪m Σm, assumed to be connected,

every curl-free vector field with vanishing tangential component

on ∂Ω has a global potential.

(H2)

These cuts are named ‘essential’ cuts in Fernandes & Gilardi [15]. Note that, in general,

we have nΓ � n∗
Γ ; for example, if Ω and ΩC are two coaxial tori, we have n∗

Γ = 2 and

nΓ = 0.

In a similar way, we assume that

there exist n∂Ω ‘cuts’ Σ∗
i , which are the interior of two-dimensional,

mutually disjoint, compact and connected Lipschitz manifolds Σ∗
i

with boundary ∂Σ∗
i , such that Σ∗

i ⊂ ΩI and ∂Σ∗
i ⊂ ∂Ω, and such

that in the open set Ω̃I := ΩI \ ∪i Σ
∗
i , assumed to be connected,

every curl-free vector field with vanishing tangential component

on Γ has a global potential.

(H3)
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Let us introduce now the following space of harmonic fields:

HµI (∂Ω;Γ ) := {vI ∈ (L2(ΩI ))
3 | curl vI = 0, div(µIvI ) = 0,

vI × n = 0 on ∂Ω, µIvI · nI = 0 on Γ }, (2.5)

where we have set µI := µ|ΩI . It is well-known that this space has finite dimension. The di-

mension of HµI (∂Ω;Γ ) is equal to nΓ +p∂Ω (see Fernandes & Gilardi [15, Proposition 5.6];

see also Alonso & Valli [1], Kress [18] and Picard [19, 20]). A basis for this space is given

by ∇zr , r = 1, . . . , p∂Ω , and ρl , l = 1, . . . , nΓ , where




div(µI∇zr) = 0 in ΩI
µI∇zr · nI = 0 on Γ

zr = 0 on ∂Ω \ (∂Ω)r
zr = 1 on (∂Ω)r,

(2.6)

and ρl ∈ HµI (∂Ω;Γ ) satisfy ∫
γm

ρl · dγ = δlm (2.7)

for each ‘basis’ cycle γm on Γ . We recall that, for an irrotational vector field belonging to

(L2(ΩI ))
3, the definition of the line integrals in (2.7) has a meaning (e.g. see Dautray &

Lions [14]).

In a similar way, one can define another space of harmonic fields

HεI (Γ ; ∂Ω) := {vI ∈ (L2(ΩI ))
3 | curl vI = 0, div(εIvI ) = 0,

vI × nI = 0 on Γ , εIvI · n = 0 on ∂Ω}.

The dimension of HεI (Γ ; ∂Ω) is n∂Ω + pΓ − 1. A basis for this space is given by ∇wj ,
j = 1, . . . , pΓ − 1, and πk , k = 1, . . . , n∂Ω , where




div(εI∇wj) = 0 in ΩI
εI∇wj · n = 0 on ∂Ω

wj = 0 on Γ \ Γj
wj = 1 on Γj,

and πk ∈ HεI (Γ ; ∂Ω) satisfy ∫
αi

πk · dα = δki

for each ‘basis’ cycle αi on ∂Ω.

The construction of the basis functions ρl ∈ HµI (∂Ω;Γ ) and πk ∈ HεI (Γ ; ∂Ω) can be

done in a more explicit way by resorting to the solution of a suitable elliptic problem in

Ω̂I and Ω̃I , respectively. For example, it is well known that in Ω̂I the basis function ρl is
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the gradient of pl , the solution of


div(µ∇pl) = 0 in Ω̂I
µI∇pl · nI = 0 on Γ \ ∪m∂Σm
pl = 0 on ∂Ω

[µI∇pl · nΣ]Σm = 0 for each m = 1, . . . , nΓ
[pl]Σm = δlm for each m = 1, . . . , nΓ ,

where [·]Σm denotes the jump across the surface Σm (e.g. see Foias & Temam [16], where

this construction is used for the space of tangential harmonic fields).

3 The weak formulation of the magnetic eddy-current problem

From now on we assume either that ∂Ω ∈C1,1 and Γ ∈C1,1, or that Ω, ΩI and ΩC are

polyhedral domains with a Lipschitz boundary, and that assumptions (H2) and (H3),

introduced in the preceding section, are satisfied.

First, from (1.1)1 and (1.1)3, we have that in ΩI (i.e. where σ = 0), the current density

Je must be the curl of a vector field with vanishing tangential component on ∂Ω (indeed,

the magnetic field H). Therefore, well-known necessary conditions for Je are

div(Je|ΩI ) = 0 in ΩI, Je|ΩI · n = 0 on ∂Ω. (3.1)

However, this is not enough: in fact, as shown in Alonso & Valli [1], any vector field being

the curl of a tangential vector field has to satisfy two additional necessary conditions,

which are related to the topology of ΩI . Precisely, the conditions are∫
Γj

Je|ΩI · nI = 0 ∀ j = 1, . . . , pΓ − 1,

∫
ΩI

Je|ΩI · πk = 0 ∀ k = 1, . . . , n∂Ω (3.2)

(see § 2 for notation).

Hence, in the following we assume that the current density Je ∈ (L2(Ω))3 satisfies (3.1)

and (3.2). As a consequence, Theorem 4.2 in Alonso & Valli [1] shows that there exists a

vector field He,I ∈ H(curl;ΩI ) satisfying

{
curlHe,I = Je|ΩI in ΩI
He,I × n = 0 on ∂Ω,

(3.3)

and we can also construct a vector field He,C ∈ H(curl;ΩC) such that

He,C × nC + He,I × nI = 0 on Γ . (3.4)

We note that the existence result reported in Alonso & Valli [1] is true not only for

a domain ΩI with a C1,1 boundary, but also for a polyhedral domain with a Lipschitz

boundary. In fact, it is only based on the compactness of the immersion of XI in (L2(ΩI ))
3,

where

XI := {vI ∈ H(curl;ΩI ) ∩H(div;ΩI ) | vI × n = 0 on Γ , vI · nI = 0 on ∂Ω}.
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This compactness result can be found in Fernandes & Gilardi [15, Proposition 7.3], or

else follows from the regularity results in Alonso & Valli [3, Theorems 4.3 and 4.4].

By following the same approach presented in Bossavit [6, Chapter 5], from (1.1) we

obtain the weak formulation we are looking for. Let us start introducing the Hilbert space

of complex-valued vector functions:

V := {v ∈ H0(curl;Ω) | curl vI = 0 in ΩI}. (3.5)

Let us write EI := E|ΩI , EC := E|ΩC , and similarly for H, Je, µ, ε and the test functions

v ∈ V . Then, consider (1.1)2, multiply by v, where v ∈ V , and integrate in Ω. We find∫
Ω

curlE · v +

∫
Ω

iωµH · v = 0.

On the other hand, using the Green formula (2.2) and recalling that v ∈ V , we have∫
Ω

curlE · v =

∫
ΩC

EC · curl vC +

∫
ΩI

EI · curl vI =

∫
ΩC

EC · curl vC.

Using (1.1)1 in ΩC to express EC , it follows at once that the solution H to (1.1) satisfies∫
ΩC

(σ−1 curlHC · curl vC + iωµCHC · vC ) +

∫
ΩI

iωµIHI · vI

=

∫
ΩC

σ−1Je,C · curl vC.

Let us set

Z :=

{
HI − He,I in ΩI
HC − He,C in ΩC,

(3.6)

and denote as usual ZI := Z|ΩI , ZC := Z|ΩC . From (1.1)1 in ΩI and H ∈ H0(curl;Ω), it

follows that Z ∈ V . Let us define in H(curl;Ω) × H(curl;Ω) the bilinear form A(·, ·)
as

A(w, v) :=

∫
ΩC

(σ−1 curlwC · curl vC + iωµCwC · vC )

+

∫
ΩI

iωµIwI · vI .

(3.7)

Therefore, we have that Z ∈ V satisfies

A(Z, v) = −A(H∗, v) +

∫
ΩC

σ−1Je,C · curl vC ∀ v ∈ V , (3.8)

having defined H∗ ∈ H0(curl;Ω) as

H∗ :=

{
He,I in ΩI
He,C in ΩC

. (3.9)

The weak formulation we are interested in is therefore given by (3.8), and we can prove

at once the following existence and uniqueness result:
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Theorem 3.1 The weak problem (3.8) has a unique solution.

Proof Let us recall that the (complex) Hilbert space V is endowed with the natural norm

||v||2V :=

∫
Ω

|v|2 +

∫
ΩC

| curl vC |2.

Then one has only to note that the bilinear form A(·, ·) is continuous and coercive in

V ×V . �

We note that a variational formulation which is essentially the same as (3.8) has been

obtained in Bossavit & Vérité [9] (see also Bossavit [6, Chapter 5]; in these cases, the

insulator ΩI is an unbounded domain, precisely ΩI = R3 \ ΩC).

4 The strong formulation of the magnetic eddy-current problem

We want to show now that the solution Z of (3.8) is indeed a solution of a suitable strong

problem. From now on, let us substitute H := Z+H∗ back in the weak formulation (3.8).

Choose in (3.8) the test function v ∈ V such that vC ∈ (C∞
0 (ΩC))3 and vI = 0. We have∫

ΩC

(σ−1 curlHC · curl vC + iωµCHC · vC ) =

∫
ΩC

σ−1Je,C · curl vC,

which by integration by parts gives

curl(σ−1 curlHC) + iωµCHC = curl(σ−1Je,C) in ΩC. (4.1)

In particular, div(µCHC) = 0 in ΩC .

Take in (3.8) the test function v = ∇φ, where φI ∈ C∞
0 (ΩI ) and φC = 0. Clearly ∇φ ∈ V ,

and then ∫
ΩI

µIHI · ∇φI = 0.

Integrating by parts, we find

div(µIHI ) = 0 in ΩI. (4.2)

Take now an arbitrary complex function η on Γ , and denote by ψη,I ∈H1(ΩI ) a function

such that ψη,I = η on Γ and ψη,I = 0 on ∂Ω. Denote also by vη,C ∈ H(curl;ΩC ) a function

satisfying vη,C × nC + ∇ψη,I × nI = 0 on Γ . The function

vη :=

{
∇ψη,I in ΩI
vη,C in ΩC

belongs to V . We want to use it as a test function in (3.8). First, from (2.1) and (4.2) we

find

iω

∫
ΩI

µIHI · ∇ψη,I = iω

∫
Γ

µIHI · nI η.
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On the other hand, from (2.2) and (4.1) we have∫
ΩC

[σ−1(curl HC − Je,C) · curl vη,C + iωµCHC · vη,C]

=

∫
Γ

[σ−1(curl HC − Je,C)] × nC · (nC × vη,C × nC )

=

∫
Γ

[σ−1(curl HC − Je,C)] × nC · (nI × ∇ψη,I × nI ).

From (2.3), (2.1) and (4.1) we can conclude that∫
Γ

[σ−1 (curlHC − Je,C)] × nC · (nI × ∇ψη,I × nI )

= −
∫
Γ

divτ([σ
−1(curlHC − Je,C)] × nC ) η

= −
∫
Γ

curl[σ−1(curlHC − Je,C)] · nC η

= iω

∫
Γ

µCHC · nC η.

Summing up, taking vη as a test function in (3.8), we have obtained∫
Γ

(µIHI · nI + µCHC · nC ) η = 0,

and hence, due to the arbitrarity of η, the interface equation

µIHI · nI + µCHC · nC = 0 on Γ . (4.3)

For each function zr , r = 1, . . . , p∂Ω , defined in (2.6), let us denote by vr,C a function

belonging to H(curl;ΩC ) and satisfying vr,C × nC + ∇zr × nI = 0 on Γ . Then, the function

vr :=

{
∇zr in ΩI
vr,C in ΩC

belongs to V . By proceeding as before and using also (4.3), we easily find∫
(∂Ω)r

µIHI · n = 0 ∀ r = 1, . . . , p∂Ω.

Finally, denoting by vl,C ∈ H(curl;ΩC ) a function satisfying vl,C × nC + ρl × nI = 0 on

Γ , where the function ρl , l = 1, . . . , nΓ , is defined in (2.7), the function

vl :=

{
ρl in ΩI
vl,C in ΩC

belongs to V . Taking it as a test function in (3.8), from (2.2) and (4.1) one obtains at once∫
ΩI

iωµIHI · ρl +

∫
Γ

[σ−1(curlHC − Je,C)] × nC · (nI × ρl × nI ) = 0 ∀ l = 1, . . . , nΓ .
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Moreover, since Z ∈V , we also have curlZI = 0 in ΩI , ZI × n= 0 on ∂Ω, and ZC × nC +

ZI × nI = 0 on Γ .

Summing up, using also (3.3) and (3.4), the magnetic field H = Z + H∗ satisfies the

strong problem

curl(σ−1 curlHC) + iωµCHC = curl(σ−1Je,C) in ΩC (4.4)

curlHI = Je,I in ΩI (4.5)

div(µIHI ) = 0 in ΩI (4.6)∫
(∂Ω)r

µIHI · n = 0 ∀ r = 1, . . . , p∂Ω (4.7)∫
ΩI

iωµIHI · ρl +

∫
Γ

[σ−1(curl HC − Je,C)] × nC · (nI × ρl × nI ) = 0

∀ l = 1, . . . , nΓ (4.8)

HI × n = 0 on ∂Ω (4.9)

µIHI · nI + µCHC · nC = 0 on Γ (4.10)

HI × nI + HC × nC = 0 on Γ . (4.11)

Equations (4.7) and (4.8) take into account the topology of ΩI . The physical interpreta-

tion of (4.7) is simply that there is no ‘magnetic charge’ hidden in the ‘holes’ of Ω (namely,

in the regions surrounded by (∂Ω)r , r = 1, . . . , p∂Ω).

On the other hand, (4.8) is much more interesting, since it can be seen as an additional

interface condition between HC and HI , and, to the best of the authors’ knowledge,

has never been written before. In fact, the independent interface conditions implicitly

contained in the Maxwell system (1.1) are condition (4.11) and the continuity of the

tangential component of E:

EI × nI + EC × nC = 0 on Γ . (4.12)

It should be noted that the matching condition (4.10) is weaker than (4.12) (it could be

obtained from (4.12) through (2.4) and (1.1)2), and therefore, for an interface Γ of general

geometry, must be strenghtened in a suitable way.

We claim that problem (4.4)–(4.11) has a unique solution having existence been proved

above. In the next Section we will prove that a solution to (4.4)–(4.11), together with a

suitable electric field E, gives a solution to (1.1), hence a solution to the weak problem

(3.8). Since this last problem has a unique solution, also the solution to (4.4)–(4.11) is

unique, and the strong problem (4.4)–(4.11) is equivalent to the weak problem (3.8).

Moreover, we emphasize that, if we drop condition (4.8) from problem (4.4)–(4.11), the

remaining problem is not well-posed, as uniqueness does not hold as we can see from

the following: let us assume for simplicity that p∂Ω = 0 (so that (4.7) disappears) and that

nΓ = 1 (namely, in this case ΩC is a torus, and there is only one basis cycle γ1 on Γ ).

Consider the Hilbert space

V0 :=

{
v ∈ H0(curl;Ω) | curl vI = 0 in ΩI ,

∫
γ1

vI · dγ = 0

}
,
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and recall the definition of the bilinear form A(·, ·) in (3.7). By the Lax–Milgram lemma,

for each complex number hI,1 one can find a unique solution of the problem

W ∈ V0 : A(W, v0) = −hI,1A(	∗, v0) ∀ v0 ∈ V0,

having defined 	∗ ∈ H0(curl;Ω) as

	∗ :=

{
	1 in ΩI
	C in ΩC

,

where 	C ∈ H(curl;ΩC ) satisfies 	1 × nI + 	C × nC = 0 on Γ . On the other hand, setting

H := W + hI,1	∗, by proceeding as before it is easily proved that H is a solution to (4.4),

(4.5), (4.6), (4.9), (4.10) and (4.11) for Je = 0, and this is true for each choice of the complex

number hI,1. Since
∫
γ1

HI · dγ = hI,1, uniqueness does not hold for (4.4), (4.5), (4.6), (4.9),

(4.10) and (4.11).

It is apparent that by dropping (4.8) we have lost just the information determining the

‘circulation’ of HI along the basis cycle γ1. Hence, condition (4.8) should determine that

circulation in some way. However, we shall see later on that the most natural physical

interpretation of (4.8) is given rather in terms of the flux of µIHI across the ‘cut’ Σ1

cutting the basis cycle γ1.

5 The strong formulation of the eddy-current problem

The problem (4.4)–(4.11) has been analysed. We have now to determine the electric field

E in Ω.

First, from (1.1)1, in ΩC we can write

EC = σ−1 curlHC − σ−1Je,C . (5.1)

Therefore, (4.4) can be rewritten in the usual form

curlEC + iωµCHC = 0 in ΩC
curlHC − σEC = Je,C in ΩC.

Let us consider now the problem in ΩI . As the electric conductivity coefficient σ vanishes

in the insulator ΩI , uniqueness for the electric field E clearly does not hold for problem

(1.1), as, for instance, we can add to E the gradient of any function ψ having compact

support in ΩI . Therefore we are led to modify (1.1) by adding some other equations.

In Alonso & Valli [2], by using a perturbation argument, it is proposed to add

div(εIEI ) = 0 in ΩI (5.2)

and 


∫
(∂Ω)r

εIEI · n = 0 ∀ r = 0, 1, . . . , p∂Ω

∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ − 1.

(5.3)

However, in the present situation the same perturbation argument shows that, in ΩI ,

the perturbed electric induction iωεIEI has to be the curl of the vector field HI − He,I ,

whose tangential component vanishes on ∂Ω. Therefore, we also have to impose

εIEI · n = 0 on ∂Ω, (5.4)
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and (5.3)1 can be dropped. Moreover, one has also to add a last relation (see Alonso &

Valli [1]) ∫
ΩI

εIEI · πk = 0 ∀ k = 1, . . . , n∂Ω. (5.5)

The physical interpretation of these additional equations is the following: equations

(5.2) and (5.4) say, respectively, that the electric charge density vanishes everywhere in the

insulator ΩI , and that the electric charge surface density similarly vanishes everywhere

on the boundary ∂Ω (the latter entails (5.3)1, which means that no electric charge

is hidden in the ‘holes’ of Ω and that the total electric charge in Ω is vanishing);

equation (5.3)2 expresses that the total electric charge in each conductor surrounded by

Γj , j = 1, . . . , pΓ −1, separately vanishes (as a consequence of these conditions, the same is

true also for the conductor surrounded by ΓpΓ ); equation (5.5) makes zero the circulations

of the harmonic component of EI along all the basis cycles on ∂Ω, and thus, by the

Faraday’s law, means that no additional magnetic flux is linked by any ‘loop’ of Ω.

The complete set of equations in ΩI is therefore given by


curlEI = −iωµIHI in ΩI
div(εIEI ) = 0 in ΩI
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ − 1∫
ΩI

εIEI · πk = 0 ∀ k = 1, . . . , n∂Ω

EI × nI = −EC × nC on Γ .

(5.6)

Equations (4.7), (4.9), (5.6)3 and (5.6)5 altogether mean that no field source external to

Ω is introduced through either the boundary conditions or the domain topology (which is

sometimes possible by adding suitable right-hand sides). Moreover, (5.6)2 and (5.6)4 say

that the electric charge plays no active role in Ω. Hence, the obtained fields will be due

to Je only.

We are now in a position to prove the following result.

Theorem 5.1 If the magnetic field H is the solution to (4.4)–(4.11), and EC is given by (5.1),

then problem (5.6) has a unique solution.

Proof We have already noted in § 3 that the result presented in Alonso & Valli [1,

Theorem 4.2] is true not only for a domain ΩI with a C1,1 boundary, but also for a

polyhedral domain with a Lipschitz boundary. Moreover, one can easily modify the proof

there to take into consideration the presence of the matrix εI .

The existence and uniqueness of the solution of (5.6) therefore follows from the verific-

ation of the compatibility conditions

div(−iωµIHI ) = 0 in ΩI∫
(∂Ω)r

−iωµIHI · n = 0 ∀ r = 1, . . . , p∂Ω

divτ(EC × nC ) − iωµIHI · nI = 0 on Γ∫
ΩI

−iωµIHI · ρl =

∫
Γ

(EC × nC ) · (nI × ρl × nI ) ∀ l = 1, . . . , nΓ .

(5.7)
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Condition (5.7)1 is the same as (4.6), and condition (5.7)2 is given by (4.7). Moreover,

from (5.1), (4.4) and (4.10), it follows

divτ(EC × nC ) = divτ([σ
−1(curl HC − Je,C)] × nC )

= curl[σ−1(curl HC − Je,C)] · nC
= −iωµCHC · nC = iωµIHI · nI on Γ .

Finally, from (4.8) and (5.1) for each l = 1, . . . , nΓ we have∫
ΩI

−iωµIHI · ρl =

∫
Γ

[σ−1(curlHC − Je,C)] × nC · (nI × ρl × nI )

=

∫
Γ

(EC × nC ) · (nI × ρl × nI ).

The proof of the theorem is thus complete. �

Remark We emphasize that conditions (4.6), (4.7), (4.8) and (4.10) are necessary compatib-

ility conditions for the solution of problem (5.6), namely, for determining the electric field

E satisfying Faraday’s law in the whole of the domain Ω. In other words, a formulation

of the eddy-current problem in term of the magnetic field H is not correct if any of these

conditions is missing. In particular, we want to focus on the ‘interface’ condition (4.8),

related to the topology of ΩI . �

We are now in a position to conclude the discussion left open at the end of § 4 by

giving the following physical interpretation of (4.8). Faraday law should link the flux of

µIHI across the cut Σ1 to the circulation of EC along ∂Σ1 ⊂ Γ , but EC is not regular

enough to give a meaning to its line integral. As a matter of fact, if EC was more regular,

(5.7)4 could be rewritten, after some computations, as the Faraday’s law applied to Σ1.

Hence, (4.8) ensures that H and EC obtained from (4.4)–(4.11) and (5.1) satisfy Faraday’s

law applied to Σ1 in the weak sense given by (5.7)4.

It is easily seen that the complete set of equations (4.4)–(4.11), (5.1) and (5.6) is somehow

redundant. First, (4.6) and (4.7) are a consequence of (5.6)1 (the latter by means of an

approximation argument and of the Stokes theorem for regular fields on closed surfaces).

Also, from (5.6)6 we have

divτ(EI × nI + EC × nC ) = 0 on Γ ,

that from (2.4) is equivalent to

curlEI · nI + curlEC · nC = 0 on Γ ;

hence from (5.6)1, we obtain (4.10). Finally, from (5.6)1 and (5.6)6 we obtain∫
ΩI

iωµIHI · ρl = −
∫
ΩI

curlEI · ρl =

∫
∂ΩI

(EI × nI ) · (nI × ρl × nI )

= −
∫
Γ

(EC × nC ) · (nI × ρl × nI ),

hence from (5.1) we find (4.8).
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Therefore, recalling that (5.1) and (4.4) are equivalent to a first-order system, we can

rewrite the global problem in the non-redundant form

curlHC − σEC = Je,C in ΩC (5.8)

curlEC + iωµCHC = 0 in ΩC (5.9)

curlHI = Je,I in ΩI (5.10)

curlEI + iωµIHI = 0 in ΩI (5.11)

div(εIEI ) = 0 in ΩI (5.12)

HI × n = 0 on ∂Ω (5.13)

εIEI · n = 0 on ∂Ω (5.14)∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ − 1 (5.15)∫
ΩI

εIEI · πk = 0 ∀ k = 1, . . . , n∂Ω (5.16)

EI × nI + EC × nC = 0 on Γ (5.17)

HI × nI + HC × nC = 0 on Γ . (5.18)

Notice that all the equations of problem (5.6) are present, while those we have dropped

are essentially the compatibility conditions of problem (5.6).

We conclude this section with the following theorem.

Theorem 5.2 Problem (5.8)–(5.18) has a unique solution. Moreover, (E,H) is the solution

to (5.8)–(5.18) if and only if H is the solution to (4.4)–(4.11), EC is obtained by (5.1) and

EI is the solution to (5.6).

Proof The procedure is quite similar to that employed at the end of § 4 for showing

well-posedness of problem (4.4)–(4.11). In fact, we have already seen that a solution to

(5.8)–(5.18) is given by H = Z + H∗ (where Z is the solution to (3.8) and H∗ is defined

in (3.9)), by EC defined in (5.1) and by the solution EI to (5.6). On the other hand, since,

as we have proved in § 3, any solution to (1.1) gives, through (3.6), the solution to (3.8),

the magnetic field H is uniquely determined. Consequently, using (5.8) also EC is unique.

Finally, uniqueness of EI follows from that of problem (5.6).

Noting that H is the unique solution to (4.4)–(4.11), the second statement follows. �

Remark Analogous results to those presented in § 3–5 can be obtained for the eddy-current

problem 


curlH − σE = Je in Ω

curlE + iωµH = 0 in Ω

E × n = 0 on ∂Ω.

(5.19)

Concerning the weak problem for the magnetic field H, it becomes

A(H, v∗) =

∫
ΩC

σ−1Je,C · curl v∗
C ∀ v∗ ∈ V ∗, (5.20)

where
V ∗ := {v∗ ∈ H(curl;Ω) | curl v∗

I = 0 in ΩI}. (5.21)
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(Clearly, one has also to modify the necessary assumptions on Je,I , to ensure that

div Je,I = 0 in ΩI and
∫
Γj

Je,I · nI = 0 for all j = 1, . . . , pΓ − 1,
∫

(∂Ω)r
Je,I · n = 0 for

all r = 0, . . . , p∂Ω . In this way, the existence of a vector field He,I such that curlHe,I = Je,I
is assured.)

Concerning the strong formulation, one obtains as before (4.4), (4.5), (4.6), (4.10) and

(4.11). However, (4.9) is no longer satisfied, and is replaced by µIHI · n = 0 on ∂Ω. This

last condition is obtained by taking in (5.20) the test function

v∗
η :=

{
∇ψ∗

η,I in ΩI
0 in ΩC ,

where ψ∗
η,I ∈ H1(ΩI ), ψ

∗
η,I = 0 on Γ and ψ∗

η,I = η on ∂Ω, with η an arbitrary complex

function defined on ∂Ω.

Finally, instead of HµI (∂Ω;Γ ), the relevant space of harmonic fields is in this case

ĤµI := {vI ∈ (L2(ΩI ))
3 | curl vI = 0, div(µIvI ) = 0, µIvI · nI = 0 on Γ ∪ ∂Ω}. (5.22)

This space has dimension equal to n∂ΩI , the total number of ‘cuts’ Σ̂s contained in ΩI
such that in ΩI \ ∪sΣ̂s every curl-free vector field has a global potential. By taking as

test function the one whose restriction to ΩI is equal to the basis function ρ̂s of ĤµI ,

s = 1, . . . , n∂ΩI , it is easily seen that conditions (4.7) and (4.8) have to be replaced by∫
ΩI

iωµIHI · ρ̂s +

∫
Γ

[σ−1(curlHC − Je,C )] × nC · (nI × ρ̂s × nI ) = 0. (5.23)

The strong form of the problem concerning the electric field EI is now given by (5.6)1,

(5.6)2 and (5.6)6, while clearly the boundary condition (5.6)3 has to be substituted by

EI × n = 0 on ∂Ω. Moreover, the remaining conditions related to the geometry of ΩI are

now given by (5.6)4 and by
∫

(∂Ω)r
εIEI · n = 0 for all r = 0, . . . , p∂Ω .

It can be noted that the necessary and sufficient solvability conditions for this problem

(see Alonso & Valli [1, Theorem 4.1]) are indeed satisfied, as a consequence of the

properties of the magnetic field H. �

Remark As in the ‘method of images’, when the problem domain and the material

properties are symmetric with respect to a plane and the driving current density is either

symmetric or skew-symmetric with respect to the same plane, the problem can be reduced

to an equivalent one posed in only a half of the problem domain, with suitable boundary

conditions on that plane. The fields in the whole of the problem domain are then readily

obtained from the solution of the equivalent problem since they are symmetric or skew-

symmetric with respect to the symmetry plane. If a finite number of these symmetry

planes are present, they can be exploited in sequence to get an equivalent problem

posed in only a part of the original problem domain, which we call ‘symmetry cell’. In

numerical applications, to reduce the computational cost, the equivalent problem posed

in the smallest symmetry cell is almost always considered. The problems thus obtained,

unfortunately, do not fit our assumptions because either the conducting region may touch

the boundary or the boundary conditions may be of mixed type. It can be shown, however,

that equivalent problems obtained by correct exploitation of symmetries are well-posed

https://doi.org/10.1017/S0956792503005151 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792503005151


Weak and strong formulations for the time-harmonic eddy-current problem 403

if the original one is. It should be noticed that the relevant topology is the one of the

original problem and that conditions due to it (i.e. (3.2)1, (3.2)2, (4.7), (4.8), (5.6)4 and

(5.6)5 may survive in some form in the equivalent problem, even if its topology in the

symmetry cell looks trivial. The terms involved in the conditions due to the topology

are essentially (i.e. neglecting regularity considerations) integrals of quantities that may

be either symmetric or skew-symmetric with respect to a symmetry plane. If the latter

case happens for all the terms in a condition, this condition is automatically satisfied and

disappears from the equivalent problem, but, if the former case happens for any term,

this term (and, then, the condition) survives with a halved integration domain. �

6 Practical implications: do usual formulations satisfy condition (4.8)?

In this section we want to investigate whether or not some frequently-used formulations

for eddy-current problems furnish a magnetic field H that satisfies (4.8).

(i) The A∗
C-AI formulation

This formulation, reported in Bı́ró [5], is based on the unknowns A∗
C and AI such that

iωA∗
C = −EC, curlAI = µIHI ,

with the interface conditions on Γ

A∗
C × nC + AI × nI = 0,

(
µ−1
C curlA∗

C

)
× nC +

(
µ−1
I curlAI

)
× nI = 0.

We have ∫
ΩI

iωµIHI · ρl =

∫
ΩI

iω curlAI · ρl = iω

∫
Γ

(nI × AI ) · (nI × ρl × nI )

= iω

∫
Γ

(A∗
C × nC ) · (nI × ρl × nI )

= −
∫
Γ

(EC × nC ) · (nI × ρl × nI ).

(6.1)

Therefore, condition (4.8) is satisfied.

(ii) The (AC, VC )-AI formulation

This formulation, reported in Bı́ró [5], is based on the unknowns (AC, VC ) and AI such

that

iω(AC + ∇VC ) = −EC, curl AI = µIHI ,

with the interface conditions on Γ

AC × nC + AI × nI = 0,
(
µ−1
C curlAC

)
× nC +

(
µ−1
I curlAI

)
× nI = 0.

With respect to the preceding case, on the right-hand side of (6.1) the only additional

term is

−iω
∫
Γ

(∇VC × nC ) · (nI × ρl × nI );
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however, (6.1) and (4.8) are still satisfied, as the term above indeed vanishes. In fact, we

have by (2.3) and (2.4)∫
Γ

(∇VC × nC ) · (nI × ρl × nI )

=

∫
Γ

(ρl × nI ) · (nC × ∇VC × nC )

= −
∫
Γ

divτ(ρl × nI )VC|Γ

= −
∫
Γ

curl ρl · nI VC|Γ = 0,

as curl ρl = 0.

(iii) The (TC, ΦC )-AI formulation

This formulation, reported in Bı́ró [5], is based on the unknowns (TC, ΦC ) and AI such

that
TC − ∇ΦC = HC − He,C , curlAI = µIHI ,

with the interface conditions on Γ

[σ−1(curl TC + curlHe,C − Je,C)] × nC − iωAI × nI = 0

(TC − ∇ΦC + He,C) × nC +
(
µ−1
I curl AI

)
× nI = 0.

Therefore,∫
ΩI

iωµIHI · ρl=

∫
ΩI

iω curlAI · ρl = iω

∫
Γ

(nI × AI ) · (nI × ρl × nI )

= −
∫
Γ

[σ−1(curl TC + curlHe,C − Je,C)] × nC · (nI × ρl × nI )

= −
∫
Γ

[σ−1(curl HC − Je,C)] × nC · (nI × ρl × nI ),

that is (4.8).

(iv) The (HC, JC )-HI formulation

Kanayama & Kikuchi [17] reported (and used in numerical computations) a formulation

in which the unknowns are the magnetic field and the eddy-current JC = σEC + Je,C , and

the interface conditions on Γ are given by

HC × nC + HI × nI = 0, µCHC · nC + µIHI · nI = 0. (6.2)

However, it is not indicated that, in general geometry, the additional ‘interface’ condition

(4.8) has to be imposed, and in this case, it does not follow from the given formulation.

Therefore, this formulation cannot be employed for a general domain Ω, without explicitly

adding (4.8), that, with respect to JC and HI , reads∫
ΩI

iωµIHI · ρl +

∫
Γ

[σ−1(JC − Je,C)] × nC · (nI × ρl × nI ) = 0

for l = 1, . . . , nΓ .
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(v) The formulation considered by Reissel

In Reissel [21], the formulation given by (5.8)–(5.11) and (5.13) is considered, with the

interface conditions (6.2). The uniqueness of the magnetic field is obtained by imposing

the additional conditions ∫
γl

HI · dγ = hI,l , ∀ l = 1, . . . , nΓ . (6.3)

(The domain ΩI is assumed to be an exterior domain, hence ∂Ω is empty.)

It can be shown that (4.8) is satisfied only for a specific value of the data hI,l , that in

particular depends upon the magnetic field HC . In other words, solving the problem with

the interface conditions (6.2) and the topological conditions (6.3) does not assure that the

unique solution thus obtained satisfies the ‘interface’ condition (4.8).

In fact, from a physical viewpoint hI,l is the total current crossing any surface having γl
as a boundary (by the Ampère’s law). Hence, it is a quantity to be determined by solving

the problem rather than a datum that can be arbitrarily given.

From a practical viewpoint, our analysis leads to the following general conclusions.

As condition (4.8) is implicitly included in the weak formulation (3.8) in terms of the

magnetic field H, numerical methods based on it may correctly solve problems involving

multiply-connected conductors. However, methods based on the strong formulation in

term of H fail with multiply-connected conductors unless (4.8) is explicitly included.

Notice, however, that the sparsity of the matrix of the algebraic system obtained after

discretization is to some extent spoiled by the inclusion of the global constraint (4.8).

Methods where the magnetic field is expressed in term of a vector potential, may

cope with multiply-connected conductors even if they have been developed starting from

the strong formulation (4.4)–(4.11) and (5.1), without (4.8). In fact, introducing vector

potentials may make (4.8) automatically satisfied. In all the considered cases, in particular,

the key point is satisfying (4.8) is the introduction of the magnetic vector potential in the

non-conducting region.

7 Conclusions

We have analysed the eddy-current problem for the time-harmonic Maxwell equations in

domains with general topology. We have shown that the usual weak formulation in term

of the magnetic field is equivalent to a suitable strong formulation, putting in evidence the

equations that have to be added to the classical model in consequence of the non-trivial

topology of the non-conducting region. The existence and uniqueness of a solution has

been proved for this strong problem, as well as for the problem concerning the electric

field in the non-conducting region. Some remarks related to an apparently new condition

that must be satisfied by the magnetic field on the interface between the conducting and

non-conducting regions have also been presented.
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