Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-11T10:28:03.276Z Has data issue: false hasContentIssue false

Upscaling of dislocation walls in finite domains

Published online by Cambridge University Press:  28 August 2014

P. VAN MEURS
Affiliation:
Centre for Analysis, Scientific computing and Applications (CASA), Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands email: p.j.p.v.meurs@tue.nl
A. MUNTEAN
Affiliation:
Centre for Analysis, Scientific computing and Applications (CASA), Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands email: p.j.p.v.meurs@tue.nl Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, The Netherlands
M. A. PELETIER
Affiliation:
Centre for Analysis, Scientific computing and Applications (CASA), Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands email: p.j.p.v.meurs@tue.nl Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We wish to understand the macroscopic plastic behaviour of metals by upscaling the micro-mechanics of dislocations. We consider a highly simplified dislocation network, which allows our discrete model to be a one dimensional particle system, in which the interactions between the particles (dislocation walls) are singular and non-local. As a first step towards treating realistic geometries, we focus on finite-size effects rather than considering an infinite domain as typically discussed in the literature. We derive effective equations for the dislocation density by means of Γ-convergence on the space of probability measures. Our analysis yields a classification of macroscopic models, in which the size of the domain plays a key role.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

References

[1]Alicandro, R., De Luca, L., Garroni, A., & Ponsiglione, M. (2013) Metastability and dynamics of discrete topological singularities in two dimensions: a γ-convergence approach. In: Archive for Rational Mechanics and Analysis, pp. 1–62.Google Scholar
[2]Cacace, S. & Garroni, A. (2009) A multi-phase transition model for dislocations with interfacial microstructure. Interfaces Free Bound 11, 291316.CrossRefGoogle Scholar
[3]Cai, W., Arsenlis, A., Weinberger, C. R. & Bulatov, V. V. (2006) A non-singular continuum theory of dislocations. J. Mech. Phys. Solids 54 (3), 561587.CrossRefGoogle Scholar
[4]Callister, W. D. (2007) Materials Science and Engineering, An Introduction, New York, USA: John Wiley & Sons.Google Scholar
[5]Cermelli, P. & Leoni, G. (2006) Renormalized energy and forces on dislocations. SIAM J. Math. Anal. 37 (4), 11311160.Google Scholar
[6]Deng, J. & El-Azab, A. (2007) Dislocation pair correlations from dislocation dynamics simulations. J. Comput.-Aided Mater. Des. 14 (1), 295307.Google Scholar
[7]Deng, J. & El-Azab, A. (2009) Mathematical and computational modelling of correlations in dislocation dynamics. Modelling Simul. Mater. Sci. Eng. 17, 075010.CrossRefGoogle Scholar
[8]Dogge, M. (To appear) Mechanics of Phase Boundaries, PhD thesis, Eindhoven University of Technology.Google Scholar
[9]Duong, M. H., Laschos, V. and Renger, M. (2013) Wasserstein gradient flows from large deviations of many-particle limits. ESAIM: Control, Optimisation Calculus Variations 19 (4), 11661188.Google Scholar
[10]Evers, L. P., Brekelmans, W. A. M. & Geers, M. G. D. (2004) Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int. J. Solids Structures 41 (18–19), 52095230.CrossRefGoogle Scholar
[11]Focardi, M. & Garroni, A. (2007) A 1D macroscopic phase field model for dislocations and a second order Γ-limit. Multiscale Model. Simul. 6 (4), 10981124.Google Scholar
[12]Forcadel, N., Imbert, C. & Monneau, R. (2008) On the Notions of Solutions to Nonlinear Elliptic Problems: Results and Developments, chapter Viscosity solutions for particle systems and homogenization of dislocation dynamics. Department of Mathematics of the Seconda Universita di Napoli.Google Scholar
[13]Forcadel, N., Imbert, C. & Monneau, R. (2009) Homogenization of the dislocation dynamics and of some particle systems with two-body interactions. Discrete Continuous Dyn. Syst. A 23 (3), 785826.Google Scholar
[14]Garroni, A., Leoni, G. & Ponsiglione, M. (2010) Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. 12 (5), 12311266.Google Scholar
[15]Garroni, A. & Müller, S. (2005) Γ-limit of a phase-field model of dislocations. SIAM J. Math. Anal. 36 (6), 19431964.Google Scholar
[16]Geers, M. G. D., Peerlings, R. H. J., Peletier, M. A., & Scardia, L. (2013) Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209, 495539.Google Scholar
[17]Groma, I. (1997) Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations. Phys. Rev. B 56 (10), 58075813.Google Scholar
[18]Groma, I., Csikor, F. F. & Zaiser, M. (2003) Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51 (5), 12711281.CrossRefGoogle Scholar
[19]El Hajj, A., Ibrahim, H. & Monneau, R. (2009) Homogenization of dislocation dynamics. In IOP Conferences Series: Materials Science and Engineering.Google Scholar
[20]Hall, C. L. (2010) Asymptotic expressions for the nearest and furthest dislocations in a pile-up against a grain boundary. Phil. Mag. 90 (29), 38793890.Google Scholar
[21]Hall, C. L. (2011) Asymptotic analysis of a pile-up of regular edge dislocation walls. Mater. Sci. Eng.: A 530, 144148.Google Scholar
[22]Hall, C. L., Chapman, S. J. & Ockendon, J. R. (2010) Asymptotic analysis of a system of algebraic equations arising in dislocation theory. SIAM J. Appl. Math. 70 (7), 27292749.Google Scholar
[23]Hirth, J. P. & Lothe, J. (1982) Theory of Dislocations, John Wiley & Sons.Google Scholar
[24]Hudson, T. & Ortner, C. (2014) Existence and stability of screw dislocation configurations with arbitrary net burgers vector. arXiv: 1403.0518.Google Scholar
[25]Hull, D. & Bacon, D. J. (2001) Introduction to Dislocations, Butterworth Heinemann, Oxford.Google Scholar
[26]Koslowski, M. & Ortiz, M. (2004) A multi-phase field model of planar dislocation networks. Modelling Simul. Mater. Sci. Eng. 12 (6), 1087.CrossRefGoogle Scholar
[27]Limkumnerd, S. & Van der Giessen, E. (2008) Statistical approach to dislocation dynamics: From dislocation correlations to a multiple-slip continuum theory of plasticity. Phys. Rev. B 77 (18), 184111.Google Scholar
[28]Dal Maso, G. (1993) An Introduction to Γ-Convergence, Boston, USA: Birkhäuser Boston.CrossRefGoogle Scholar
[29]Ponsiglione, M. (2007) Elastic energy stored in a crystal induced by screw dislocations: From discrete to continuous. SIAM J. Math. Anal. 39 (2), 449469.Google Scholar
[30]Portegies, J. (2013) Non-equidistant Dislocation Walls, Technical report, Eindhoven University of Technology. To appear.Google Scholar
[31]Roy, A., Peerlings, R. H. J., Geers, M. G. D. & Kasyanyuk, Y. (2008) Continuum modeling of dislocation interactions: Why discreteness matters? Mater. Sci. Eng.: A, 486, 653661.CrossRefGoogle Scholar
[32]Scardia, L., Peerlings, R. H. J., Peletier, M. A. & Geers, M. G. D. (2014) Mechanics of dislocation pile-ups: a unification of scaling regimes. J. Mech. Phys. Solids 70, 4261.Google Scholar
[33]Serfaty, S. (2011) Gamma-convergence of gradient flows on hilbert and metric spaces and applications. Discrete Continuous Dyn. Syst. A 31, 14271451.Google Scholar
[34]Voskoboinikov, R. E., Chapman, S. J., McLeod, J. B. & Ockendon, J. R. (2009) Asymptotics of edge dislocation pile-up against a bimetallic interface. Math. Mech. Solids 14, 284295.CrossRefGoogle Scholar
[35]Yefimov, S., Groma, I. & Van der Giessen, E. (2004) A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52 (2), 279300.Google Scholar
[36]Zaiser, M. & Groma, I. (2011) Some limitations of dislocation walls as models for plastic boundary layers. arXiv: 1109.2216.Google Scholar
[37]Zaiser, M., Miguel, M. C. & Groma, I. (2001) Statistical dynamics of dislocation systems: The influence of dislocation-dislocation correlations. Phys. Rev. B 64 (22), 224102.Google Scholar