Hostname: page-component-6bf8c574d5-w79xw Total loading time: 0 Render date: 2025-02-23T10:08:35.990Z Has data issue: false hasContentIssue false

A uniqueness result in an inverse hyperbolic problem with analyticity

Published online by Cambridge University Press:  04 March 2005

YU. E. ANIKONOV
Affiliation:
Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, Acad. Koptyug prospekt 4, Novosibirsk 630090 Russia email: anikon@math.nsc.ru
J. CHENG
Affiliation:
Department of Mathematics, and Key Laboratory of Wave Scattering & Remote Sensing Information (Ministry of Education), Fudan University, Shanghai 200433, China email jcheng@fudan.edu.cn
M. YAMAMOTO
Affiliation:
Department of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro Tokyo 153 Japan email: myama@ms.u-tokyo.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the uniqueness for the inverse problem of determining a coefficient $q(x)$ in $\partial _t^2 u(x,t) = \uDelta u(x,t) - q(x)u(x,t)$ for $x \in R^n$ and $t > 0$, from observations of $u\vert_{\Gamma\times(0,T)}$ and the normal derivative $\frac{\partial u}{\partial \nu}\vert_{\Gamma\times(0,T)}$ where $\Gamma$ is an arbitrary $C^{\infty}$-hypersurface. Our main result asserts the uniqueness of $q$ over $R^n$ provided that $T > 0$ is sufficiently large and $q$ is analytic near $\Gamma$ and outside a ball. The proof depends on Fritz John's global Holmgren theorem and the uniqueness by a Carleman estimate.

Type
Papers
Copyright
2004 Cambridge University Press