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We prove the uniqueness for the inverse problem of determining a coefficient q(x) in ∂2
t u(x, t) =

∆u(x, t) − q(x)u(x, t) for x ∈ Rn and t > 0, from observations of u|Γ×(0,T ) and the normal

derivative ∂u
∂ν
|Γ×(0,T ) where Γ is an arbitrary C∞-hypersurface. Our main result asserts the

uniqueness of q over Rn provided that T > 0 is sufficiently large and q is analytic near Γ

and outside a ball. The proof depends on Fritz John’s global Holmgren theorem and the

uniqueness by a Carleman estimate.

1 Introduction

We consider a Cauchy problem for a hyperbolic equation:

∂2
t u(x, t) = ∆u(x, t)− q(x)u(x, t), x = (x1, . . . , xn) ∈ Rn, 0 < t < T , (1.1)

u(x, T/2) = a(x), ∂tu(x, T/2) = 0, x ∈ Rn. (1.2)

Here and henceforth we set

∂tu =
∂u

∂t
, ∂2

t u =
∂2u

∂t2
,

∂iu =
∂u

∂xi
, ∂2

i u =
∂2u

∂x2
i

, 1 � i � n, ∆ =

n∑
i=1

∂2
i .

Throughout this paper, we fix a ∈ C∞(Rn) and we denote the solution u to (1.1) and (1.2)

by u(q) = u(q)(x, t), because it is unique if exists. For example, if q ∈ C∞(Rn), then we

know that there exists a unique solution u(q) ∈ C∞(Rn × [0, T )) (e.g. Bers et al. [4]).

Our problem is an inverse problem of determining a coefficient q = q(x) from measure-

ments of u(x, t). The coefficient q(x) describes a physical property of the medium (e.g. the

elastic modulus in Hooke’s law) in (1.1), and our inverse problem is the determination of

such a property. We will formulate our inverse problem.
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Let Γ ⊂ Rn be a hypersurface of class C∞ and T > 0 be fixed. We consider uniqueness

in an inverse hyperbolic problem. Is the correspondence{
u|Γ×(0,T ),

∂u

∂ν

∣∣∣∣
Γ×(0,T )

}
←→ q

injective?

Here ν = ν(x) denotes the outward unit normal vector to Γ at x and ∂u
∂ν

= ∇u · ν on Γ ,

and we observe u and ∂u
∂ν

on Γ × (0, T ). From the theoretical point of view, the uniqueness

is the first step in our inverse problem.

For a similar kind of inverse problems, we refer to Bukhgeim [5], Bukhgeim & Klibanov

[7], Imanuvilov & Yamamoto [8, 9], Isakov [10, 11], Khaı̆darov [12], Klibanov [13] and

Yamamoto [18], which are based on Carleman estimates. As for the determination of a

damping coefficient p in ∂2
t u = ∆u + p(x)∂tu for t > 0, we refer to Bukhgeim et al. [6],

which relies on the Carleman estimate too. By their results, we can prove the uniqueness

in a convex domain DΓ whose boundary contains Γ , provided that |a| > 0 on DΓ . In

particular, if Γ is flat and the principal term of the hyperbolic equation is constant,

then the existing results do not yield any uniqueness outside Γ . For general q ∈ C2(Rn),

no uniqueness is known over Rn. In the flat case, under the condition that unknown

coefficients are constant outside a fixed bounded domain, Rakesh [14] and Romanov [16]

show the uniqueness in inverse problems with the formulations by Dirichlet to Neumann

map [14], where boundary measurements are repeated infinitely.

In this paper, we establish the uniqueness over Rn under the assumption that q is

analytic outside BR ≡{x; |x| < R} and Γ⊂Rn \ BR . Our assumption is satisfied if q is a

constant function outside BR , and such homogeneity of the medium far from 0 is physically

acceptable. This assumption generalizes the settings in Rakesh [14] and Romanov [16].

We notice that we do not assume any analyticity inside BR .

As for the uniqueness within analyticity or piecewise analyticity, we refer to Anikonov

[1], Anikonov et al. [2] and Berezanskı̆i [3]. In particular, in Anikonov et al. [2], we

consider a hyperbolic equation

∂2
t u(x1, x2, x3, t) = ∆u(x1, x2, x3, t)

−q(x1, x2, x3)u(x1, x2, x3, t) + G(x1, x2, x3, t), (x1, x2) ∈ R2, x3 > 0, t > 0

with the zero initial condition and the boundary condition

(∂3u)(x1, x2, 0, t) = 0, (x1, x2) ∈ R2, t > 0,

and discuss an inverse problem of determining q = q(x1, x2, x3) from boundary observation

u(x1, x2, 0, t) where (x1, x2) varies over a suitable domain and T > 0 is sufficiently large,

provided that q belongs to a set of piecewise analytic functions: {q ∈ C2; there exist

0≡ η0 < η1 < · · · < η� < η�+1≡∞ such that q is analytic in{(x1, x2, x3); (x1, x2) ∈
R2, ηj−1 < x3 < ηj, 1 � j � �+1}. In Anikonov et al. [2], the uniqueness in determining q

is proved to be true in a neighbourhood of {x3 = 0} where the external force G is positive.

In Berezanskı̆i [3], the uniqueness is proved in determining a potential in a Schrödinger

equation within a similar set of piecewise analytic functions from all the eigenvalues and

boundary values of the eigenfunctions. In many models, the mediums are assumed to
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be stratified, that is, coefficients under consideration are piecewise constant, or piecewise

analytic in a more general case. Therefore, as a set of unknown coefficients for inverse

problems, the class of piecewise analytic functions is reasonable.

The case of flat Γ appears when we consider observations on a flat ground for inverse

problems in geophysical prospecting and such a case is important.

This paper is composed of four sections; the main result in § 2, the proof in § 3, and

concluding remarks in § 4.

2 Main result

First we note that there exists a unique solution u(q) ∈ C2(Rn × [0, T )) to (1.1) and (1.2)

for a ∈ C∞(Rn) and q ∈ C∞(Rn) (e.g. Bers et al. [4]).

Let us set

Br = {x ∈ Rn; |x| < r}
for r > 0. We fix R > 0 and set

Q = {q ∈ C(Rn); q is analytic in Rn \ BR}. (2.1)

Let Γ ⊂ Rn be a hypersurface of class C∞ such that

Γ ⊂ Rn \ BR. (2.2)

We set

dc(x, g) = the shortest length among all the continuous curves

in Rn \ BR connecting x and g (2.3)

for x, g ∈ Rn \ BR . We note that dc(x, g) = |x− g| if the segment connecting x and g is in

Rn \ BR .

We are ready to state our main result.

Theorem 2.1 We assume that a ∈ C∞(Rn) satisfies

|a| > 0 on BR ∪ Γ (2.4)

and

T > 2
(
R + sup

x∈∂BR

inf
g∈Γ

dc(x, g)
)
. (2.5)

If u(q1), u(q2) ∈ C3(Rn × [0, T )) satisfy

u(q1) = u(q2),
∂u(q1)

∂ν
=

∂u(q2)

∂ν
on Γ × (0, T ) (2.6)

for q1, q2 ∈ Q, then

q1 = q2 in Rn. (2.7)

Remark In the case Γ = {x; |x| = R1} with R1 > R > 0, the condition (2.5) is reduced

to T > 2R1 which can be interpreted from the viewpoint of travelling time and coincides

with the condition in earier work [6, 8, 9, 11, 13, 18].
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3 Proof

First step We prove the uniqueness of q1 and q2 outside BR . By the argument in Bers

et al. [4], we can take a small open set O with O ⊃ Γ such that

O ⊂ Rn \ BR (3.1)

and

u(q1), u(q2) ∈ C∞(O × [0, T )). (3.2)

Then we will show

Lemma 1 We consider
∂2
t u(x, t) = ∆u(x, t)− q(x)u(x, t), x ∈ O, 0 < t < T ,

u(x, T/2) = a(x), ∂tu(x, T/2) = 0, x ∈ O,
u(x, t) = ϕ(x, t), ∂u

∂ν
(x, t) = ψ(x, t), x ∈ Γ , 0 < t < T .

(3.3)

Here u, q, a, ϕ and ψ are of class C∞ in (x, t) ∈ O × [0, T ]. We assume that |a| > 0 on O.

Then all the derivatives of q in x on Γ can be determined uniquely by a, ϕ and ψ.

Proof of Lemma 1 We set u2(x) = (∂2
t u)(x, T/2). Then, by (3.3), we have

q(x) =
−u2(x) + ∆a(x)

a(x)
, x ∈ O (3.4)

and

∆u(x, t) = ∂2
t u(x, t) +

−u2(x) + ∆a(x)
a(x)

u(x, t), x ∈ O, 0 < t < T . (3.5)

By u ∈ C∞(O × [0, T ]), we obtain

u2(x) =
(
∂2
t ϕ

)
(x, T/2), x ∈ Γ

and we see from (3.5) that ∂i∂ju2(x, T/2), x ∈ Γ , 1 � i, j � n, are uniquely calculated by

means of ϕ, ψ and a. Therefore

q(x) =
−∂2

t ϕ(x, T/2) + ∆a(x)
a(x)

, x ∈ Γ

and ∂i∂ju2(x, T/2), x ∈ Γ , 1 � i, j � n, are uniquely determined. We can continue this

argument in view of u ∈ C∞(O × [0, T ]). Thus the proof of the lemma is complete.

By (3.2), we apply Lemma 1 to u(q1) and u(q2), so that all the derivatives of q1 and q2

are equal each other on Γ ⊂ Rn \ BR . Noting that q1, q2 ∈ Q, we obtain

q1(x) = q2(x), x ∈ Rn \ BR. (3.6)

Second step In this step, we prove that

u(q1)(x, t) = u(q2)(x, t),
∂u(q1)

∂ν
(x, t) =

∂u(q2)

∂ν
(x, t),

x ∈ ∂BR, t0 � t � T − t0, (3.7)

where t0 satisfies

2R < T − 2t0. (3.8)
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This will be proved by a global version of the classical Holmgren theorem. Such gener-

alization is not trivial and we will give the proof for completeness. As for generalization

of the Holmgren theorem, we refer to Tataru [17]. In any case, for the proof of (3.7) with

(3.8), some work is required.

Here ∂
∂ν

denotes the normal derivative on ∂BR . Setting v = u(q1)− u(q2) in (Rn \ BR)×
(0, T ), in view of (3.6), we have

∂2
t v(x, t) = ∆v(x, t)− q1(x)v(x, t), x ∈ Rn \ BR, 0 < t < T , (3.9)

and

v(x, t) =
∂v

∂ν
(x, t) = 0, x ∈ Γ , 0 < t < T . (3.10)

We show

Lemma 2 Let x0, ξ ∈ Rn \ BR satisfy⋃
0�η�1

{x; |x− (ηξ + (1− η)x0)| < ρ} ⊂ Rn \ BR. (3.11)

Let T > 0, ρ > 0, µ � 0 satisfy

T > 2(ρ+ µ) + 2|x0 − ξ|. (3.12)

We assume

v(x, t) = 0, |x− ξ| < ρ, µ < t < T − µ. (3.13)

Then

v(x, t) = 0 if |x− x0| < ρ and

ρ+ µ+ |x0 − ξ| � t � T − ρ− µ− |x0 − ξ|. (3.14)

Proof of Lemma 2 Without loss of generality, we may assume that ξ = 0. We can take a

domain D and a hyperplane π such that ξ = 0 ∈ D and D is on π,

v =
∂v

∂ν
= 0 on D × (µ, T − µ) (3.15)

and
−→
0x0⊥ π. (3.16)

Henceforth we set

x = (x1, x2, . . . , xn) = (x1, x
′), x0 =

(
x1

0, x
2
0, . . . , x

n
0

)
=

(
x1

0, x
′
0

)
.

Since the Laplacian ∆ is invariant with respect to a rotation and parallel displacement in

x, we may assume that π ⊂ {(0, x′); x′ ∈ Rn−1} and that

x1
0 > 0, x0 =

(
x1

0, 0, . . . . , 0
)
, D = {(0, x′); |x′| < ρ}. (3.17)

We take an open subset U ⊂ Rn × (µ, T − µ):

U =

{
(x1, x

′, t); |x′| < ρ, 0 � x1 �
T − 2µ

2
−

∣∣∣∣t− T

2

∣∣∣∣} . (3.18)
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In other words, U is a triangular prism with the base{
(x1, t); 0 � x1 �

T − 2µ

2
−

∣∣∣∣t− T

2

∣∣∣∣} ,
by regarding the x′-direction as the height.

For any ρ1 ∈ (0, ρ), we choose a function χ = χ(x′) such that
χ ∈ C∞0 (Rn−1), supp χ ⊂ {x′; |x′| � ρ},
χ(x′) = 1, |x′| � ρ1,

χ(x′) = 0, |x′| = ρ, 0 � χ � 1.

(3.19)

Moreover, we can take a family of C∞-functions x1 = F(λ, t) with parameters λ ∈ [0, 1)

such that 

F(0, t) = 0, F(1, t) = T−2µ
2
−

∣∣t− T
2

∣∣ ,
0 < F(λ, t) < F(1, t), µ < t < T − µ, 0 < λ < 1,

limλ↑1 F(λ, t) = F(1, t) for fixed t ∈ (µ, T − µ),
F(λ, µ) = F(λ, T − µ) = 0, 0 < λ < 1,

|(∂tF)(λ, t)| < 1, µ < t < T − µ, 0 < λ < 1.

(3.20)

We set

G(λ, x1, x
′, t) = x1 − χ(x′)F(λ, t) (3.21)

and

Σλ = {(x1, x
′, t); |x′| < ρ, µ < t < T − µ, G(λ, x1, x

′, t) = 0}. (3.22)

Then Σ0 = {(0, x′, t); |x′| < ρ, µ < t < T − µ}=D × (µ, T − µ) and for 0 < λ < 1, the

hypersurface Σλ is noncharacteristic with respect to ∂2
t −∆. In fact,

|∂tG|2 −
n∑
j=1

|∂jG|2 = |χ|2|∂tF |2 − 1−
(

n∑
j=2

|∂jχ|2
)
F2

� |∂tF |2 − 1−
(

n∑
j=2

|∂jχ|2
)
F2 < −

(
n∑
j=2

|∂jχ|2
)
F2 � 0

by the last conditions in (3.19) and (3.20). Hence the noncharacteristic hypersurfaces Σλ
sweep out a domain starting Σ0. In view of (3.15), Fritz John’s global Holmgren theorem

[4, 15] yields

v(x, t) = 0, (x, t) ∈
⋃

0�λ�1

Σλ. (3.23)

Hence, since ρ1 > 0 in (3.19) is arbitrary, we obtain

v(x, t) = 0 if |x′| � ρ and 0 � x1 � T−2µ
2
−

∣∣t− T
2

∣∣. (3.24)

On the other hand, if

ρ+ µ+ |x0| � t � T − ρ− µ− |x0|, (3.25)

then

|x0|+ ρ � min{T − µ− t, t− µ}.
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Therefore, if |x− x0| < ρ and (3.25) holds, then by x0 = (x1
0, 0, . . . , 0), we see that |x′| < ρ

and that

0 � x1 � |x| � |x− x0|+ |x0| � |x0|+ ρ � min{T − µ− t, t− µ}

=
T − 2µ

2
−

∣∣∣∣t− T

2

∣∣∣∣ .
Hence the conclusion (3.14) follows from (3.24). Thus the proof of the lemma is complete.

Now we will proceed to the proof of (3.7) with (3.8). We take δ > 0, δ0 > 0, ε0 > 0 and

ε > 0 sufficiently small, so that

0 < ε0 <
δ0

2
(3.26)

and

T > 2R + 2 sup
x∈∂BR+δ0

inf
g∈Γ

dc(x, g) + δ + δ0 + 4(ε+ ε0) + 4ε0. (3.27)

By (2.5) such ε0 > 0, ε > 0, δ0 > 0 and δ > 0 exist.

Let y ∈ ∂BR+δ0
be arbitrary. Henceforth |l | denotes the length of the curve l . By

the definition (2.3) of dc, for ε > 0, we can take ξ̃ ∈ Γ and a continuous curve

l̃ \ {y} ⊂ Rn \ BR+δ0
connecting ξ̃ and y such that |̃l | � infg∈Γ dc(y, g) + ε.

By (3.9) and (3.10), we can apply Fritz John’s global Holmgren theorem (e.g. [15]), so

that for ε0 > 0, we have ε1 > 0 and ξ ∈ Rn \ BR+δ0
such that |ξ − ξ̃| < ε1 and

v(x, t) = 0, |x− ξ| < ε1, ε0 < t < T − ε0. (3.28)

If ε1 � ε0, then we reset ε1 = ε0 in (3.28), so that we may assume that ε1 � ε0.

We denote the continuous curve l̃ ∪ {x = (1− η)ξ + ηξ̃; 0 � η � 1} by l . Then

|l | � inf
g∈Γ

dc(y, g) + ε+ ε0. (3.29)

By the definition of the length of a curve, there exist a natural number N � 2 and

x1, . . . , xN−1 ∈ l ⊂ Rn \ BR+δ0
such that

N∑
j=1

|xj − xj−1| � |l |+ ε,

where we set x0 = ξ and xN = y. Hence

N∑
j=1

|xj − xj−1| � inf
g∈Γ

dc(y, g) + 2(ε+ ε0),

and (3.27) implies
N∑
j=1

|xj − xj−1| < T

2
− R − δ + δ0

2
− 2ε0. (3.30)

Moreover by (3.26), we have⋃
0�η�1

{x; |x− (ηxk+1 + (1− η)xk)| < ε0} ⊂ Rn \ BR, 0 � k � N − 1. (3.31)
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First we apply Lemma 2 with x0 = x1, µ = ε0 and ρ = ε1
2
, so that

v(x, t) = 0 if |x− x1| < ε1
2

and(
ε0 +

1

2
ε1

)
+ |x1 − x0| � t � T −

(
ε0 +

1

2
ε1

)
− |x1 − x0|.

By ε1 � ε0, we see that

v(x, t) = 0 if |x− x1| < ε1
2

and(
1 +

1

2

)
ε0 + |x1 − x0| � t � T −

(
1 +

1

2

)
ε0 − |x1 − x0|. (3.32)

By (3.26) and (3.30),

T > 2

{(
1 +

1

2

)
ε0 +

(
1

2

)2

ε1

}
+ 2(|x1 − x0|+ |x2 − x1|).

Consequently, setting ξ = x1, x0 = x2, µ =
(
1 + 1

2

)
ε0 + |x1 − x0| and

ρ =
(

1
2

)2
ε1, in view of (3.31), we can apply Lemma 2, so that by (3.26), we obtain

v(x, t) = 0 if |x− x2| �
(

1
2

)2
ε1 and

ε0

(
1 +

1

2
+

(
1

2

)2
)

+ |x1 − x0|+ |x2 − x1| � t

� T −
{
ε0

(
1 +

1

2
+

(
1

2

)2
)

+ |x1 − x0|+ |x2 − x1|
}
. (3.33)

Changing ρ =
(

1
2

)k
ε1, k = 3, 4, . . . , N and taking x0 = xk , in view of (3.26), (3.30) and

(3.31), we apply Lemma 2 for k = 1, . . . , N to obtain

v(x, t) = 0 if |x− xk| <
(

1
2

)k
ε1 and

ε0

(
1 +

1

2
+ · · ·+

(
1

2

)k
)

+

k∑
j=1

|xj − xj−1|

� t � T −

ε0
(

1 +
1

2
+ · · ·+

(
1

2

)k
)

+

k∑
j=1

|xj − xj−1|

 . (3.34)

In particular, we have

v(x, t) = 0 if |x− xN | <
(

1
2

)N
ε1 and

ε0

(
1 +

1

2
+ · · ·+

(
1

2

)N
)

+

N∑
j=1

|xj − xj−1|

� t � T −

ε0
(

1 +
1

2
+ · · ·+

(
1

2

)N
)

+

N∑
j=1

|xj − xj−1|

 .
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Consequently we have

v(x, t) = 0 if |x− y| <
(

1
2

)N
ε1 and

κ < t < T − κ. (3.35)

Here by (3.30), we have

κ≡
N∑
j=1

|xj − xj−1|+ 2ε0 <
T

2
− R − δ + δ0

2
. (3.36)

Setting

t0 =
T

2
− R − δ

2
, (3.37)

we see that t0 > 0 satisfies (3.8). Therefore, in view of (3.36), we have

v(y, t) = |∇v(y, t)| = 0, y ∈ ∂BR+δ0
, t0 −

δ0

2
< t < T −

(
t0 −

δ0

2

)
. (3.38)

Since δ0 > 0 can be taken arbitrarily small, we obtain

v(x, t) = |∇v(x, t)| = 0, x ∈ ∂BR, t0 � t � T − t0.

That is,

v(x, t) =
∂v

∂ν
(x, t) = 0, x ∈ ∂BR, t0 � t � T − t0.

Thus the proof of (3.7) with (3.8) is complete.

Third step In this step, we complete the proof of the theorem. In addition to (3.7), for

j = 1, 2, we have

∂2
t u(qj)(x, t) = ∆u(qj)(x, t)− qj(x)u(qj)(x, t), x ∈ BR, t0 < t < T − t0, (3.39)

u(qj)(x, T/2) = a(x), ∂tu(qj)(x, T/2) = 0, x ∈ BR. (3.40)

By (3.8), we have

T − 2t0
2

> R.

Therefore by the uniqueness in the inverse problem for (3.7), (3.39) and (3.40) [8, 9, 10,

11, 13, 18], we see that q1(x) = q2(x), x ∈ BR . In view of (3.6), the proof of the theorem is

complete.

4 Concluding remarks

In this paper, we have proved the uniqueness in determining a coefficient q(x) in a

hyperbolic equation (1.1) by observation on any small hypersurface Γ along a sufficiently

long time interval (0, T ), provided that q is analytic outside a ball containing Γ . Moreover,

for the uniqueness, our proof requires the strict positivity (2.4) of the initial value

u(·, 0).
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Furthermore there is a stability problem in determining q from our observations of

u and ∂u
∂ν

on Γ × (0, T ), and in principle, we can apply the method here with suitable

modifications but we will omit the details.

Finally we will list important open questions:

• Is the same uniqueness true without analyticity outside the ball containing Γ?

• Can we relax the strict positivity of u(·, 0)? For example, is the uniqueness true if u(·, 0)

does not vanish identically? This question is very difficult even though we assume the

same condition on the analyticity of q.
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