Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-10T12:32:49.654Z Has data issue: false hasContentIssue false

Uniqueness and solvability in the linearized two-dimensional problem of a body in a finite depth subcritical stream

Published online by Cambridge University Press:  01 April 1999

O. MOTYGIN
Affiliation:
Laboratory for Mathematical Modelling of Wave Phenomena, Institute of Mechanical Engineering Problems, Russian Academy of Sciences, V.O., Bol'shoy pr., 61, St. Petersburg, 199178, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Uniqueness and solvability theorems are proved for the two-dimensional Neumann–Kelvin problem in the case when a body is totally submerged in a subcritical stream of finite depth fluid. A version of source method is developed to find a solution. The Green's identity coupling the solution with a solution of the problem with opposite stream direction is used to prove that the solution is unique.

Type
Research Article
Copyright
1999 Cambridge University Press