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Uniqueness and solvability theorems are proved for the two-dimensional Neumann–Kelvin

problem in the case when a body is totally submerged in a subcritical stream of finite depth

fluid. A version of source method is developed to find a solution. The Green’s identity

coupling the solution with a solution of the problem with opposite stream direction is used

to prove that the solution is unique.

1 Introduction

We consider a uniform stream of finite depth about an infinitely long, horizontal, totally

submerged cylinder with generators orthogonal to the stream direction. It is assumed that

this two-dimensional fluid motion is steady and can be described in the framework of

linear surface-wave theory. The corresponding boundary value problem is often referred

to as the two-dimensional Neumann–Kelvin problem.

The first solvability theorem for the Neumann–Kelvin problem was proved more than

50 years ago in Kochin [1] for the case when a cylinder, submerged in infinite depth fluid,

has a sufficiently large or sufficiently small forward velocity U. Vainberg & Maz’ya [2]

expand Kochin’s result on solvability for all values of U with the possible exception of a

finite number of values.

The case of finite depth fluid was treated in the classical work by Haskind [3], yet the

unique solvability question was not considered there. In Vainberg & Maz’ya [2], unique

solvability was established under the assumption that the kinetic energy of a solution to

the homogeneous Neumann–Kelvin problem is finite. This proof obtained by means of

the so-called Maz’ya’s identity is applicable for both infinite and finite depth cases with

some restrictions on the submerged contour. The same theorem but without geometrical

restrictions was proved by Lahalle [4]. Unfortunately, in both schemes the assumption of

finiteness of kinetic energy for a solution of the homogeneous problem is essential. Hence,

the theorem is only directly applicable to the case of a supercritical stream of finite depth

h (where g is gravity acceleration and U2 > gh), when there are no waves at infinity.

The present paper is intended to complete the theory by giving the unique solvability

theorem for the subcritical case of finite depth stream when a body moving with forward
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Figure 1

velocity U2 < gh produces a wave pattern at infinity downstream and the assumption on

the finiteness of the kinetic energy does not hold. To prove the solvability we develop the

above-mentioned scheme which was suggested by Kochin [1] and improved by Vainberg

& Maz’ya [2]. The solvability is established for all values of U with the possible exception

of a sequence tending to
√
gh. The method used by Kuznetsov & Maz’ya [5] when

considering a surface-piercing cylinder yields the uniqueness of the problem under the

same restriction on the forward velocity.

Now, the contents of the paper will be briefly summarized. In § 2 we set up notation

and introduce the two-dimensional Neumann–Kelvin problem. § 3 is devoted to the study

of the Green’s function and establishes some auxiliary assertions on its properties. In § 4
we apply the method of simple sources to reduce the problem to an integral equation and

prove the solvability of the equation. In § 5 an auxiliary problem with opposite stream

direction is introduced and uniqueness is established by means of the Green’s identity.

The work has two appendices. The first is devoted to the Neumann problem in a layer

of finite depth which appears as the zero limit case of the Neumann–Kelvin problem.

The second appendix contains two auxiliary lemmas concerning properties of functions

appearing in the Green’s function.

2 Statement of the problem

The coordinate system is attached to the body and is taken so that the x-y plane is

orthogonal to the horizontal generators of the cylinder, the mean free surface lies in

the plane y = 0, and the x-axis is directed upstream (see Figure 1). The y-coordinate

decreases with depth. Without loss of generality the depth of fluid can be assumed to

be unity. Hence, the undisturbed stream is a strip L = {−∞ < x < +∞,−1 < y < 0}.
Let cylinder’s cross-section be a bounded simply connected domain B ⊂ L, such that its

boundary S = ∂B is a C1,α-arc, 0 < α < 1. We denote by W = L \B the domain occupied

by fluid.

The Neumann–Kelvin problem for the velocity potential u (the NK problem for short)

is stated as follows:

∇2u = 0 in W, (2.1)

uxx + νuy = 0 when y = 0, ν� 1 (2.2)

uy = 0 when y = −1, (2.3)

∂u/∂n = f ∈ C(S) on S, (2.4)

lim
x→+∞ |∇u| = 0. (2.5)
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The Laplace equation follows from the assumptions that the fluid is incompressible and

its motion is irrotational. The boundary condition (2.2) is a consequence of the linearized

kinematic and dynamic conditions on the free surface of fluid. Here ν = gU−2 is the

wave number. The condition (2.3) expresses the fact that the fluid is bounded by a rigid,

impermeable, horizontal bottom. If the function f in (2.4) is equal to U cos(n, x), then

S is rigid, impermeable contour. The relation (2.5) shows that there are no waves at

infinity upstream. Besides, we shall demand that a solution to the above problem should

be regular in sense of the following definition.

Definition 2.1 We say that a function u is regular if u belongs to C(W ) ∩ C2(W ) and has

regular normal derivative (e.g. see Maz’ya [6, Ch. 1, § 1]) on ∂W = S ∪{y = 0}∪ {y = −1}.

Proposition 2.1 Let u be a regular solution of the NK problem and let L′ be a compact

subset of L. Then ∫
L′\B
|∇u|2 dx dy < ∞.

Proof Obviously, it sufficies to consider the case when B ⊂ L′. Let B′ be a compact set,

such that B ⊂ B′ ⊂ L′. Let S ′ = ∂B′ and ∂L′ be smooth contours and S ∩S ′ = ∅. Applying

the Green identity, we arrive at∫
L′\B′
|∇u|2 dx dy =

∫
S ′∪∂L′

u
∂u

∂n
ds.

The regularity of u guarantees that as dist{S, S ′} → 0 the integral in the right-hand side

of the last formula has a finite limit, which completes the proof. q

The above consideration also justifies Green’s formula for any pair of regular functions

on subsets of W . The latter is needed to use the scheme suggested in Theorem 2.1 of

Kuznetsov [7] to obtain the asymptotics at infinity of a solution of the NK problem. We

write

D(k) = k − ν tanh k.

Then, as |x| → ∞ and ±x > 0,

u(x, y) = θ(−x)
{Qx+ θ(ν − 1) cosh λ(y + 1) (A sin λx+B cos λx)

}
+ C± + φ±(x, y), (2.6)

where θ is the Heaviside function, φ± = O(|x|−1), |∇φ±| = O(|x|−2), and λ denotes the

only positive root of the equation

D(λ) = 0, (2.7)

which exists when ν > 1. The last equation can be treated as the dispersion relation.

The coefficients of the above expansion satisfy the following relationships:

Q(1− ν) = ν

∫
S

∂u

∂n
ds, (C+ − C−)(1− ν) = ν

∫
S

(
x
∂u

∂n
− u∂x

∂n

)
ds,

A =
2ν

λ(ν − cosh2 λ)

∫
S

{
u
∂

∂n
[cosh λ(y + 1) cos λx]− ∂u

∂n
cosh λ(y + 1) cos λx

}
ds,

and the expression for B can be obtained by replacing cos λx→ − sin λx in that for A.
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The asymptotics changes its form at the critical value ν = 1. A body moving in

supercritical regime ν < 1 does not induce waves, and in view of Proposition 2.1 the

above expression for Q yields that the integral of kinetic energy
∫
W
|∇u|2 dx dy is finite

for a solution with homogeneous Neumann data. In this work we treat the motion in

subcritical regime ν > 1 when there exist waves at infinity downstream and, obviously,

the finiteness of the integral of kinetic energy does not hold.

3 On the Green’s function of the Neumann–Kelvin problem

The Green function G(x, y; ξ, η) (=G(z, ζ) where z = x + iy, ζ = ξ + iη), is the velocity

potential of a source placed at ζ ∈ L. This function satisfies the following problem:

−∇2
x,yG = δ(|z − ζ|) when z, ζ ∈ L, (3.1)

Gxx + νGy = 0 when y = 0, ν� 1 (3.2)

Gy = 0 when y = −1, (3.3)

lim
x→+∞ |∇x,yG| = 0. (3.4)

The solution of the problem (3.1)–(3.4) was derived by Haskind [3]. Treatment of the

function can also be found in Kuznetsov [7] and Vainberg & Maz’ya [2]. The Green’s

function is given by the following expression:

−(2π)−1

{
log |z − ζ|+

∫ +∞

0

[
ν cosh k(y + η + 1) + k sinh k(y + η + 1)

+(ν + k)e−k cosh k(y − η)
] cos k(x− ξ)

k D(k) cosh k
dk + w(z, ζ)

}
, (3.5)

where

w(z, ζ) =
πν

1− ν (x− ξ) + θ(ν − 1)
2πν cosh λ(y + 1) cosh λ(η + 1)

λ(cosh2 λ− ν) sin λ(x− ξ).

We write G(z, ζ) as follows

G(z, ζ) = −(2π)−1
{

log |z − ζ|+ g(ν, z, ζ)
}
. (3.6)

To regularize the integral term in (3.5) containing the poles k−2, k−1 and (k− λ)−1 we use

the scheme analogous to that suggested in Appendix A. Thus, extracting the poles from

the integral we arrive at

g(ν, z, ζ) =
1 + ν

2(ν − 1)
log
∣∣z − ζ∣∣+

1

2(ν − 1)
log
∣∣(z − ζ)2 + 1

∣∣+ 1
2

log
∣∣z − ζ + 2i

∣∣
+

(ν + λ)eλh

2λD′(λ) cosh λ
Re

{
s
(
λ
(
z − ζ))+

ν − λ
ν + λ

s
(
λ (z − ζ − 2i)

)
+e−λ s

(
λ (z − ζ − i)

)
+ e−λ s

(
λ
(
z − ζ − i

))}
+

ν

ν − 1
β(z, ζ)

+w(z, ζ) + 1
2

4∑
j=1

∫ +∞

0

tj(k, ν)ekYj cos k(x− ξ) dk. (3.7)
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where

D′(λ) = D′(k)
∣∣
k=λ

= 1− ν + ν−1λ, s(λz) = v.p.

∫ +∞

0

e−ikz

k − λ dk, (3.8)

Y2i+j+1 = (−1)i
(
y + 1

2

)
+ (−1)j

(
η + 1

2

)− 1, i, j = 0, 1, (3.9)

β(z, ζ) = −1

2

4∑
j=1

[
Yj log |x− ξ + iYj |+ (x− ξ) arctan

x− ξ
Yj

]
, (3.10)

and the analytic functions of k ∈ R, ti(k, ν) are expressed as follows:

t(5±3)/2 =
(ν ∓ k)ek

k D(k) cosh k
+

(ν ∓ λ)eλ

λ(λ− k)D′(λ) cosh λ
+

ν

k2(ν − 1)
+

ν ∓ 1

k(ν − 1)
,

t2 = t3 =
ν + k

k D(k) cosh k
+

ν + λ

λ(λ− k)D′(λ) cosh λ
+

ν

k2(ν − 1)
+

1

k(ν − 1)
. (3.11)

Now we prove two lemmas concerning properties of the function g(ν, z, ζ), which is

involved in the representation (3.6) as the component depending on the velocity. These

lemmas establish smoothness of g and behaviour of the function as ν → ∞. The proofs

of the assertions are based on the considerations of Appendix B.

Lemma 3.1 The function g(ν, z, ζ) depends analytically upon parameters ν, z and ζ when

ν > 1 and z, ζ ∈ L.

Proof Let ν ∈ [ν1, ν2], where 1 < ν1 < ν2. Using (3.11) it is easy to show that | ti(k, ν)| 6
C(ν1, ν2, k∗)k−1, when k > k∗ > ν2. Clearly, Yi(y, η) < 0 when z, ζ ∈ L′, where L′ is a

compact subset of the strip L. Hence, the integrals in (3.7) converge uniformly with

respect to ν, z and ζ in these compact sets. In view of Lemma B.2 the latter guarantees

the needed analytic property of the last term in the right-hand side of (3.7). Finally, the

proof is completed by referring to (3.8) and (3.10). q

Lemma 3.2 Let z, ζ ∈ L′, where L′ is a compact subset of L. Then, the following estimate

is true:

sup
{∣∣∇x,y(g(ν, z, ζ)− g0(z, ζ)

)∣∣ : z, ζ ∈ L′} = O
(
ν−1
)
, as ν →∞, (3.12)

where the function g0(z, ζ) is defined in Appendix A (see (A 11) and (A 9)).

Proof The presentation of g(ν, z, ζ) given in (3.7) involves the terms s
(
λ(x − ξ + iYj)

)
.

Consider the asymptotic behaviour of derivatives of these functions as ν →∞. We have

s′(z) = −z−1 − i s(z) = −z−1 + ie−izEi (iz),

where the exponential integral Ei (z) is obtained with the help of 8.212.5 in Gradshteyn &

Ryzhik [8]. The asymptotic expansion of Ei (z) 8.215 in Gradshteyn & Ryzhik [8] leads

to the estimate ∣∣∇x,y s(λ(x− ξ + iYj)
)∣∣ = O

(
λ−1
)
.

Under the assumption of the assertion the inequalities Yj 6 dj , where dj are negative

constants, hold when z, ζ ∈ L′. Hence, the form of the remainder term in the expansion
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of Ei (z) guarantees that the above estimate is uniform with respect to z, ζ ∈ L′. Finally,

note that λ(ν) ∼ ν as ν → +∞.

The contribution of the last terms in (3.7) and (A 11) to the expression ∂z(g− g0) is

equal to 1
2

∑4
j=1(−1)jIj , where

Ij = i

∫ +∞

0

[tj(k, ν)− τj(k)]k ek(Yj+iξ−ix) dk.

By (B 1) we arrive at

|Ij | 6 sup{| tj(k, ν)− τj(k)| : k > 0}
∫ +∞

0

k e−kdj dk = O
(
ν−1
)
.

We omit the obvious asymptotic analysis of the other terms in the expression ∇x,y(g− g0).

q

4 Solvability of the problem

We seek a solution in form of the single layer potential

u(z) =

∫
S

µ(ζ)G(z, ζ) dsζ (4.1)

with an unknown density µ ∈ C(S). Due to the representation (3.6), where the function

g(ν, z, ζ) is analytic by Lemma 3.1, the theory of harmonic potentials is applicable.

Obviously, the potential (4.1) satisfies (2.1)–(2.3), (2.5). By theorem 2 in Maz’ya [6, ch. 1,

§ 1], the potential (4.1) is regular in sense of Definition 2.1 and the boundary condition

(2.4) leads to the following integral equation:

−µ(z) + (Tµ) (z) = 2f(z), (4.2)

where

(Tµ) (z) = 2

∫
S

µ(ζ)
∂G

∂nz
(z, ζ) dsζ

and the operator T is compact in L2(S) (e.g. see Maz’ya [6, ch. 1, § 1]).

Remark 4.1 If the equation (4.2) is solvable in L2(S) and f ∈ C(S), the solution µ belongs

to C(S) (e.g. see theorem 3 in Maz’ya [6, ch. 1, § 1]).

Theorem 4.1 For sufficiently large ν the NK problem is solvable for any f ∈ C(S).

Proof By (3.6), (A 8) and (A 10) we have

‖T− T0;L2(S)‖2 6

∫
S

∫
S

∣∣∣ ∂
∂nz

(
g(ν, z, ζ)− g0(z, ζ)

)∣∣∣2 dsζdsz.

The estimate (3.12) provides that

‖T− T0;L2(S)‖ = O
(
ν−1
)
.

In view of properties of the operator T0 established in Theorem A.2 the last estimate

completes the proof. q
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Lemma 3.1 guarantees that the operator T depends analytically on the parameter ν > 1.

Hence, by the theorem on invertibility of an operator-function depending on a parameter

(see Trofimov [9]), the resolvent of (4.2) represents a meromorphic function of ν. Due to

Theorem 4.1, poles of the resolvent cannot accumulate near the limit value ν = ∞. Thus,

we arrive at the following assertion.

Theorem 4.2 For all values of ν > 1 with possible exception of a sequence tending to 1, the

NK problem is solvable for any f ∈ C(S).

We can improve the smoothness of the potential (4.1) provided that the contour and

the right-hand side of (2.4) are smoother than they were defined initially. For example, if

S ∈ C2,α and f ∈ C1,α(S), then the potential (4.1) can be extended from W to W so as to

belong to C2,α(W ).

It is well-known that T is a continuous operator, T : C(S) 7→ C0,α(S) (e.g. see Colton

& Kress [10]). Rewriting (4.2) in the form µ(z) = (Tµ)(z)− 2f(z), we see that µ ∈ C0,α(S)

when µ ∈ C(S) and f ∈ C1,α(S). Moreover, Tµ ∈ C1,α(S) when µ ∈ C0,α(S) (e.g. see

Theorem 2.22 in Colton & Kress [10]). Thus, µ ∈ C1,α(S). Further, in view of (3.6) it is

sufficient to consider the potential

φ(z) =

∫
S

Γ (z, ζ)µ(ζ) dsζ ,

where Γ (z, ζ) = log |z − ζ|. Since ∇x,yΓ = −∇ξ,ηΓ , we write

∇φ(z) = −
∫
S

µ(ζ)~n(ζ)
∂Γ

∂nζ
dsζ −

∫
S

µ(ζ)~τ(ζ)
∂Γ

∂τζ
dsζ ,

= −
∫
S

µ(ζ)~n(ζ)
∂Γ

∂nζ
dsζ +

∫
S

Γ
∂µ~τ

∂τζ
dsζ , z ∈W,

where ~n(ζ) is the unit normal and~τ(ζ) is the unit vector tangent to S in point ζ. The first

(second) term in the right-hand side of the last formula represents a double (single) layer

potential with the density belonging to C1,α(S) (C0,α(S)). By theorem 2.23 (2.17) in Colton

& Kress [10], derivatives of the potential can be extended from W to W so as to belong

to C0,α(W ).

5 Uniqueness of the problem

Following the method suggested by Kuznetsov & Maz’ya [5] we consider an auxiliary

problem (the ANK problem) with opposite direction of flow. Denote by u′ a regular

solution of this problem, satisfying (2.1)–(2.4), and the following condition at infinity:

lim
x→−∞ |∇u

′| = 0.

We define the functional

J(u, u′) =

∫
S

[
u
∂u′

∂n
− u′ ∂u

∂n

]
ds

and prove that the NK problem and the ANK problem are in some sense ‘adjoint’.
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Lemma 5.1 Let u and u′ are solutions to NK and ANK problems and let the functions f

and f′ in condition (2.4) for u and u′ have the zero mean value on S . Then the relationship

J(u, u′) = 0 holds.

Proof We denote by Rd a rectangle containing B, Rd = {|x| < d, −1 < y < 0}. Let

Wd = Rd \ B be the subdomain occupied by fluid and let ~n be directed into Wd. Due to

the assumption on regularity of u and u′ (see Definition 2.1) we have∫
∂Wd

(
u
∂u′

∂n
− u′ ∂u

∂n

)
ds = 0.

By the condition (2.3) we have

J =

∫ +d

−d

[
uu′y − u′uy

]
y=0

dx+

∫ 0

−1

[
uu′x − u′ux

]
x=d

dy +

∫ 0

−1

[
u′ux − uu′x

]
x=−d dy. (5.1)

Further, we consider integrals along the straight segments which form the integral in the

right-hand side of (5.1).

Due to the restriction imposed in the assertion upon the functions f and f′, the

coefficient Q in the asymptotics (2.6) of u is equal to zero and, analogously,

u′ ∼ c′± + θ(x) cosh λ(y + 1)
(A′ sin λx+B′ cos λx

)
, as |x| → ∞, ±x > 0.

Further, using the boundary condition (2.2) we obtain∫ +d

−d

[
uu′y − u′uy

]
y=0

dx = ν−1

∫ +d

−d

[
u′uxx − uu′xx

]
y=0

dx

= ν−1
[
u′(x, 0)ux(x, 0)− u(x, 0)u′x(x, 0)

]x=+d

x=−d
= −λν−1c+ cosh λ

(A′ cos λd−B′ sin λd)
−λν−1c′− cosh λ (A cos λd+B sin λd) + O

(
d−1
)
.

According to the asymptotics of u and u′ at infinity, the sum of the two last terms in the

right-hand side of (5.1) is equal to

c+ sinh λ
(A′ cos λd−B′ sin λd)+ c′− sinh λ (A cos λd+B sin λd) + O

(
d−1
)
.

By (2.7), J(u, u′) = O(d−1) and taking limit as d→∞ we arrive at J(u, u′) = 0. q

We denote by G′(z, ζ) the Green’s function for the problem with the opposite flow

direction. It is easily seen that for the ANK problem Theorem 4.2 is also true and

guarantees that the integral equation

−µ(z) + 2

∫
S

µ(ζ)
∂G′

∂nz
(z, ζ) dsζ = f′

is uniquely solvable when ν ∈ V′, where the set V′ contains all values of ν > 1 with

possible exception of a sequence tending to 1. We use analogous notation V so that the

equation (4.2) is uniquely solvable when ν ∈ V. Further we shall establish that V =V′.

Theorem 5.1 If ν ∈ V and u is a solution of the NK problem with f = 0 in (2.4), then u is

constant.
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Proof Let ν ∈ V′ and u′ be a solution of the ANK problem with arbitrary Neumann

data on S orthogonal to constant (
∫
S
f′ ds = 0). Taking into account the homogeneous

Neumann condition for the function u and Lemma 5.1 we have∫
S

uf′ ds = 0.

Since the function f′ is arbitrary, we obtain u = const on S . Further, the uniqueness

theorem for the Cauchy problem for the Laplace equation yields that u = const in W .

Now we prove that V = V′. In fact, the above proof states the uniqueness of the

NK problem for ν ∈ V′. The standard method of the theory of potentials (e.g. see

Theorem A.2) allows us to prove the solvability of the equation (4.2) for ν ∈ V′. Thus,

by the definition of V, V′ ⊂ V. Using the same arguments with the NK problem as the

‘adjoint’ for the ANK problem we get V ⊂V′. q

6 Summary and conclusions

In this work we have studied the linearized two-dimensional boundary value problem

which describes the forward subcritical motion of a cylinder immersed in a fluid of finite

depth. It is proved that if the contour of the body S belongs to C1,α and the Neumann

data f is continuous, then for all values of the wave number ν > 1 with possible exception

of a sequence tending to the critical value 1, the problem has a unique solution, which is

continuous in W , satisfies the boundary conditions on the free surface and on the bottom

in the classical sense and has regular normal derivative on the contour of body. Moreover,

it is shown that if S ∈ C2,α and f ∈ C1,α(S) then this solution belongs to C2,α(W ).
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Appendix A On the Neumann problem in a layer of finite depth

In the appendix we consider the Neumann problem, which appears as the zero speed limit

case of the NK problem and describes the motion of a body in a layer of unit depth with

rigid bottom and top. A solution to the problem u0 satisfies

∇2u0 = 0 in W, (A 1)

∂u0/∂n = f on S, (A 2)

∂u0/∂y = 0 when y = 0, y = −1, (A 3)

lim
x→+∞ |∇u0| = 0. (A 4)

Here the notations introduced in Figure 1 are used, the contour of body S is a C1,α-arc,

f ∈ C(S) and u0 is assumed to be regular in sense of Definition 2.1. In Werner [11], a

theorem on unique solvability was proved for a problem which differs from the problem
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under consideration by condition at infinity (A 4). We give this theorem in form needed

for purpose of the present work.

Denote by G0(z, ζ) the Green’s function of the problem (A 1)–(A 4), describing motion

of a source placed at the point ζ. This function must satify (A 3), (A 4) and the source

equation (3.1). Using the representation derived in Werner [11], we get

G0(z, ζ) = −(2π)−1 log
∣∣∣(1− e−π|x−ξ|+iπ(y+η)

)(
1− e−π|x−ξ|+iπ(y−η)

)∣∣∣
+ 1

2
|x− ξ|+ 1

2
(ξ − x). (A 5)

As |x| → ∞ and |ζ| 6 c < ∞, the following asymptotic representation holds:

G0(z, ζ) = (x− ξ) θ(−x) + O
(

e−π|x|
)
.

In view of the assumption on the regularity of u0, the asymptotics of u0(z) at infinity

can be obtained following theorem 2.1 in Kuznetsov [7]. This asymptotics has the same

form as the above asymptotics of the Green function and is expressed as follows

u0(z) = c± − x θ(−x)

∫
S

∂u0

∂n
ds+ O

(
e−π|x|

)
, |x| → ∞, ±x > 0

where c+ − c− =
∫
S

[
u0∂x/∂n− x∂u0/∂n

]
ds.

Theorem A.1 If a regular potential u0 satisfies the homogeneous problem (A 1)–(A 4), then

u0 is constant.

Proof In view of Proposition 2.1 the above asymptotics yields that
∫
W
|∇u0|2 dx dy is finite

under the condition f = 0. Then, applying the Green’s formula and taking into account

(A 3), we get ∫
W

|∇u0|2 dx dy =

∫
S

u0
∂u0

∂n
ds = 0.

which implies that u0 = const in W . q

Theorem A.2 The problem (A 1)–(A 4) is solvable for any f ∈ C(S).

Proof We seek a solution in form of the single layer potential

u0(z) =

∫
S

µ(ζ)G0(z, ζ) dsζ (A 6)

with an unknown density µ ∈ C(S). Due to the representation (A 10), where the function

g0(z, ζ) is obviously analytic, the theory of harmonic potentials is applicable to the solution.

It is easily seen that the potential (A 6) is regular and satisfies (A 1), (A 3)–(A 4). The

boundary condition (A 2) leads to the following integral equation:

−µ(z) + (T0µ) (z) = 2f(z), (A 7)

where

(T0µ) (z) = 2

∫
S

µ(ζ)
∂G0

∂nz
(z, ζ) dsζ . (A 8)

The operator T0 is compact in L2(S). Hence, the equation (A 7) is a Fredholm one and
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to prove the assertion it suffices to prove that µ0 = 0, where µ0 ∈ L2(S) is a solution of

homogeneous equation (A 7).

Consider the potential

V (z) =

∫
S

µ0(ζ)G0(z, ζ) dsζ .

According to Remark 4.1 the density µ0 is continuous. Then, the definition of µ0 and

Theorem 2 in Maz’ya [6, ch. 1, § 1] guarantee that the potential V satisfies the conditions

of Theorem A.1. Therefore, V = const in W . Moreover, the potential V is continuous

in L and, hence, V = const in B because of uniqueness of the Dirichlet problem in B.

Thus, ∂V/∂ni = 0 and the jump relation yields that µ0 = 0. Finally, the equation (A 7) is

uniquely solvable in L2(S) and µ ∈ C(S) when f ∈ C(S) (see Remark 4.1). q

In the remainder of the Appendix we introduce a representation of the Green’s function,

which differs from the representation (A 5). This form is in use in § 3. Applying the standard

procedure based on the Fourier transformation with respect to x to the set of equations

(A 3) and (3.1) we arrive at the expression

(2π)−1

{
− log |z − ζ|+

∫ +∞

0

[
cosh k(y + η + 1) + e−k cosh k(y − η)

]
cos k(x− ξ) dk

k sinh k

}
.

The integral term in the last formula contains poles k−1, k−2 and should be regularized.

For this purpose we rewrite this term as follows

I(z, ζ) = 1
2

[
α1(x− ξ, Y1) + α1(x− ξ, Y4) +

4∑
j=1

α2(x− ξ, Yj)

−
4∑
j=1

∫ +∞

0

τj(k)ekYj cos k(x− ξ) dk

]
,

where Yi are given by (3.9),

α1(x, y) =

∫ +∞

0

eky cos kx− e−k

k
dk = − log |x+ iy|,

α2(x, y) =

∫ +∞

0

eky cos kx− 1− ky e−k

k2
dk

and the functions

τ1(k) = τ4(k) = − ek

k sinh k
+

1

k2
+

1

k
, τ2(k) = τ3(k) = − 1

k sinh k
+

1

k2
(A 9)

are analytic in R. Integrating the representation of α2(x, y) by parts and using the

relationship ∫ +∞

0

eky sin kx

k
dk = − arctan

x

y
, y < 0,

we get

α2(x, y) = y
(
1− log |x+ iy|)+ x arctan

x

y
.
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Due to the analytic properties of τi(k), the last term in definition of I(z, ζ) is small

as |x| → ∞. Hence, the asymptotics of I(z, ζ) can be easily established with help of the

presentation of functions α1 and α2. Consider the function equal to I(z, ζ) minus the

linear term in the asymptotics of I(z, ζ) as x→ +∞. Obviously, this potential satisfies the

condition (A 4) along with the conditions (A 3) and (3.1). Finally, we write

G0(z, ζ) = −(2π)−1
{

log |z − ζ|+ g0(z, ζ)
}
. (A 10)

Here

g0(z, ζ) = π(ξ − x) + 1
2

log
∣∣z − ζ∣∣+ 1

2
log
∣∣z − ζ + 2i

∣∣+ β(z, ζ)

+
1

2

4∑
j=1

∫ +∞

0

τj(k)ekYj cos k(x− ξ) dk, (A 11)

where the function β is defined by (3.10).

Appendix B

In the present appendix we establish properties of the functions ti(k, ν) given by (3.11).

Lemma B.1 As ν →∞, the following estimates are true:

sup {|ti(k, ν)− τi(k)| : k > 0} = O
(
ν−1
)
, i = 1, 2, 3, 4. (B 1)

Proof We denote

v(k, λ) = t1(k, ν(λ))− τ1(k),

where the substitution ν(λ) = λ/ tanh λ follows from (2.7), and it is worth pointing out

that ν →∞ as λ→∞. The proof is based on resummation of v with help of the following

set of functions

nj(k) = k−j
(

e−2k −
j−1∑
`=0

(−2k)`

`!

)
, j = 1, 2, 3, 4. (B 2)

Besides, we shall use the notations

σ(k) = 1− e−2k, hi(k, λ) = e−2λ ni(k − λ), i = 1, 2.

Then, by means of direct but tedious resummation we rewrite

v(k, λ) =
R(k, λ) tanh λ

2e6λ
(
1− e2λ

)
(2λ− sinh 2λ) (λ− tanh λ)Q(k, λ)

, (B 3)

where

Q(k, λ) = n1(k)
[(

1 + e−2λ
)
n1(k)− 2 h1(k, λ)

]
,

R(k, λ) = 4λe4λ
(
1− e4λ

)
a1(k, λ) +

5∑
j=1

aj(k, λ)e2jλ, (B 4)
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and

a1 = 8
3
n1−2 n2 +2(e−2k − 2) n3− σ n4, a2 = −2(4 + h1)(2 n2 + n3),

a3 = −16 h1− ( 88
3

+ 20 h1

)
n1 +(20e−2k − 8 h1) n2 +2(8 + 2e−2k + h1) n3 +2 σ n4,

a4 = −16 h1−8 σ h2 +8 h2 n1 +(8 σ+12 h1) n2 +2(h1−4e−2k) n3,

a5 = − σ(8 h2 + n4)− 4
(

4
3

+ 3 h1 +2 h2

)
n1 +(4e−2k − 6) n2 +2(e−2k − 2− h1) n3 .

It is easy to check that the function (−1)i ni(k), i = 1, 2, 3, 4, is continuous, positive and

monotonic decreasing. Hence, the following inequalities are true

| n3(k)| 6 4
3
, | n4(k)| 6 2

3
, | ni(k)| 6 2, | hi(k, λ)| < λ−i, i = 1, 2 (B 5)

when k > 0 and λ > 0. The latter leads to the estimate

|R(k, λ)| = O(e10λ), as λ→∞, (B 6)

which is uniform with respect to k > 0.

Consider the function Q(k, λ) when k ∈ [0, 1]. There is no loss of generality in assuming

that λ > 4. Then, in view of (B 5) we have

Q(k, λ) >
(
1− e−2

) (−2λ−1 − n1(k)
)
>
(
1− e−2

) (
1− e−2 − 1

2

)
> 0.

The latter inequality, the representation (B 3) and the estimate (B 6) yield that

sup{| v(k, λ)| : 0 6 k 6 1} = O
(
λ−1
)

as λ→∞. (B 7)

To obtain the analogous estimate for the case k > 1 we consider the expressions

k2 R(k, λ) and k2 Q(k, λ). By using the relationship k h1 = λ h1 +e−2k − e−2λ we obtain

k2 Q(k, λ) =
(
1− e−2k

) [
2λ h1(k, λ) +

(
1− e−2λ

) (
1 + e−2k

)]
and assuming that λ > 4 we arrive at the inequality

k2 Q(k, λ)(
1− e−2

) > 2λ
e−2 − e−2λ

1− λ + 1− 2e−2λ > 1− 8
3

e−2 (B 8)

Further, we write the expression k2 R(k, λ) in the following form:

k2 R(k, λ) = −8λ2 e6λ
(
1 + e2λ

) [
2 h1(k, λ) + e2λ σ(k) h2(k, λ)

]
+4λe4λ

3∑
j=1

bj(k, λ)
(

e2jλ − 1
)

+

4∑
j=1

cj(k, λ)
(

e2jλ − e10λ
)
,

where

c1 =
(
2e−2k − 4

)
n1− σ n2, c3 = 12 σ h1 +8e−2k n1−2c1 − c2,

c2 = −4e−2k h1−2 h1 n1−8 n1, c4 = −4 σ h1−8 n1−2c1 − 2c2 − c3,

and

b3 = e−2k h1 +2 σ h2, b1 = −5e−2k h1, b2 = h1−c1 − b1 − b3.

In view of (B 5) the representation of k2 R(k, λ) yields the uniform estimate∣∣k2 R(k, λ)
∣∣ = O(e10λ) as λ→∞,
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and by (B 3) and (B 8) we arrive at

sup{| v(k, λ)| : k > 1} = O
(
λ−1
)

as λ→∞.
Combining the latter and (B 7) proves the assertion for the case i = 1. The estimate (B 1)

for i = 2, 3, 4 can be established by using the above presentation of v.

We write

ti(k, ν)− τi(k) = e−k v(k, λ) +
2e2λ q(k, λ)

λ[sinh(2λ)− 2λ]
+

tanh λ
[
4 n1(k/2) + n2(k/2)

]
4(tanh λ− λ) , (B 9)

where i = 2, 3, and

q(k, λ) = λ
e−k − e−λ

k − λ .

Obviously, | q(k, λ)| 6 q(0, λ) = e−λ when k > 0 and λ > 0. Thus, the above estimate of v

and the representation (B 9) guarantee that (B 1) is also true for i = 2, 3.

Likewise, we write

t4(k, ν)− τ4(k) =
ν − k
ν + k

v(k, ν)− ∆(k, λ), (B 10)

where

∆(k, λ) =
2 tanh λ n2(k)

ρ(k, λ) n1(k)
+

tanh λ
[(

3− e−2λ
) (

1− e4λ
)

+ 2λ
(

e4λ + 4e2λ − 1
)]

ρ(k, λ)
(
1 + e2λ

)
(sinh(2λ)− 2λ)(λ− tanh λ)

and ρ(k, λ) = λ+ k tanh λ. It remains to note that

|(ν − k)/(ν + k)| 6 1, |n2(k)/ n1(k)| 6 2, ρ(k, λ) > λ,

when k > 0. The proof is complete. q

The following lemma is based on the representations of the expressions ti(k, ν) − τi(k)
obtained in proof of the preceding lemma.

Lemma B.2 The functions ti(k, ν), i = 1, 2, 3, 4 defined by (3.11) are continuous (analytic)

functions of (k, ν) when ν > 1 and k > 1 (k > 1).

Proof Consider the function t1(k, ν). It can be written as v(k, ν) + τ1(k), where τ1(k)

depends analytically on k ∈ R. Analytic properties of the functions defined by (B 2) and

the representations (B 3) and (B 4) yield that t1(k, ν) is analytic in the domain where the

denominator of (B 3) is not equal to zero. We write

Q(k, λ) =
λ n1(k)

(
1 + e−2k

) (
1 + e−2λ

)
k − λ

[
tanh k

k
− tanh λ

λ

]
.

The expression in square brackets only vanishes if k = λ. At the same time, by (B 4),

Q(k, λ) is continuous at the point (λ, λ), when λ > 0 and

Q(λ, λ) = 4e−2λ n1(λ)

[
1− sinh(2λ)

2λ

]
� 0.
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Thus, the inequality Q(k, λ)� 0 is established when k > 0 and λ > 0. The latter proves

the assertion for t1. Further, referring to the representations (B 9) and (B 10) completes

the proof.
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