Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-11T15:22:44.609Z Has data issue: false hasContentIssue false

Solvability of free boundary problems for steady groundwater flow

Published online by Cambridge University Press:  12 May 2015

A. Yu. BELIAEV*
Affiliation:
Water Problem Institute, Moscow, Russia email: beliaev@aqua.laser.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper the free boundary problem for groundwater phreatic surface is represented in the form of a variational principle. It is proved that the flow domain Ω that solves the problem is a minimizer of some functional Λ(Ω). Weak solutions are introduced as minimizers of the lower semi-continuous regularization of Λ(⋅). Within this approach the existence of weak solutions is proved for a wide class of input data.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

References

[1]Alt, H. W. (1979) Strömungen durch inhomogene poröse Medien mit freiem Rand. J. Reine Angew. Math. 305, 89115.Google Scholar
[2]Anakhaev, K. N. (2009) A particular analytical solution of a steady-state flow of a groundwater mound. Water Resour. 36 (5), 507512.CrossRefGoogle Scholar
[3]Antontsev, S. N., Díaz, J. I. & Shmarev, S. I. (2002) Energy Methods for Free Boundary Problems: With Applications to Nonlinear PDEs and Fluid Mechanics, Springer, New York.CrossRefGoogle Scholar
[4]Baiocchi, C., Comincioli, V., Magenes, E. & Pozzi, G. A. (1973) Free boundary problems in the theory of fluid flow through porous media: Existence and uniqueness theorems. Ann. Mat. Pura Appl. 97 (4), 182.CrossRefGoogle Scholar
[5]Baiocchi, C. & Friedman, A. (1977) A filtration problem in a porous medium with variable permeability. Ann. Mat. Pura Appl. 114, 377393.CrossRefGoogle Scholar
[6]Bear, J., Zaslavsky, D. & Irmay, S. (1968) Physical Principles of Water Percolation and Seepage, UNESCO, Paris.Google Scholar
[7]Brézis, H., Kinderlehrer, D. & Stampacchia, G. (1978) Sur une nouvelle formulation du problème d'éqoulement à travers une digue. C. R. Acad. Sci. Paris, Ser. A, 287 (9), 711714.Google Scholar
[8]Chiang, W. H. & Kinzelbach, W. (2001) 3D Groundwater Modeling with PMWIN: A Simulation System for Modelling Groundwater Flow and Pollution, Springer-Verlag, Berlin.Google Scholar
[9]Chipot, M. (1984) Variational Inequalities and Flow through Porous Media, Applied Mathematical Sciences Series, Vol. 52, Springer, New York.CrossRefGoogle Scholar
[10]Egorov, A. G., Dautov, R. Z., Nieber, J. L. & Sheshukov, A. Y. (2003) Stability analysis of gravity-driven infiltrating flow. Water Resour. Res. 39 (9), 18861928.CrossRefGoogle Scholar
[11]Emikh, V. N. (2008) Mathematical models of groundwater flow with a horizontal drain. Water Resour. 35 (2), 205212.CrossRefGoogle Scholar
[12]Friedman, A. (1982) Variational Principles and Free Boundary Problems, Willey & Sons, New York.Google Scholar
[13]Green, W. H. & Ampt, G. A. (1911) Studies in soil physics. Part 1. The flow of air and water through soils. J. Agr. Sci. 4, 124.Google Scholar
[14]Kohn, R. V. & Strang, G. (1986) Optimal design and relaxation of variational problems I, II, III. Commun. Pure Appl. Math. 39, 113–137, 139–182, 353377.CrossRefGoogle Scholar
[15]Ladyzhenskaya, O. A. & Ural'tseva, N. N. (1968) Linear and Quasilinear Elliptic Equations. Academic Press, New York.Google Scholar
[16]McCaffery, F. G. & Bennion, D. W. (1974) The effect of wettability on two-phase relative permeabilities. J. Can. Pet. Technol. 13 (4), 4253.CrossRefGoogle Scholar
[17]Milton, G. W. (2002) The Theory of Composites, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[18]Philip, J. R. (1975) Stability analysis of infiltration. Soil Sci. Soc. Am. Proc. 39 (6), 10421049.CrossRefGoogle Scholar
[19]Polubarinova-Kochina, P. Ya. (1962) Theory of Ground Water Movement. Trans. from the Russian by J.M. Roger De Wiest, Princeton University Press, Princeton.Google Scholar
[20]Pop, I. S., Radu, F. A. & Knabner, P. (2004) Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards' equation. SIAM J. Numer. Anal. 42 (4), 14521478.Google Scholar
[21]Richards, L. A. (1931) Capillary conduction of liquids through porous medium. Physics 1, 318333.CrossRefGoogle Scholar
[22]Schweizer, B. (2007) Regularization of outflow problems in unsaturated porous media with dry regions. J. Differ. Equ. 237, 278306.CrossRefGoogle Scholar
[23]Schweizer, B. & Lenzinger, M. (2010) Two-phase flow equations with outflow boundary conditions in the hydrophobic-hydrophilic case. Nonlinear Anal. TMA 73 (4), 840853.Google Scholar
[24]Strang, G. & Fix, G. J. (1973) An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
[25]Temam, R. (1979) Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Company, Amsterdam.Google Scholar
[26]Ustohal, P., Stauffer, F. & Dracos, T. (1998) Measurement and modelling of hydraulic characteristics of unsaturated porous media with mixed wettability. Contaminant Hydrol. 33, 537.CrossRefGoogle Scholar