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In this paper the free boundary problem for groundwater phreatic surface is represented

in the form of a variational principle. It is proved that the flow domain Ω that solves

the problem is a minimizer of some functional Λ(Ω). Weak solutions are introduced as

minimizers of the lower semi-continuous regularization of Λ(·). Within this approach the

existence of weak solutions is proved for a wide class of input data.
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1 Introduction

The classical free boundary problem for steady groundwater flow involves a linear elliptic

equation with excessive number of boundary conditions on a part of the boundary which

is called the free one. Namely, this part is endowed with both Neumann and Dirichlet

boundary conditions simultaneously whereas the rest of the boundary is equipped with

just one of them. Then the compatibility requirements for this overdetermined problem

generate information source about the shape of the flow domain which is not given a priori

and has to be found. Its worth mentioning that the same mathematical description is also

available in some other physical applications. One of them is the stationary Hele-Shaw

problem.

The first approach to the analysis of groundwater flows with free boundaries was

suggested by J. Dupuit in the late 1840s. He considered water seepage through a dam

between two reservoirs and got an explicit expression for the shape of the phreatic surface

that separates wet and dry zones in the body of the dam. This expression, however, does

not describe the exact solution to the problem. It is a result of an approximation which

reduces the problem to a nonlinear differential equation in a fixed domain of a lesser

dimension. Nevertheless, this approach initiated numerous studies of groundwater flows

with free boundaries regarding the existence of solutions. The detailed review is beyond

the aims of the presented paper, but a short classification of corresponding approaches

seems to be reasonable.

First of all, a considerable number of particular solutions have been presented explicitly.

Most of them are obtained by means of the conformal mapping method developed by

G. Kirchhoff and N. Zhukovsky (see, for instance, [19] or [6], Chapter 7). This method
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is still in use in engineering hydrology [2, 11]. Any solution of this kind can be regarded

as a particular solvability result. Then, based on the techniques of small perturbations,

the existence of closely spaced solutions can be studied. The majority of these studies,

however, is related to unsteady versions of the free boundary problem, and their main

subject is a stability analysis for moving wetting fronts (see, for example, [18] and [10]).

A large class of approaches relates to approximations of the original free boundary

problem by mathematical models which are simpler with respect to solvability analysis.

In particular, the above mentioned Dupuit approach is based on the thin layer approxim-

ation. Multilayered versions of this approach provide the basis for numerical algorithms

for engineering studies of groundwater flows (see, for instance, [8]). Also groundwater

flows are studied using various versions of Richards models which account for capillary

forces ([21], see also [6], Chapter IX). The porous medium in these models includes a

partially saturated zone which is called the capillary fringe. It separates the fully saturated

flow domain and the dry zone of the medium. If the effective thickness of this fringe is

small compared to the spatial scale of the flow, then Richards models can be regarded as

an approximation for the classic free boundary problem. Unsaturated flows are described

by degenerate elliptic or, in the non-stationary case, parabolic equations in a given do-

main. They are thoroughly studied with respect to existence and qualitative properties of

solutions (see [3, 22] and references therein).

A new step in the studies of free boundary problems comes from the research carried

out by C. Baiocchi in the early 1970s. Considering the classic problem of seepage through

a dam, he introduced its representation in the form of an elliptic problem with unilateral

constraints in the fixed domain which includes the wet and dry zones of the dam. Then

solvability of the problem is established by means of standard methods of analysis. It

was the first proof of existence for a groundwater flow with phreatic boundary besides

the problems which can be solved explicitly or semi-explicitly. The Baiocchi approach,

however, is not flexible in view of generalizations because it is closely related to the

particular problem under consideration. Some extensions of his method to other problems

are available though. A number of them are given in [4]. Also several modifications of the

Baiocchi method are developed in [5] and [12]. Nevertheless, all possible generalizations

cover a small class of problems because the main generic trick within this method is

very sensitive to the shape of fixed boundaries as well as to the structure of boundary

conditions on them. Moreover, the extension of the method to problems in spatially

heterogeneous porous media is attended by certain difficulties.

Further progress in the studies of the problem is based on the consideration of its weak

solutions. They were introduced by Alt [1] and Brézis et al. [7] (see also [9], Chapter

4). Weak solutions of the problem are defined in terms of a variational inequality and

involve partially saturated zones. A weak solution is consistent with the classic one if its

partially saturated zone is a set of zero Lebesgue measure. Existence of weak solutions

is proved in [1] and [7] by means of approximation of the groundwater flow problem

by a sequence of Richards models. The existence is established under sufficiently general

conditions. In particular, it is provided for porous domains with arbitrary Lipschitz

boundary and arbitrary heterogeneous structure. Using solvability of the dam problem in

the weak sense Chipot in [9] has established existence of its classic solutions under less

restrictive conditions than it is done within Baiocchi method. These conditions, however,
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imply homogeneity of the medium because the proof makes use of some properties of

subharmonic functions. Possible cases of non-existence of classic solutions for the dam

problem in heterogeneous media are mentioned in [1] and [5].

In the present paper, the standard problem for stationary groundwater flow with free

boundary is represented in the form of a variational principle. Namely, it is proved that

a flow domain Ω is the solution to the problem if and only if it minimizes an explicitly

introduced functional Λ(Ω) and, as an additional requirement, the minimum takes some

prescribed value. The research is motivated by questions of rigorous justification of

homogenized models or multilayered versions of the Dupuit approximation for flows

in heterogeneous porous media. In this respect, the variational representation of the

problem seems potentially favourable. The representation is available for problems with

an arbitrary shape of the fixed boundary and structure of heterogeneity. These input data,

as well as functions providing boundary conditions, are involved in the expression for the

functional Λ(Ω).

The variational representation allows us to use straightforward methods of calculus

of variations in studies of model problems with respect to existence and uniqueness of

solutions. Some particular examples are presented and thoroughly analysed in Section

2 of this paper. It is important that the variational principle provides a criterion for

non-existence of classical solutions and gives an opportunity to justify this non-existence

for some problems.

The analysis of solvability becomes less sensitive to input data if the notion of solution

is reasonably generalized. This generalization is developed in Section 3 of the paper

using the lower semi-continuous regularization of the generating functional Λ(Ω). This

idea is inspired by approaches to the problems of optimal design of composites in

the homogenization theory [14, 17]. The point is the following. For some problems the

minimal value of Λ(Ω) is not attainable, but its infimum exists and takes the above

mentioned prescribed value. The corresponding minimizing sequences of flow domains

demonstrate small-scale behaviour in the sense that they consist of subsets which are

represented in the entire porous medium or locally by a large number of thin layers or

fibres. This looks like the appearance of partially saturated subdomains in the porous

medium. The limiting behaviour of these sequences in the appropriate topology can be

described by water saturation fields ranging from zero to one. It is proved that the lower

semi-continuous regularization of the generating functional Λ(·) results in its extension

from the set of admissible flow domains to the set of all saturation fields. Then a

saturation field may be interpreted as the generalized or relaxed solution for the free

boundary problem if it minimizes the extended functional and the minimum is equal to

the prescribed value. In this way, the class of solvable problems becomes much larger. The

expression for the extended functional is introduced in an explicit form. The proof that

this expression coincides with the lower semi-continuous regularization of the original

functional is given in the Appendix because it is the most cumbersome part of the

paper.

The generalized solutions for the free boundary problem coincide with the weak

solutions introduced by Alt [1] and Brézis et al. [7]. Thus, the present approach represents

the weak solutions as the minimizers of the regularized functional and provides a criterion

for weak solvability of the problems under consideration.
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In Section 4 of the paper, the generalized solutions are introduced through an ap-

proximation of the original model by a sequence of degenerate elliptic problems in a

fixed domain. These problems are related to a version of Richards model for unsaturated

groundwater flows which accounts for capillary effects. It is proved that no-capillary limits

for solutions of the approximating problems correspond to the solutions defined by means

of the relaxed variational principle. This provides an additional physical interpretation

for the generalized form of the free boundary problem. Finally, the approximation of

the problem by a sequence of Richards models allows us to develop a sufficient solvab-

ility condition which is expressed in explicit form and covers a considerable number of

application-oriented problems.

2 Posing the problem in the form of a variational principle

Let B ⊂ Rd be a fixed bounded domain with Lipschitz boundary ∂B. The free boundary

problem under consideration implies that a domain Ω ⊂ B, a non-negative function

p ∈ W 1,2(B) and a vector-valued function q ∈ (L2(B))d have to be determined from the

following relations

q = K(g − ∇p) in Ω, (2.1)

q(·) = 0, p(·) = 0 in B\Ω, (2.2)

∇ · q = 0, p(·) � 0 in B, (2.3)

q · n = Q · n on ∂BN ⊂ ∂B, (2.4)

p = P on ∂BD = ∂B\∂BN. (2.5)

Here, g is a given vector, K denotes a positive definite matrix, the functions P and Q

provide boundary conditions of Dirichlet and Neumann type on ∂BD and ∂BN respectively.

Equality (2.1) is Darcy relation between water flux q, pressure gradient ∇p and external

force g in the porous medium. Everywhere below it is assumed that g(·) ∈ (L2(B))d, and

the symmetric matrix of Darcy coefficients K(·) satisfies strong ellipticity conditions in the

form of inequalities k1ξ
2 � K(x)ξ · ξ � k2ξ

2 with some positive k1 and k2 for all ξ ∈ Rd

and x ∈ B.

Boundary conditions (2.4) and (2.5) on the fixed boundary ∂B could be interpreted in

the sense of traces if the distributions of subsets ∂BN and ∂BD on ∂B were sufficiently

regular. To avoid any regularity assumptions with respect to these distributions let

us introduce a subspace W
1,2
0 (B, ∂BD) ⊂ W 1,2(B) as the closure of the set of smooth

functions C∞
0

(
B\∂BD

)
with compact support in B\∂BD . Then condition (2.5) implies

that p(·) − P (·) ∈ W
1,2
0 (B, ∂BD) for some given function P ∈ W 1,2(B). Since the sought

pressure p(·) is non-negative, the relation P (·) � 0 for the boundary function everywhere

on B can be presumed without loss of generality. In order to give a rigorous formulation

for Neumann boundary condition (2.4), let us introduce spaces E(B) and E0 (B, ∂BN) of

vector-valued functions on B by the expressions

E(B) =

{
q ∈ (L2(B))d :

∫
B

q · ∇p dx = 0 ∀p ∈ W
1,2
0 (B, ∂B)

}
,
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and

E0 (B, ∂BN) =

{
q ∈ (L2(B))d :

∫
B

q · ∇p dx = 0 ∀p ∈ W
1,2
0 (B, ∂BD)

}
.

Thus, E(B) and E0 (B, ∂BN) are the orthogonal complements in (L2(B))d to the gradients

∇p of all functions from W
1,2
0 (B, ∂B) and W

1,2
0 (B, ∂BD) respectively. Then E(B) is the

subspace of all divergence-free vector fields in (L2(B))d, and vectors q ∈ E0 (B, ∂BN) ⊂
E(B) have, in a generalized sense, the normal to ∂BN component q·n equal to zero. In terms

of these subspaces Neumann boundary condition (2.4) implies that q(·)−Q(·) ∈ E0 (B, ∂BN)

for a given divergence-free vector field Q(·) ∈ E(B).

Everywhere below the capacity of ∂BD is assumed to be sufficient to provide Poincaré

inequality ∫
B

p2dx � Const ·
∫
B

(∇p)2 dx, (2.6)

for any p ∈ W
1,2
0 (B, ∂BD). This is the only assumption on the geometry of boundary

subsets ∂BD and ∂BN .

It is assumed that the porous medium in the dry zone B\Ω is filled with atmospheric

air, and air pressure is a given constant which is set to zero. These are the physical

reasons for relations (2.2). The set Γ = ∂Ω\∂B separates the wet and dry zones of the

porous medium. It is called “free boundary”. If it is sufficiently regular then functions

from W 1,2(B) have traces on Γ , which can be defined as the continuous mappings from

W 1,2(Ω) or W 1,2(B\Ω) to H1/2(Γ ), and the traces from both sides of Γ are equal to each

other (see, for instance, [25], Chapter 1.) A divergence-free vector field q ∈ E(B) has

equal traces of its normal to Γ component which are defined as continuous mappings

from (L2(Ω))d or
(
L2(B\Ω)

)d
to H−1/2(Γ ). Then condition (2.2) implies that p = 0 and

q · n = 0 on Γ in the sense of traces. Therefore, the fact that the extension of pressure

field by zero from Ω onto the dry zone belongs to W 1,2(B) is a natural generalization

of Dirichlet condition p = 0 on the free boundary regardless its regularity. Analogously,

the fact that a divergence-free vector field q on Ω extended by zero onto B\Ω is

still divergence-free generalizes Neumann boundary condition q · n = 0 on Γ . This

interpretation of the free boundary problem allows us to look for the solution among

all measurable subsets Ω ⊂ B. Of course, the subsets are presumed to be equivalent

if they coincide almost everywhere on B. Within this agreement notation ∂Ω becomes

meaningless, and the term “free boundary” has to be interpreted as “free measurable

subset”.

Let us introduce closed convex subsets MD ⊂ W 1,2(B) and MN ⊂ E(B) by the following

expressions:

MD =
{
p ∈ W 1,2(B) : p(·) � 0, p(·) − P (·) ∈ W

1,2
0 (B, ∂BD)

}
,

MN = {q ∈ E(B) : q(·) − Q(·) ∈ E0 (B, ∂BN)} .

Then conditions (2.3), (2.4) and (2.5) of the free boundary problem can be written briefly

as p ∈ MD , q ∈ MN .
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In order to represent the problem in a variational form, let us define a couple of

functionals. The first one, ID (Ω, ·) : MD → R ∪ {+∞}, is defined by the formula

ID (Ω, p) =
1

2

∫
Ω

K (g − ∇p) · (g − ∇p) dx +

∫
B

Q · (∇p − ∇P ) dx,

if p(x) = 0 on B\Ω almost everywhere, and ID (Ω, p) = +∞ otherwise. Another one,

IN (Ω, ·) : MN → R ∪ {−∞}, is given by the expression

IN (Ω, q) =

∫
Ω

[
(g − ∇P ) · q − 1

2
K−1q · q

]
dx,

if q(x) = 0 on B\Ω almost everywhere, and IN (Ω, q) = −∞ otherwise.

The subsets of functions p ∈ MD and q ∈ MN for which ID (Ω, p) < +∞ and IN (Ω, q) >

−∞ are denoted by dom ID (Ω, ·) and dom IN (Ω, ·) respectively. These two sets are closed

convex subsets of W 1,2(B) and (L2(B))d respectively. If dom ID(Ω, ·) is not empty then the

functional ID(Ω, ·) attains its minimal value, and the minimizer is unique. This follows

from coerciveness and strong convexity of the functional. The coerciveness, in its turn, is

a consequence of Poincaré inequality (2.6). Analogously, if dom IN(Ω, ·) � ∅ then IN(Ω, ·)
has a unique maximizer.

Since relations p ∈ dom ID (Ω, ·) and q ∈ dom IN (Ω, ·) take into account conditions (2.2)

in the dry zone, solutions of the free boundary problem can be defined as follows.

Definition 2.1 A measurable subset Ω ⊂ B, a function p(·) and a vector field q(·) on B solve

the free boundary problem under consideration if p(·) ∈ dom ID(Ω, ·), q ∈ dom IN(Ω, ·)
and Darcy equation (2.1) holds a.e. on Ω.

The goal of this section is the following.

Theorem 2.2 Inequality

IN (Ω, q) � ID (Ω, p) ,

holds for any Ω ⊂ B, p ∈ MD and q ∈ MN . Furthermore,

IN (Ω, q) = ID (Ω, p) ,

if and only if the triplet (Ω, p, q) solves the free boundary problem.

Proof It suffices to consider p ∈ dom ID (Ω, ·) and q ∈ dom IN (Ω, ·). Then the following

equality is a straightforward consequence of definitions:

ID (Ω, p) − IN (Ω, q) =

∫
B

(Q − q) · (∇p − ∇P ) dx

+
1

2

∫
Ω

[
K−1q · q − 2q · (g − ∇p) + K (g − ∇p) · (g − ∇p)

]
dx.

Here, the first integral equals 0 by the definitions of MD and MN . The second one is

non-negative and vanishes if and only if Darcy relation (2.1) holds almost everywhere on

Ω. This completes the proof. �
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Theorem 2.2 is followed by the fact that the free boundary problem (2.1)–(2.5) can be

represented in the form of a variational principle. Indeed, according to the theorem a

domain Ω solves the free boundary problem (2.1)–(2.5) if and only if it minimizes the

non-negative functional defined by the formula

Λ (Ω) = inf
MD

ID (Ω, ·) − sup
MN

IN (Ω, ·) ,

and the minimum is equal to 0. In this case, the pressure field p(·) and water flux q(·) are

the minimizer and the maximizer of ID (Ω, ·) and IN (Ω, ·) respectively.

It is worth making a comment on possible extensions of this result to problems with

other types of the boundary conditions on the boundary of the porous domain B in

place of equations (2.4) and (2.5). In many applications to groundwater flows with a free

boundary the following relations on a part of ∂B are imposed

p = 0, q · n � 0, (2.7)

where n stands for the outer normal to the fixed boundary ∂B. This is called the outflow

condition. The physical reasons for it are presented in [22] and [23]. This condition is

imposed on the boundary of porous medium which is in contact with open space (occupied

by air). In particular, it is used in [9] for the dam problem on the upper boundary of the

dam. With some changes in definitions it is possible to modify the generating functional

Λ (Ω) for problems with the outflow condition on a part of ∂B. Namely, conditions p = 0

and q · n � 0 on the outflow part of ∂B should be involved into the definitions of sets

MD and MN respectively. Then the same expressions can be used for the functionals ID ,

IN and Λ if the function P (·), which generates the Dirichlet boundary condition on ∂BD ,

equals zero on the outflow part of ∂B.

Another example of boundary condition relates to the process of water withdrawal

from the surface of the porous domain. This condition reads

p � 0, 0 � q · n � �, (� − q · n) p = 0,

where the parameter � > 0 stands for the maximal value of accessible discharge. This

condition on a part of ∂B can be taken into account in the variational principle if

the definitions of MD and MN are endowed with the additional restrictions p � 0 and

0 � q · n � � respectively on this part of the boundary. Then the expressions for

the functionals are maintained if the functions P (·) and Q(·), which generate boundary

conditions on the rest of ∂B, satisfy equalities P = 0 and Q · n = � on this part of the

boundary.

3 Some examples of existence and non-existence

In this section, some explicit examples are presented to show how the variational principle

can be used in studies of the free boundary problem with respect to its solvability. In

example problems the fixed domain B is assumed to be the unit square [0, 1]× [0, 1] ⊂ R2,

and coordinates in R2 are denoted by x and y. The vector of external force is taken in the
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Figure 1. Examples of free boundary problems with multiple solutions.

form g = (0,−1), and the matrix of Darcy coefficients K = k I is supposed to be isotropic

and uniform.

Conditions (2.1)–(2.5) in general do not provide uniqueness for the free boundary

problem. This is noted in [7] and [9] in relation with the dam problem. Two examples

with multiple solutions are shown in Figure 1. Equality Λ(Ω) = 0 holds in both cases. It

can be established by straightforward substitution of the solutions into expressions for

functionals ID (Ω, p) and IN (Ω, q).

In the first problem, the top of the square stands for the Dirichlet boundary set

∂BD = [0, 1]×{1}. Both boundary functions, P and Q, are zero. Then for any h, 0 < h < 1,

the domain Ω = [0, 1] × [0, h] solves the free boundary problem. The corresponding water

flux and pressure field are given by expressions q(x, y) = (0, 0) and p(x, y) = max{0, h−y}.
Boundary functions P and Q in the second problem are still zero, but the Dirichlet

boundary set includes the bottom of the square, as well as its top, namely, ∂BD =

[0, 1] × {0, 1}. Then for any measurable subset l ⊂ [0, 1] the domain Ω = l × [0, 1] is a

solution component for the problem. In this case the pressure field p(x, y) is equal to zero

in the square, water flux q = (0,−k) in Ω and q = (0, 0) in B\Ω.

A more valuable example is shown in Figure 2. In this problem, the Dirichlet boundary

set ∂BD = [0.1]× {0} is the bottom of the square, P (x, y) = 0 and Q(x, y) = (0,−R), where

R is a given constant. Darcy tensor K = kI is still assumed isotropic and uniform. The

problem describes, for instance, the process of water flow from land surface to water table.

Then R specifies the water recharge. All possible solutions of this problem are described

in the following proposition.

Proposition 3.1

(1) If R � k then the problem has a unique solution Ω = B, q(x, y) = (0,−R), p(x, y) =

y
(
R/k − 1

)
;

(2) if R = 0 then the only solution is Ω = ∅, p ≡ 0, q ≡ (0, 0);

(3) if R < 0 then the problem has no solutions, and inf Λ(Ω) > 0;

(4) in the range 0 < R < k the problem has no solutions, Λ(Ω) > 0 for any Ω ⊂ B, but

inf Λ(Ω) = 0.
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Figure 2. Example problem of water infiltration with given recharge (left) and a minimizing

sequence of subsets (right).

Items 1–3 are not too informative. They are presented here for the sake of completeness.

The most significant result is given in item 4. The complete proof of the proposition is

given in the Appendix. Here, we establish the equality inf Λ(Ω) = 0 under the conditions

of item 4. An example of a minimizing sequence Ωε ⊂ B for which limΛ(Ωε) = 0 as ε → 0

is shown in Figure 2 on the right. For any ε, ε−1 ∈ N, the subset Ωε includes the horizontal

stripe [0, 1] × [1 − ε, 1] and the set

{
(x, y) ∈ B : |x − ε(i − 1/2)| � εR/2k, i = 1, . . . , ε−1

}
,

which consists of thin vertical fibres distributed with period ε along the horizontal

coordinate axis.

To verify the fact that Ωε is the minimizing sequence, let us construct comparison

functions pε ∈ dom ID (Ωε, ·) and qε ∈ dom (Ωε, ·) in order to obtain an appropriate upper

estimate for the value of Λ (Ωε). A suitable choice for the water pressure field is pε(x, y) ≡ 0.

The straightforward substitution of this function into the expression for ID (Ωε, ·) results

in the equality ID (Ωε, pε) = R/2 + O(ε).

For the flux field let us set qε(x, y) = 0 for all (x, y) ∈ B\Ωε and qε(x, y) = (0,−k) if

y � 1 − ε and (x, y) ∈ Ωε. Thus, the comparison function qε is defined in the square B

everywhere besides the stripe [0, 1] × [1 − ε, 1]. The natural extension of this piecewise

constant vector field to the stripe does not satisfy the desired boundary condition on the

top of the square. The stripe is included into Ωε in order to match small-scaled oscillations

of the vector field qε in the interior zone of B with constant boundary flux through the

top.

A convenient correcting function can be taken in the form ∇ϕε where ϕε(x, y) is a

harmonic function in the stripe with the relevant value of normal derivative at the

boundary. Compatibility conditions for existence of this function are provided by the fact

that the flux of qε through the lower border of the stripe [0, 1] × {1 − ε} is equal to the

flux of boundary vector Q through the rest of the stripe’s boundary. Then the extension

of qε by ∇ϕε is an admissible comparison function for functional IN (Ωε, ·) because it is

divergence-free in B and satisfies the desired boundary conditions.

It is easy to verify by means of rescaling that the L2-norm of ∇ϕε is sufficiently

small, and the contribution of the corrector to the value of IN (Ωε, ·) is of order ε.
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Then the substitution of the extended comparison field qε into the expression for this

functional provides the equality IN (Ωε, qε) = R/2 + O(ε). Finally, this is followed by the

relation

Λ (Ωε) � ID (Ωε, pε) − IN (Ωε, qε) = O(ε).

Therefore, limε→0 Λ (Ωε) = 0.

The presented example demonstrates that the free boundary problem can be unresolv-

able even if inf Λ(·) = 0. Minimizing sequences Ωε can have small-scale structure in the

entire B or locally, so the limiting set Ω does not exist. This suggests the idea of involving

such small-scaled sequences in the domain of functional Λ(·). The lowest value of the

extended functional would be attainable in more cases, so the solvability of the problem

could be established with more generality. An appropriate extension is developed in the

next section.

4 Relaxed free boundary problem

Let S(B) be the family of all measurable functions on B with values in [0, 1]. Being

endowed with weak topology of the space L2(B), the family S(B) is a compact set. Any

measurable domain Ω ⊂ B can be identified with its indicator 1(Ω, ·) : B → {0, 1}, and

1(Ω, ·) ∈ S(B). In this sense, the set S(B) is wider than the set of measurable subsets of B.

It is easy to verify that the set of indicators on B is weakly dense in S(B). This section is

aimed at the generation of a lower semi-continuous regularization of Λ(·) which can be

formally described by the expression

Λ̃(s) = inf
{

lim inf
ε→0

Λ (Ωε) : 1 (Ωε, ·) → s(·) ∈ S(B) weakly
}
. (4.1)

Note that, since B is a bounded domain and functions s(·) ∈ S(B) are uniformly bounded,

the weak convergence in L2(B) for sequences from S(B) is equivalent to their weak

convergence in L1(B) or ∗-weak convergence in L∞(B). Thus, the weak convergence in

L2(B) for indicators in equation (4.1) is chosen for the sake of definiteness. The regularized

functional Λ̃(·) in equation (4.1) is lower semi-continuous on the compact set S(B) with

respect to the weak topology. Therefore, in contrast to Λ(·), it attains its minimal value

due to Weierstrass theorem, and this value is equal to inf Λ(Ω). For instance, in the

example problem which is presented by item 4 of Proposition 3.1, the minimum of Λ̃(·)
is provided by the function s(·) ≡ R/k because it is the weak limit of 1(Ωε, ·) for the

minimizing sequence of domains Ωε shown in Figure 2.

Equality (4.1) implies that if Ω is a minimizer of Λ(·), then Λ̃(1(Ω, ·)) = Λ(Ω). Below

this equality is proved for any measurable Ω ⊂ B. In this sense the regularized functional

Λ̃(·) is an extension of Λ(·).
If the minimum value of Λ̃(·) equals zero, then its minimizers s(·) ∈ S(B) can be

regarded as relaxed solutions to the free boundary problem. The minimizing function s(·)
on B may be interpreted as water saturation of the porous medium. Thus, the relaxed

solution splits the container B into wet, dry and partially saturated zones where s(·) = 1,

s(·) = 0 and 0 < s(·) < 1 respectively.
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In order to represent the relaxed problem in a more explicit form, let us introduce a

functional ĨD(s, ·) : MD → R ∪ {+∞} defined by the formula

ĨD(s, p) =

∫
B

[
Q · (∇p − ∇P ) +

s

2
K (g − ∇p) · (g − ∇p)

]
dx,

if functions s ∈ S(B) and p ∈ MD satisfy the equality

(1 − s(x)) p(x) = 0 a.e. on B; (4.2)

otherwise let us set ĨD(s, p) = +∞. Relation (4.2) can be written briefly as s(·) ∈ H(p(·))
where H(·) denotes the multi-valued Heaviside step function.

Analogously, let ĨN(s, ·) : MN → R ∪ {−∞} be defined by the formula

ĨN(s, q) =

∫
{x: s(x)>0}

[
(g − ∇P ) · q − 1

2s
K−1q · q

]
dx,

on the subset of vector fields q ∈ MN satisfying the relations

∫
{x: s(x)>0}

q2

s
dx < ∞ and q(x) = 0 if s(x) = 0; (4.3)

and ĨN(s, q) = −∞ on the remaining part of MN .

The set of pressure fields p ∈ MD with ĨD(s, p) < +∞ is denoted by dom ĨD(s, ·), and

notation dom ĨN(s, ·) stands for the set of fluxes q ∈ MN satisfying conditions (4.3).

If dom ĨD(s, ·) is not empty, then the existence and uniqueness of the minimizer of

ĨD(s, ·) are provided by coerciveness and strong convexity of the functional. Analogously,

if dom ĨN(s, ·)� ∅ then ĨN(s, ·) attains its maximal value, and the maximizer is unique.

Functionals ĨD(s, ·) and ĨN(s, ·) take the same values as ID(Ω, ·) and IN(Ω, ·) respectively

if s(x) is the indicator of Ω. In this sense they are extensions of the latter two. The main

property of the extended functionals is given in the following theorem.

Theorem 4.1 The relation

ĨN(s, q) � ĨD(s, p),

holds for any s ∈ S(B), p ∈ MD and q ∈ MN . The equality

ĨN(s, q) = ĨD(s, p),

is satisfied if and only if the following equation holds

q(x) = s(x)K(x) (g(x) − ∇p(x)) , (4.4)

almost everywhere on B, and p ∈ dom ĨD(s, ·).

The proof is omitted because it is nearly the same as the proof of Theorem 2.2.

As a natural generalization of Definition 2.1, the relaxed solution to the free boundary

problem can be defined as follows.
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Definition 4.2 Functions s(·), p(·) and q(·) on B solve the relaxed free boundary problem if

s ∈ S(B), p ∈ dom ĨD(s, ·), q ∈ MN and the relaxed form of Darcy law (4.4) holds almost

everywhere.

Note that the relation q ∈ dom ĨN(s, ·) is not mentioned as a condition of Theorem 4.1

or Definition 4.2. It is satisfied automatically if the relaxed version of Darcy law equation

(4.4) holds.

Let us define a functional Λ̃(·) on S(B) by the formula

Λ̃(s) = inf
MD

ĨD(s, ·) − sup
MN

ĨN(s, ·).

Then Theorem 4.1 implies that a function s ∈ S(B) solves the relaxed free boundary

problem if and only if it provides zero minimal value of the extended functional Λ̃(·). The

pressure field and water flux for this solution are the minimizer and the maximizer of the

extended functionals ĨD(s, ·) and ĨN(s, ·) respectively.

The consistency of this formula for the extended functional with the former expression

(4.1) for the regularized one is the straightforward consequence of the following two

propositions.

Proposition 4.3 Let S(B) ⊂ L2(B), MD ⊂ W 1,2(B) and MN ⊂ (L2(B))d be endowed with

corresponding weak topologies. Then the functionals ĨD(s, p) and inf ĨD(s, ·) are lower semi-

continuous on S(B) × MD and S(B) respectively. Analogously, ĨN(s, q) and sup ĨN(s, ·) are

upper semi-continuous on S(B) × MN and S(B).

Proposition 4.4 For any s ∈ S(B), p ∈ MD and q ∈ MN it is possible to construct sequences

Ωε ⊂ B, pε ∈ MD and qε ∈ MN with the following properties:

(1) 1 (Ωε, ·) → s(·), pε(·) → p(·) and qε(·) → q(·) weakly as ε → 0;

(2) ĨD (s, p) = limε→0 ID (Ωε, pε);

(3) ĨN (s, q) = limε→0 IN (Ωε, qε).

Proofs of these two propositions are given in the Appendix. Proposition 4.3 guarantees

that the extended functional Λ̃(·) does not exceed the expression on the right of equality

(4.1). On the other hand, Proposition 4.4 is followed by the relations

inf
MD

ĨD (s, ·) � lim
ε→0

inf
MD

ID (Ωε, ·) and sup
MN

ĨN (s, ·) � lim
ε→0

sup
MN

IN (Ωε, ·) ,

for the sequence Ωε which is given by the proposition. Accounting for semi-continuity

results, these relations imply equality (4.1) for the extended functional Λ̃(·). Thus, it is

equal to the lower semi-continuous regularization of Λ(·).
The above construction provides existence of a saturation field s ∈ S(B) that minimizes

the extended functional Λ̃(·). However, this is still not a solution for the relaxed free

boundary problem because the latter implies that the minimum should be equal to zero.

The following proposition describes a sufficient solvability condition for the problem

under consideration.

https://doi.org/10.1017/S0956792515000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000182


Solvability of free boundary problems 833

Proposition 4.5 If the flux through Neumann part ∂BN of the fixed boundary is non-positive

in the sense that ∫
B

Q · ∇ϕdx � 0, (4.5)

for any ϕ(·) � 0, ϕ ∈ W
1,2
0 (B, ∂BD), then infS (B) Λ̃(s) = 0.

This proposition is a straightforward consequence of Proposition 5.1 and Theorem 5.2

from the next section. Relation (4.5) suggests that Q ·n � 0 on ∂BN if n is the outer normal

to the boundary of B. This solvability condition is not necessary but it covers a reasonably

wide class of free boundary problems. The example given in item 3 of Proposition 3.1

demonstrates that the presented sufficient condition is not just a technical one.

The relaxed solutions for the free boundary problem turn out to be the same as the

weak solutions introduced by Alt [1] and Brézis et al. [7] (see also [9], Chapter 4), except

for some details relating to the choice of boundary conditions on ∂B. Accounting for the

settings and notation of the present paper, these weak solutions can be defined as follows.

A pair of functions p ∈ MD and s ∈ S(B) is called a weak solution to the problem under

consideration if

s ∈ H(p) and

∫
B

[K (sg − ∇p) − Q] · ∇ϕdx ≡ 0, (4.6)

for any ϕ ∈ W
1,2
0 (B, ∂BD). It is clear that the pair (s, p) is a weak solution in the sense

of definition (4.6) if the triplet (s, p, q) solves the relaxed problem. Thus, Theorem 4.1

provides a representation of the weak solution components, s and p, as the minimizers of

functionals Λ̃(·) and ĨD(s, ·).
The relaxed form of the free boundary problem is closely related to the groundwater

flow model introduced by Green and Ampt [13] (see also [18] and [10]). In the stationary

case it can be represented in the form of relations

p � 0, ∇ · [γ(s)K (g − ∇p)] = 0, s ∈ H(p), (4.7)

where γ(·) is a given monotone mapping from [0, 1] onto [0, 1] which corresponds physically

to the relative permeability of the porous medium. The inclusion s ∈ H(p) in this model is

the extreme form of the capillary relation between pressure and saturation. In physically

based models of groundwater flows this relation is a monotone continuous mapping from

(−∞,+∞) to [0, 1] which accounts for capillary forces and involves the capillary rise as

a parameter. If this parameter is small compared to the scale of length in the problem

under consideration, then the Heaviside step seems to be a reasonable approximation of

the realistic capillary relation.

If γ(s) ≡ s, then this model with appropriate boundary conditions on ∂B coincides with

the relaxed form of the problem under consideration. In applications γ(·) is determined in

experiments [16] or by means of numerical simulations of flows on the scale of pores [26].

The qualitative behaviour of this function depends on wettability of the liquid. Usually

the function γ(s) on the interval {s : 0 < γ(s) � 1} is concave for nonwetting liquids

and convex otherwise. As far as the starting problems (2.1)–(2.5) does not account for

wettability effects, the relation γ(s) ≡ s in its relaxed form is a naturally occurring result of

the procedure of lower semi-continuous regularization. The stationary version of Green
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and Ampt model can be taken for the relaxed one even if γ(s) � s because the inclusion

s ∈ H(p) in (4.7) implies the relation γ(s) ∈ H(p). In this case, the physical interpretation

of the variable s must be switched from water saturation to the relative permeability.

5 Approximation of the free boundary by a capillary fringe

Solvability of the relaxed problem under consideration is studied below by means of the

approach developed by Alt [1] and Brézis et al. [7], where existence of weak solutions

is established. This approach is based on an approximation of the weak version of the

problem by a family of degenerate elliptic problems in the fixed domain B. The boundary

conditions imposed on ∂B in these studies, however, were slightly different from equations

(2.4) and (2.5). Namely, the Neumann part of the fixed boundary, ∂BN , was assumed to

be impermeable and, in addition, a part of the remaining boundary was equipped with

outflow condition (2.7). These settings correspond to applications to the dam problem.

Under condition (2.4) with Q · n � 0 existence of weak solutions is not guaranteed as

demonstrated by the counterexample from item 3 of Proposition 3.1. The choice of relation

(2.4) as a boundary condition is partially motivated by a wish to present an example of

non-existence.

For any h > 0 let us define functions p → Θ(h)(p) and p → U(h)(p) of a non-negative

variable p � 0 by the formulas

Θ(h)(p) = min{1, p/h} and U(h)(p) =

∫ p

0

Θ(h)(p
′)dp′.

Then let us consider the following elliptic problem for a non-negative function p(·) on B:

∇ · q = 0, q(·) = θK (g − ∇p) , θ(·) = Θ(h)(p), (5.1)

with boundary conditions (2.4) and (2.5) for q(·) and p(·).
Being extended by zero for all p < 0, the function Θ(h)(p) is a regular approximation

from below of Heaviside step-function H(p) as h → 0. For a fixed value of h > 0 problem

(5.1) conforms to a physical model for steady groundwater flows which accounts for

capillary forces. According to this model the flow domain includes, besides wet and dry

zones, a subdomain {x : 0 < θ(x) < 1} which is called the unsaturated zone or capillary

fringe. The models of this type with various empirical relations between θ and p in the

place of θ = Θ(h)(p) were introduced for unsaturated flows by Richards ( [21], see also [6],

Chapter IX). The Richards models of subsurface flows involve more physical parameters

than the free boundary problem (2.1)–(2.5). This is a serious disadvantage with respect

to some engineering applications. However, they are better suited for analysis. A lot of

mathematical and numerical approaches have been developed in relation to Richards

equations (see [3, 20, 22] and references therein). This is a good reason to use them as

approximations for the problem (2.1)–(2.5).

The subject of the current section is an asymptotic analysis of problem (5.1) as h → 0.

It will be shown that solutions for equation (5.1) are close, in some sense, to solutions for

the main problem under considerations (2.1)–(2.5). Physically, parameter h is responsible

for the thickness of the capillary fringe. One could expect that in the limit the fringe
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degenerates into the free boundary between dry and wet zones. In reality the situation

is more complicated. First of all, the solutions of boundary value problems for equation

(5.1) are not unique in general. Also, the asymptotic behaviour of solutions for h → 0 can

depend on the particular form of the capillary approximation. At last, the unsaturated

zone does not necessarily collapse as h → 0 into a set of zero Lebesgue measure. In

this respect, an explicit counterexample can be presented on the base of the particular

problem which is considered in item 4 of Proposition 3.1. Hence the problem (2.1)–(2.5)

itself can not be a candidate for the limiting one. The true limit behaviour of the solutions

is described by its relaxed version given by Definition 4.2.

Boundary condition (2.5) in relation to equations (5.1) needs a rigorous interpretation.

Since Θ(h)(p) vanishes at p = 0, solutions p(·) to this problem do not necessarily belong

to the space W 1,2(B). In order to eliminate the degeneracy it is reasonable to change the

sought variable in the following way: p(·) → u(·) ≡ U(h)(p(·)). Then problem (5.1) can be

interpreted precisely as follows. A measurable function p(·) � 0 on B solves the problem

if the function u(·) = U(h)(p(·)) belongs to W 1,2(B), meets Dirichlet boundary condition

on ∂BD in the sense that u − U(h)(P ) ∈ W
1,2
0 (B, ∂BD) and satisfies the integral identity

∫
B

K
(
α(h)(u)g − ∇u

)
· ∇ϕdx =

∫
B

Q · ∇ϕdx, (5.2)

for any ϕ ∈ W
1,2
0 (B, ∂BD) where α(h)(u) stands for the function Θ(h)(p) expressed in terms

of u, i.e. α(h)

(
U(h)(p)

)
≡ Θ(h)(p).

For the family of elliptic problems (5.1) some auxiliary properties of its solutions are

formulated as follows.

Proposition 5.1 Any solution p(x) to problem (5.1) satisfies inequalities

∫
B

q · q dx � Const,

∫
B

∇U(h) (p) · ∇U(h) (p) dx � Const, (5.3)

where the constants are independent of h. Furthermore, if the boundary function Q satisfies

relation Q · n � 0 on ∂BN in the sense of definition (4.5), then problem (5.1) has at least

one solution.

Proof Estimates (5.3) are obtained in a standard way by substituting ϕ = U(h)(p) −
U(h)(P ) ∈ W

1,2
0 (B, ∂BD) as a test function into identity (5.2).

In order to prove sufficiency of condition (4.5) for the solvability of problem (5.1),

let us extend the function α(h)(u) from identity (5.2) by zero for all u < 0. As soon as

the restriction u(·) � 0 is disregarded, the non-degenerate elliptic problem associated

with identity (5.2) is solvable with respect to u(x). This follows from coerciveness of

the corresponding operator and boundedness of the continuous function α(h)(·) (see,

for instance, [15], Chapter IV, Section 9). It suffices to prove existence of non-negative

solutions u(·) � 0 for the extended problem under condition (4.5). Then the restitution

of the non-negative variable p by the formula u = U(h)(p) will provide solvability of the

problem (5.1) with respect to p(x).
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For an arbitrary solution u = u(·), let us substitute into identity (5.2) the cut-off function

u−(x) = min{u(x), 0} in place of ϕ(x). Since the boundary function P (x) is assumed to be

non-negative, then u−(·) ∈ W
1,2
0 (B, ∂BD) is an admissible test function. This results in the

following inequality:

−
∫
B

K∇u− · ∇u−dx =

∫
B

Q · ∇u−dx.

The right-hand side here is non-negative due to condition (4.5) for the boundary function

Q. Therefore, ∇u− ≡ 0 on B; this implies that u− ≡ 0 thanks to Poincaré inequality (2.6),

and u(x) � 0. This completes the proof of the proposition. �

The goal of this section is the following approximation result.

Theorem 5.2 Let ph(·) be a family of solutions of Richards problem (5.1) for some sequence

h → 0. Then, over a subsequence h → 0,

ph → p in L2(B) strongly and p ∈ W 1,2(B),

qh = K
(
Θ(h)(ph)g − ∇U(h)(ph)

)
→ q in (L2(B))d weakly,

θh = Θ(h)(ph) → s in L2(B) weakly.

The functions s, p and q solve the relaxed free boundary problem in the sense of Definition

4.2.

Proof Uniform estimates (5.3) and uniform boundedness of θh on B are followed by

the existence of a subsequence h → 0 which provides weak convergence of θh in L2(B),

weak convergence of qh in (L2(B))d and weak convergence of U(h)(ph) in W 1,2(B) over

this subsequence. Let the limiting functions be s, q and p respectively. Compactness of

embedding W 1,2(B) ⊂ L2(B) suggests that the convergence of U(h)(ph) to p is strong in

L2(B). The definition of U(h)(·) results in the inequalities U(h)(ph) � ph � U(h)(ph) + h/2.

Hence p is the strong limit of ph in L2(B).

It is evident that the limiting function s on B satisfies the inequalities 0 � s(x) � 1.

Therefore, s ∈ S(B). Due to identity (5.2) functions qh(·) for any h satisfy relation

qh − Q ∈ E0 (B, ∂BN). Since E0 (B, ∂BN) is a closed subspace of (L2(B))d, then the same

inclusion holds for the limiting function q, i.e. q ∈ MN . Furthermore, the inequality ph � 0

and Dirichlet boundary condition U(h)(ph) − U(h)(P ) ∈ W
1,2
0 (B, ∂BD) hold for any h > 0,

hence p − P ∈ W
1,2
0 (B, ∂BD) and p ∈ MD .

Note that p is also the weak limit in W 1,2(B) of cut-off functions p′
h = max{ph −h, 0} ≡

max{U(h)(ph) − h/2, 0} because |∇p′
h| � |∇U(h)(ph)| a.e. on B. Due to the definition of the

functions p′
h, the following equality holds for any h > 0 everywhere on B

(1 − Θ (ph(x))) p′
h(x) = 0.

The multipliers on the left of this equality converge in L2(B) weakly and strongly to

1 − s and p respectively. Consequently, the expression itself converges weakly in L1(B)

to the product of the limiting functions. This results in equality (4.2) which means that

p ∈ dom ĨD(s, ·).
To complete the proof of the theorem it suffices to establish the relaxed Darcy equation

(4.4) for the limiting functions. Since K−1qh = θhg − ∇U(h)(ph) by definition, then one can
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take the weak limit in (L2(B))d of both sides and obtain the equality K−1q = sg − ∇p.
Compared with equation (4.4) the last term on the right of this equality has no multiplier

s. However, the fact that p(x) = 0 a.e. on subdomain {x ∈ B : s(x) < 1} ⊂ B suggests that

∇p(·) = s(·)∇p(·) almost everywhere on B. Thus, the relaxed Darcy equation is established,

and the proof of the theorem is completed. �

Concluding remarks

As can be seen from the above, the presented approach allows us to give a variational

formulation for the free boundary problem that describes stationary groundwater flows

with phreatic surfaces. It is proved that any solution to the problem, which includes a

flow domain Ω, a water flux q and a pressure field p, is a minimizer of some functional.

This functional is introduced in an explicit form, and its minimal value over q and p is

denoted by Λ(Ω). Then the existence of solutions for the problem under consideration

is equivalent to the fact that the minimal value of Λ(·) is attainable and equals zero.

This representation of the free boundary problem provides opportunities to use standard

methods of the calculus of variations in studies of particular problems with respect to

existence or non-existence of solutions.

The variational approach makes it possible to introduce weak solutions to the free

boundary problem as the minimizers of the lower semi-continuous regularization of the

generating functional Λ(Ω). To this end the set of admissible domains is endowed with a

natural weak topology, and the functional Λ(Ω) is extended onto the closure of this set.

The latter is represented by water saturation fields ranging from zero to one. Then it is

proved that the extended functional is the lower semi-continuous regularization of Λ(Ω).

Another way to introduce weak solutions for the free boundary problem is based on

the approach developed by Alt [1] and Brézis et al. [7]. It consists of an approximation

of the problem by a sequence of models for unsaturated groundwater flows accounting

for capillary forces. These flows are described by degenerate elliptic equations in the

entire porous medium. It is proved that the no-capillary limits of the solutions for the

approximating problems correspond to the same sort of relaxed solutions as defined

through the variational principle. This result gives an additional physical interpretation

for the weak solutions. Another outcome is a sufficient solvability condition for the relaxed

free boundary problem.
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Appendix A

Proof of Proposition 3.1

Let us denote the measure of Ω by |Ω|. If |Ω| = 1, i.e. Ω = B a.e., then the unique

minimizer of ID (Ω, ·) and the unique maximizer of IN (Ω, ·) can be found explicitly. They
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are given by expressions p(x, y) = max{y(R/k − 1), 0} and q(x, y) = (0,−R) respectively.

Then straightforward calculations provide the equality Λ(Ω) = 0 if R � k or the inequality

Λ(Ω) > 0 if R < k.

If |Ω| = 0, then Λ(Ω) = +∞ for all R � 0 because in this case dom IN (Ω, ·) = ∅.

If |Ω| = 0 and R = 0 then dom ID (Ω, ·) = {0} and dom IN (Ω, ·) = {0}. In this case,

the unique minimizer of ID (Ω, ·) is p(x, y) ≡ 0, and the unique maximizer of IN (Ω, ·) is

q(x, y) ≡ (0, 0). Hence Λ(Ω) = 0.

Thus, trivial sets Ω = B and Ω = ∅ solve the free boundary problem if and only if

the value of parameter R corresponds to items 1 and 2 of the proposition respectively.

To continue the proof of the proposition it is necessary to check that the problem under

consideration has no solutions if 0 < |Ω| < 1 regardless the value of R. To this end, let us

establish the following estimates:

ID (Ω, p) � |Ω| max

{
k

2
, R − R2

2k

}
, (A 1)

IN (Ω, q) � R − R2

2k|Ω| . (A 2)

The value of ID (Ω, p) can be estimated using convexity arguments. In this respect, the

inequality

1/2K (g − ∇p) · (g − ∇p) � ξ · (g − ∇p) − 1/2K−1ξ · ξ,
holds for any ξ ∈ R2. Therefore

ID (Ω, p) �

∫
B

Q · ∇p dx dy +

∫
Ω

(
ξ · (g − ∇p) − 1

2
K−1ξ · ξ

)
dx dy =

=

∫
Ω

(
ξ · g − 1

2
K−1ξ · ξ

)
dx dy +

∫
B

(Q − ξ) · ∇p dx dy.

The last equality holds due to the fact that ∇p(·) = 0 a.e. on the set B\Ω since p(·) = 0

there.

We set ξ = (0,−R′) for an arbitrary R′ � R. Then the last term on the right is

non-negative for any p ∈ MD due to the specific structure of boundary conditions in

the problem under consideration, and the first one equals |Ω|
(
R′ − 1/2 k−1R′2

)
. Then

maximization of this expression over all R′ � R proves estimate (A 1).

In order to establish estimate (A 2), we use the following equality for any divergence-free

vector field q =
(
qx, qy

)
∈ MN ∫

Ω

qydxdy = −R. (A 3)

It follows from the definition of MN .

The value of IN (Ω, q) satisfies the relation

IN (Ω, q) � −
∫
Ω

[
qy +

1

2k

(
q2
x + q2

y

)]
dxdy, (A 4)

where equality takes place if and only if q ∈ dom IN (Ω, ·). The maximum value of the
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expression on the right-hand side of relation (A 4) over all q ∈ (L2(Ω))2 can be calculated

explicitly if the differential equality ∇·q = 0 and boundary conditions for q are disregarded

except for constraint (A 3) which is their consequence. Indeed, condition (A 3) can be taken

into consideration by means of a Lagrange multiplier, then the maximization problem

is reduced to an algebraic one for the expression under the integral sign. The desired

maximum is equal to the right-hand side of inequality (A 2). The corresponding maximizer

is q′ =
(
0,−R/|Ω|

)
. This provides estimate (A 2) because the maximum is taken over a

wider set of vector fields than MN .

Note that if R � 0, then the non-strict inequality in relation (A 2) can be replaced by

the strict one. Indeed, the equality in relation (A 2) holds if and only if q ∈ dom IN (Ω, ·) is

the maximizer of IN (Ω, ·) and q(x, y) = q′(x, y) in Ω because the expression for IN (Ω, q)

is strictly concave with respect to q. This suggests that the extension of q′ by zero from

Ω to B is divergence-free and satisfies Neumann boundary conditions (2.4) on ∂BN . Since

the horizontal component of q′ is zero, the extension is divergence-free if and only if

its vertical component does not depend on y. This is not compatible with the boundary

condition on the top of the square if R� 0 and |Ω| � 1.

Let (Ω, p, q) be a solution for the free boundary problem. If R � k, then inequalities

(A 1) and (A 2) provide the following estimate:

Λ(Ω) = ID (Ω, p) − IN (Ω, q) � |Ω|
(
R − 1

2k
R2

)
− R +

1

2k|Ω|R
2.

Here, the expression on the right is positive for all values of |Ω|, 0 < |Ω| < 1. This

completes the proof of item 1 of the proposition concerning the uniqueness of the trivial

solution.

If R < k, then the estimate for Λ(·) reads

Λ(Ω) � |Ω|k
2

− R +
1

2k|Ω|R
2.

If R � 0 and 0 < |Ω| � 1, then the right-hand side here is positive, and this completes the

proof of items 2 and 3 of the proposition.

Finally, in the range 0 < R < k the expression on the right is non-negative and attains

zero at |Ω| = R/k < 1. However, the above remark in the proof of inequality (A 2)

suggests that Λ(Ω) > 0 in this case as well. Thus, the solution does not exist. The example

of minimizing sequence Ωε in Figure 2 completes the proof of the proposition. �

Proof of Proposition 4.3

Let sequences sj ∈ S(B) and pj ∈ MD be weakly convergent as j → ∞ to s and p

respectively. In order to prove the lower semi-continuity of ĨD(s, p), it is necessary to

establish the inequality

lim inf
j→∞

ĨD
(
sj , pj

)
� ĨD(s, p).

In this respect, it suffices to consider sequences satisfying the relation pj ∈ dom ĨD(sj , ·).
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In this case the value of ĨD
(
sj , pj

)
is determined by the expression

ĨD
(
sj , pj

)
=

∫
B

[
Q ·

(
∇pj − ∇P

)
+

1

2
K∇pj · ∇pj − K∇pj · g +

sj

2
Kg · g

]
dx.

The quadratic term over ∇pj in this expression is convex, and the sequence of ∇pj
converges weakly in (L2(B))d. Consequently, in the limit as j → ∞ this equality turns into

the relation

lim inf
j→∞

ĨD
(
sj , pj

)
�

∫
B

[
Q · (∇p − ∇P ) +

1

2
K∇p · ∇p − K∇p · g +

s

2
Kg · g

]
dx.

It remains to verify that the right-hand side here is equal to ĨD(s, p). This is equivalent

to the relation p ∈ dom ĨD(s, ·). Since pj ∈ MD for any j and MD is a closed convex subset

of W 1,2(B), then the limiting function p ∈ MD . In accordance with the assumptions made

above, pj ∈ dom ĨD(sj , ·). This implies that the equality
(
1 − sj(x)

)
pj(x) = 0 holds a.e. on

B. The multipliers here converge in L2(B) weakly to 1 − s and strongly to p respectively.

Therefore, (1 − s)p ≡ 0, i.e. p ∈ dom ĨD(s, ·). Thus, the lower semi-continuity of ĨD(s, p) is

proved.

To prove that functional s → infMD
ĨD(s, ·) is lower semi-continuous, let us suppose, for

a proof by contradiction, the existence of a sequence sj ∈ S(B) which converges weakly

to some s and satisfies the inequalities

inf
MD

ĨD(sj , ·) � Const < ĨD(s, ·), (A 5)

where Const < +∞ is independent of j. Then dom ĨD(sj , ·) � ∅ for any j. Let pj ∈
dom ĨD(sj , ·) be the minimizer of ĨD(sj , ·). The first inequality (A 5) provides boundedness

of the sequence pj in W 1,2(B). Therefore, it is possible to find a weakly convergent

subsequence pj → p. Since the lower semi-continuity of ĨD(·, ·) in both variables is proved,

this implies the relation

lim inf
j→∞

ĨD
(
sj , pj

)
� ĨD(s, p).

This is in contradiction with assumption (A 5). Thus, infMD
ĨD(s, ·) is a lower semi-

continuous functional with respect to s.

To prove the upper semi-continuity of ĨN(s, q) we suppose, for a contradiction, the

existence of weakly convergent sequences sj ∈ S(B) and qj ∈ MN with the limiting

functions s and q respectively, which satisfy the inequalities

ĨN
(
sj , qj

)
� Const > ĨN(s, q), (A 6)

where Const > −∞ is independent of j. Then qj ∈ dom ĨN(sj , ·) for any j. Therefore, the

value of ĨN(sj , pj) is given by the expression

ĨN
(
sj , pj

)
=

∫
{x: sj (x)>0}

[
(g − ∇P ) · qj − 1

2sj
K−1qj · qj

]
dx.

For any ε, 0 < ε < 1 let us introduce an auxiliary function ϕε(·) : [0, 1] → [ε, 1] by the
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formula ϕε(s) = ε + (1 − ε)s. Since ϕε(s) � s for any s ∈ [0, 1], the following inequality

holds by convexity arguments:

∫
{x: sj (x)>0}

[
1

2sj
K−1qj · qj

]
dx �

∫
B

[
qj · ξ − ϕε(sj)

2
Kξ · ξ

]
dx,

for any ξ ∈ (L∞(B))d. The left-hand side here is bounded as j → ∞ due to the first

inequality (A 6). Then, as a result of sending j to ∞ and taking supremum over all ξ(·)
after that, the last inequality is followed by the relation

lim inf
j→∞

∫
{x: sj (x)>0}

1

2sj
K−1qj · qjdx �

(∫
{x: s(x)=0}

+

∫
{x: s(x)>0}

)[
1

2ϕε(s)
K−1q · q

]
dx.

Therefore, both integrals on the right are bounded uniformly with respect to the small

parameter ε. The value of the function ϕε(s(x)) on the subset {x ∈ B : s(x) = 0} equals ε

identically. Hence, the first integral on the right is equal to zero, and q(x) ≡ 0 on this subset.

This provides the second condition in definition (4.3) of dom ĨN(s, ·). On the remaining

part of B the functions ϕε(s(x)) converge to s(x) > 0 pointwise as ε → 0. Therefore, the

sequence of expressions under the sign of the second integral satisfies conditions of Fatou

theorem. The latter provides that the pointwise limit of these expressions is integrable and

obeys inequality

∫
{x: s(x)>0}

[
1

2s
K−1q · q

]
dx � lim inf

j→∞

∫
{x: sj (x)>0}

1

2sj
K−1qj · qjdx.

This is equivalent to the first estimate in definition (4.3). Therefore, q ∈ dom ĨN(s, ·).
Accounting for the linear in qj and q terms in the expressions for ĨN(sj , qj) and ĨN(s, q),

this inequality can be transformed as follows:

lim sup
j→∞

ĨN
(
sj , qj

)
� ĨN (s, q) .

This is contrary to the second inequality of assumption (A 6). Thus, the upper semi-

continuity of ĨN(·, ·) is proved.

The upper semi-continuity of the functional s → supMN
ĨN(s, ·) can be proved in almost

the same way as the lower semi-continuity for infMD
ĨD(s, ·) is already established, and this

completes the proof. �

Proof of Proposition 4.4

The proof is based on the triangulation procedure which is described at a greater length

in [24]. Everywhere below symbol Δ stands for a simplex in Rd, namely, for a triangle in

R2 or tetrahedron in R3. Families of simplexes are always assumed to be non-degenerate

in the sense that ratios of radii of inscribed and circumscribed balls for all simplexes

are uniformly isolated from zero. Notations E(Δ) and E0(Δ, ∂Δ) are used for the sets of

divergence-free vector fields from (L2(Δ))d and for divergence-free vector fields with the

normal to ∂Δ component equal to zero respectively. Before the proof we want a couple

of lemmas.
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Lemma 1 For any simplex Δ ⊂ B, any constant c, 0 < c � 1, and any vector ξ ∈ Rd it is

possible to find sequences of measurable subsets Ωε ⊂ Δ and vector fields qε(·) ∈ E(Δ), such

that the functions 1(Ωε, ·) and qε(·) are weakly convergent as ε → 0 to c and ξ respectively,

qε(x) = 0 on Δ\Ωε and qε(·) − ξ ∈ E0 (Δ, ∂Δ) for any ε, and

lim
ε→0

∫
Ωε

K−1qε · qεdx =
1

c

∫
Δ

K−1ξ · ξdx.

Proof Without loss of generality it can be assumed that the origin of coordinate system

is strictly inside Δ, and vector ξ is collinear to the last coordinate axis, i.e. ξ = (0, . . . , ξd).

Let a set V ⊂ Rd−1 be periodic with respect to all coordinates, and its (d− 1)-dimensional

volume fraction is equal to c. For a large parameter m ∈ N let us introduce a sequence of

subsets Ω(m) ⊂ Δ by the formula

Ω(m) = {x ∈ Δ : (mx1, . . . , mx(d−1)) ∈ V }.

For m → ∞ these subsets have a small-scaled fibrous structure with fibres directed along

the given vector ξ.

Let q(m)(·) be a vector field in Δ such that q(m)(x) = 0 if x ∈ Δ\Ω(m) and q(m)(x) =(
0, . . . , ξd/c

)
if x ∈ Ω(m). Then sequences Ω(m) and q(m)(·) satisfy all the claims of the

lemma except for the boundary condition q(m)(·) · n = ξ · n on ∂Δ. To match the oscillating

vector fields q(m) with constant fluxes ξ · n on faces of the simplex Δ, let us consider a

smaller simplex Δ(ε) defined by the expression

Δ(ε) = {x ∈ Δ : (1 + ε)x ∈ Δ}.

The boundary layer Δ\Δ(ε) can be used for a desired correction of q(m). To construct an

appropriate extension of q(m)(·) from Δ(ε) to Δ\Δ(ε), let us consider the following auxiliary

elliptic problem in Δ\Δ(ε):

∇ · ∇ϕ = 0, ∇ϕ · n = ξ · n on ∂Δ, ∇ϕ · n = q(m) · n on ∂Δ(ε).

Since both vector fields q(m)(·) and ξ are divergence-free, their total fluxes through ∂Δ(ε)

and ∂Δ respectively are equal to zero. Therefore, the compatibility conditions are satisfied,

and the auxiliary problem has a solution ϕ = ϕ(ε,m) which is unique up to an additive

constant.

Let us write q(ε,m)(x) = q(m)(x) if x ∈ Δ(ε) and q(ε,m)(x) = ∇ϕ(ε,m)(x) if x ∈ Δ\Δ(ε). In

accordance with the above definitions, the extended vector fields q(ε,m)(·) are supported in

subsets Ω(ε,m) =
(
Δ\Δ(ε)

)
∪ Ω(m). They are divergence free in Δ, and q(ε,m) − ξ ∈ E0(Δ, ∂Δ).

For a fixed ε and m → ∞ the traces q(m)(·) · n on ∂Δ(ε) are weakly convergent to

ξ · n in L2(∂Δ(ε)). Since the embedding L2(∂Δ(ε)) ⊂ H−1/2(∂Δ(ε)) is compact, the sequence

m → ∇ϕ(ε,m) · n on ∂(Δ\Δ(ε)) for any fixed ε converges to ξ · n as m → ∞ strongly in

H−1/2(∂(Δ\Δ(ε))). Then from properties of harmonic functions it follows that the sequence

ϕ(ε,m) for a fixed ε is strongly compact in W 1,2(Δ\Δ(ε))/R (i.e. up to a constant), and the

sequence of the gradients ∇ϕ(ε,m) converges strongly to ξ in
(
L2(Δ\Δ(ε))

)d
. Thus, q(ε,m) → ξ

in (L2(Δ(ε)))
d weakly and q(ε,m) → ξ in (L2(Δ\Δ(ε)))

d strongly. This implies that q(ε,m) → ξ
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weakly in (L2(Δ))d as m → ∞. Then we obtain

lim
ε→0

lim
m→∞

∫
Δ

K−1q(ε,m) · q(ε,m)dx =

= lim
ε→0

(∫
Δ\Δ(ε)

K−1ξ · ξdx +
1

c

∫
Δ(ε)

K−1ξ · ξdx
)

=
1

c

∫
Δ

K−1ξ · ξdx,

where the limit m → ∞ is taken first for a fixed ε, and ε tends to zero after that. In

addition, the family of subsets Ω(ε,m) satisfies the equality

lim
ε→0

lim
m→∞

1
(
Ω(ε,m), ·

)
= c,

where convergence with respect to m is weak, and the further limit with respect to ε is

strong in L2(Δ).

Thus, with an appropriate choice of a subsequence m = m(ε) → ∞ as ε → 0, the subsets

Ωε = Ω(ε,m(ε)) and vector fields qε = q(ε,m(ε)) obey all the required properties. This completes

the proof of Lemma 1. �

Lemma 2 Let q(·) be a smooth divergence-free vector field in simplex Δ ⊂ B, i.e. q ∈
E(Δ) ∩

(
C∞(Δ)

)d
, and s(·) be a measurable function on Δ such that δ � s(x) � 1 for some

δ > 0. Then it is possible to construct sequences of subsets Ωε ⊂ Δ and divergence-free

vector fields qε ∈ E(Δ) such that qε(x) = 0 on Δ\Ωε, qε − q ∈ E0(Δ, ∂Δ), functions 1(Ωε, ·)
and qε(·) are weakly convergent to s(·) and q(·) as ε → 0, and

lim
ε→0

∫
Δ

K−1qε · qεdx =

∫
Δ

1

s
K−1q · qdx. (A 7)

Proof Below Δ(ε) ⊂ Δ stands again for the homothetic rescaling of Δ. Let us consider a

partition of Δ(ε) into a large number m ∈ N of smaller simplexes

Δ(ε) =

m⋃
α=1

Δα
(ε,m).

The family {Δα
(ε,m)} is assumed to be a regular triangulation of Δ(ε). Regularity implies that

the maximal diameter of the simplexes tends to zero as m → ∞ and, for any m and α�β,

the intersection Δ
α

(ε,m) ∩ Δ
β

(ε,m) is the empty set or a simplex of a dimension less than d.

For any α = 1, . . . , m let us determine a constant vector ξα(ε,m) which has the same integral

flux through each face of Δα
(ε,m) as the given vector field q(·). This implies d + 1 linear

equalities for d components of the sought vector ξα(ε,m), but the equalities are compatible

since q(·) and ξα(ε,m) are divergence-free in Δα
(ε,m) and, therefore, their total fluxes through

∂Δα
(ε,m) are both equal to zero. Hence vectors ξα(ε,m) are introduced correctly. Then the

piecewise constant function q(ε,m)(·) which is equal to ξα(ε,m) in each simplex Δα
(ε,m) is a

divergence-free vector field on Δ(ε) because the fluxes of q(ε,m)(·) through common faces of

adjoined simplexes are properly adjusted. It is clear that the sequence q(ε,m)(·) converges

to q(·) uniformly on Δ(ε) as m → ∞.
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Let cα(ε,m) be the mean value of s(·) over Δα
(ε,m), and s(ε,m)(·) stand for the aggregated

piecewise constant function which equals cα(ε,m) in each simplex Δα
(ε,m) of the triangulating

family. Then functions s(ε,m)(·) converge to s(·) strongly in L2(Δ(ε)) as m → ∞.

For a new small parameter h and for every simplex Δα
(ε,m) by virtue of Lemma 1 it is

possible to construct sequences of subsets Ωα
(ε,m,h) ⊂ Δα

(ε,m) and vector fields qα(ε,m,h) ∈ E(Δα
(ε,m))

supported in Ωα
(ε,m,h) such that functions 1(Ωα

(ε,m,h), ·) and qα(ε,m,h)(·) converge weakly to cα(ε,m)

and ξα(ε,m) respectively as h → 0, the boundary conditions are satisfied in the form

qα(ε,m,h) − ξα(ε,m) ∈ E0(Δ
α
(ε,m), ∂Δα

(ε,m)), and

lim
h→0

∫
Δα

(ε,m)

K−1qα(ε,m,h) · qα(ε,m,h)dx =
1

cα(ε,m)

∫
Δα

(ε,m)

K−1ξα(ε,m) · ξα(ε,m)dx.

Then, as a result of aggregation of subsets Ωα
(ε,m,h) and vector fields qα(ε,m,h)(·) over all

simplexes Δα
(ε,m), α = 1, . . . , m, one can get sequences of subsets Ω(ε,m,h) = ∪m

α=1Ω
α
(ε,m,h) ⊂ Δ(ε)

and vector fields q(ε,m,h) ∈ E(Δ(ε)) supported in them, which satisfy the equalities

lim
h→0

∫
Δ(ε)

K−1q(ε,m,h) · q(ε,m,h)dx =

∫
Δ(ε)

1

s(ε,m)
K−1q(ε,m) · q(ε,m)dx. (A 8)

Note that the right-hand side here converges to the right-hand side of equality (A 7)

if m → ∞ at first, and ε → 0 after that. This conclusion holds due to the condition

s(·) � δ > 0 of the lemma.

Let us construct a divergence-free extension of vector fields q(ε,m,h)(·) from the scaled

simplex Δ(ε) to the boundary layer Δ\Δ(ε). Since the boundary conditions for q(ε,m,h) · n
and q(ε,m) · n on ∂Δ(ε) are adjusted to each other, the extension may be independent of h.

The desired corrector can be taken in the form ∇ϕ(ε,m), where ϕ(ε,m) is a solution for the

following auxiliary problem in the layer Δ\Δ(ε):

∇ · ∇ϕ = 0, ∇ϕ · n = q · n on ∂Δ, ∇ϕ · n = q(ε,m) · n on ∂Δ(ε).

Compatibility conditions for this Neumann problem are satisfied because the piece-wise

constant vector fields q(ε,m) have the same total flux through ∂Δ(ε) as the given divergence-

free vector field q. Hence the corrector ϕ = ϕ(ε,m) exists, and the extended vector fields

are divergence-free in the simplex Δ. They are supported in Ω(ε,m,h) ∪
(
Δ\Δ(ε)

)
and satisfy

the desired boundary condition on ∂Δ in the form q(ε,m,h) − q ∈ E0(Δ, ∂Δ), where the same

notation q(ε,m,h) is kept for the extended functions.

Since the boundary functions q(ε,m) converge to q on ∂Δ(ε) uniformly as m → ∞, the

sequence of correctors ϕ(ε,m) is compact in W 1,2(Δ\Δ(ε)), and the sequence m → ∇ϕ(ε,m)

converges in (L2(Δ\Δ(ε)))
d strongly to the gradient ∇ϕ(ε) of some harmonic function ϕ(ε)

that satisfies Neumann boundary conditions (∇ϕ(ε) −q)·n = 0 on ∂Δ∪∂Δ(ε). Then standard

integral estimates provide the fact that the L2-norm of ∇ϕ(ε) over the layer Δ\Δ(ε) is not

greater than the L2-norm of q which is, in its turn, converges to zero as ε → 0.

Thanks to the properties of extended vector fields q(ε,m,h), equation (A 8) imply the

equalities

lim
ε→0

lim
m→∞

lim
h→0

q(ε,m,h)(·) = q(·),
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lim
ε→0

lim
m→∞

lim
h→0

1
(
Ω(ε,m,h) ∪ (Δ\Δ(ε)), ·

)
= s(·),

and

lim
ε→0

lim
m→∞

lim
h→0

∫
Δ

K−1q(ε,m,h) · q(ε,m,h)dx =

= lim
ε→0

[∫
Δ\Δ(ε)

K−1∇ϕ(ε) · ∇ϕ(ε)dx +

∫
Δ(ε)

1

s
K−1q · qdx

]
=

∫
Δ

1

s
K−1q · qdx.

To complete the construction of the desired subsets Ωε ⊂ Δ and vector fields qε it

remains to choose appropriate subsequences m = m(ε) → ∞, h = h(ε) → 0 and pose

Ωε = Ω(ε,m(ε),h(ε)) ∪
(
Δ\Δ(ε)

)
, qε = q(ε,m(ε),h(ε)). Thus, Lemma 2 is proved. �

Coming back to the proof of Proposition 4.4, let Bε ⊂ B be the set Bε = {x ∈ B :

dist(x, ∂B) > ε}. Let us introduce a function s(ε)(·) on B by the expressions s(ε)(x) =

max{ε, s(x)} for x ∈ Bε and s(ε)(x) = 1 for x ∈ B\Bε. Since s(ε)(·) bounded away from zero,

dom ĨN(s(ε), ·) = MN and ĨN(s(ε), q) > −∞. In addition, ĨN(s(ε), q) � ĨN(s, q) because the

functional ĨN(s, q) is monotone with respect to s, and s(ε)(·) � s(·).
Any divergence-free vector field q ∈ E(B) can be approximated by a smooth divergence-

free vector function q(ε) ∈ E(B)∩ (C∞(B\∂B))d which satisfies relations q(ε) −q ∈ E0(B, ∂B)

and ∫
B

(
q(ε) − q

)2
dx � ε4.

Then ĨN(s(ε), q(ε)) = ĨN(s(ε), q)+O(ε). Existence of the approximating function q(ε) is justified

as follows. First, for the given q one can take the gradient ∇ϕ of a harmonic function

ϕ such that q − ∇ϕ ∈ E0(B, ∂B). Then it remains to approximate q − ∇ϕ by a smooth

divergence-free vector function with the normal to ∂B component equal to zero. It is

possible to do so because, in accordance with Theorem 1.4 from Chapter 1 of [25], for

a bounded domain B with Lipschitz boundary the subspace E0(B, ∂B) ⊂ (L2(B))d is the

closure of the set of all smooth compactly supported divergence-free vector fields on

B\∂B.

Let a family of simplexes {Δα
(ε,m) ⊂ B, α = 1, . . . , m} be such a regular triangulation of

B that satisfies the relation

Bε ⊂
m⋃

α=1

Δα
(ε,m) ⊂ B,

for any ε > 0 and some m = m(ε) ∈ N. Then, thanks to Lemma 2, for a new small

parameter h it is possible to construct sequences of subsets Ω(ε,m,h) ⊂ ∪m
α=1Δ

α
(ε,m) and vector

fields q(ε,m,h) ∈ E(∪m
α=1Δ

α
(ε,m)) supported in Ω(ε,m,h) such that for any simplex Δα

(ε,m) functions

1(Ω(ε,m,h), ·) and q(ε,m,h)(·) converge weakly as h → 0 to s(ε)(·) in L2(Δ
α
(ε,m)) and q(ε)(·) in

(L2(Δ
α
(ε,m)))

d respectively, q(ε,m,h) − q(ε) ∈ E0(Δ
α
(ε,m), ∂Δα

(ε,m)), and

lim
h→0

∫
Δα

(ε,m)

K−1q(ε,m,h) · q(ε,m,h)dx =

∫
Δα

(ε,m)

1

s(ε)
K−1q(ε) · q(ε)dx.

Let us attach the boundary layer B\∪m
α=1 Δα

(ε,m) to Ω(ε,m,h) for any h and extend the vector

fields q(ε,m,h) to the layer by q(ε). The enlarged sets and extended vector fields are denoted
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by the same symbols Ω(ε,m,h) and q(ε,m,h). Since the boundary conditions for q(ε,m,h) and q(ε)

on the inner boundary of the layer ∂(∪m
α=1Δ

α
(ε,m)) are properly adjusted, the extended fields

are still divergence-free. Also, the weak convergence of 1(Ω(ε,m,h), ·) and q(ε,m,h)(·) to s(ε)(·)
and q(ε)(·) as h → 0 still takes place. In addition, q(ε,m,h) − q ∈ E0(B, ∂B) and

lim
h→0

∫
B

K−1q(ε,m,h) · q(ε,m,h)dx =

∫
B

1

s(ε)
K−1q(ε) · q(ε)dx.

As a result, the following relations hold true for a subsequence ε → 0, m = m(ε):

lim
ε→0

lim
h→0

IN
(
Ω(ε,m,h), q(ε,m,h)

)
= lim

ε→0
ĨN

(
s(ε), q(ε)

)
=

= lim
ε→0

ĨN
(
s(ε), q

)
� ĨN(s, q).

By their definitions, the functions s(ε) and q(ε) are strongly convergent to s(·) in L2(B) and

q(·) in (L2(B))d respectively as ε → 0. Therefore, it is possible to choose subsequences

ε → 0, m = m(ε), h = h(ε), for which the functions qε = q(ε,m(ε),h(ε)) converge weakly to q,

the indicators of subsets Ω′
ε = Ω(ε,m(ε),h(ε)) converge weakly to s and

lim
ε→0

IN
(
Ω′

ε, qε
)

� ĨN (s, q) .

Let us write Ω0 = {x ∈ B : s(x) = 1} and Ωε = Ω′
ε ∪ Ω0. From the identity

1 (Ωε, ·) = 1 (Ω0, ·) + (1 − 1 (Ω0, ·)) 1
(
Ω′

ε, ·
)
,

it follows that sequence 1(Ωε, ·) has the same weak limit s(·) as the sequence 1(Ω′
ε, ·).

Besides, since the functional IN(Ω, q) is monotone with respect to Ω, the inequality

lim
ε→0

IN (Ωε, qε) � ĨN (s, q) ,

is still valid. Accounting for the upper semi-continuity of ĨN(·, ·), the sign “�” in this

relation can be replaced by equality. Therefore, the subsets Ωε and vector fields qε satisfy

the claims of the proposition.

It remains to construct a desired sequence of pressure fields pε(·). In this respect, an

appropriate candidate is pε(·) ≡ p(·). Indeed, if p � domĨD(s, ·), then ĨD(s, p) = +∞, and

the equality

lim
ε→0

ID (Ωε, pε) = ĨD (s, p) ,

follows from the lower semi-continuity of ĨD(·, ·). Furthermore, if p ∈ domĨD(s, ·) then the

supports of pε(·) are embedded into Ω0 ⊂ Ωε, hence pε ∈ domID(Ωε, ·), and

lim
ε→0

ID (Ωε, pε) =

= lim
ε→0

∫
B

(
Q · (∇p − P ) +

1

2
K(g − ∇p) · (g − ∇p)1 (Ωε, ·)

)
dx = ĨD(s, p).

Thus, the proof of Proposition 4.4 is completed. �
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