Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-02-22T19:39:25.530Z Has data issue: false hasContentIssue false

Sentinels with given sensitivity

Published online by Cambridge University Press:  01 February 2008

G. MASSENGO MOPHOU
Affiliation:
Département de Mathématiques et Informatique, Université des Antilles et de La Guyane, Campus Fouillole 97159 Pointe-à-Pitre Guadeloupe (FWI) email: Gisele.Mophou@univ-ag.fr; onakouli@univ-ag.fr
O. NAKOULIMA
Affiliation:
Département de Mathématiques et Informatique, Université des Antilles et de La Guyane, Campus Fouillole 97159 Pointe-à-Pitre Guadeloupe (FWI) email: Gisele.Mophou@univ-ag.fr; onakouli@univ-ag.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work is devoted to the identification of parameters in a problem of pollution modeled by a semi-linear parabolic equation. We use the notion of sentinels introduced by J. L. Lions, (Lions, J. L. 1992 Sentinelles pour les systèmes distribués à données incomplètes. Masson, Paris.) re-visited in a more general framework. We prove the existence of such sentinels by solving a problem of null controllability with constraint on the control. The key of our results is an observability inequality of Carleman type adapted to the constraint.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

References

[1]Ainseba, B. E., Kernevez, J. P. & Luce, R. (1994) Application des sentinelles à l'identification des pollutions dans une rivière. M2AN Math Model. Numer. Anal. 28 (3), 297312.Google Scholar
[2]Ainseba, B. E., Kernevez, J. P. & Luce, R. (1994) Identification de paramètres dans des problèmees non linéaires à données incomplètes. M2AN Math. Model. Numer. Anal. 28 (3), 313328.Google Scholar
[3]Bodart, O. (1997) Sentinels for the identification of an unknown boundary. Math. Models Methods Appl. Sci. 7 (N6), 871885.Google Scholar
[4]Cazenave, Th. & Haraux, A. (1990) Introduction aux problèmes d'évolution semi-linéaires, Mathématiques et Applications No. 1, Ellipses, Paris.Google Scholar
[5]Fernandez-Cara, E., González-Burgos, M., Guerrero, S. & Puel, J. P. (1996) Null controllability of the heat equation with boundary Fourier conditions: The linear case. ESAIM: COCV, Vol. 12, No. 3, pp. 442465.Google Scholar
[6]Fursikov, A. & Imanuvilov, O. Yu. (1996) Controllability of evolution equations. Lecture Notes, Research Institute of Mathematics, Seoul National University, Korea.Google Scholar
[7]Imanuvilov, O. Yu. (1995) Controllability of parabolic equations. Sbornik Math. 186 (6), 879900.Google Scholar
[8]Lebeau, G. & Robbiano, L. (1995) Contrôle exacte de l'équation de la chaleur. Comm. P.D.E. 20, 335356.Google Scholar
[9]Lions, J. L. (1992) Sentinelles pour les systèmes distribués à données incomplètes. Masson, Paris.Google Scholar
[10]Lions, J. L. (1971) Optimal Control of Systems Governed Partial Differential Equations. Springer, New York.Google Scholar
[11]Mizohata, S. (1958) Unicité du prolongement des solutions pour quelques équations différentielles paraboliques, Memoirs. Sci. Univ. Kyoto 31, 219239.Google Scholar
[12]Russell, D. L. (1973) A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52 (3), 189212.CrossRefGoogle Scholar
[13]Saut, J. C. & Schereur, B. (1987) Unique continuation for some evolution equations. J. Diff. Eq. 66 118139.CrossRefGoogle Scholar
[14]Tataru, D. (1996) Carleman estimates, unique continuation and contollability for anizotropic PDEs, Optimization methods in partial differential equations. Amer. Math. Soc. 209, 267279.Google Scholar
[15]Zuazua, E. (1997) Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76, 237264.CrossRefGoogle Scholar