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This work is devoted to the identification of parameters in a problem of pollution modeled

by a semi-linear parabolic equation. We use the notion of sentinels introduced by J. L. Lions,

(Lions, J. L. 1992 Sentinelles pour les systèmes distribués à données incomplètes. Masson, Paris.)

re-visited in a more general framework. We prove the existence of such sentinels by solving

a problem of null controllability with constraint on the control. The key of our results is an

observability inequality of Carleman type adapted to the constraint.

1 Introduction

In the modeling of the problems of pollution governed by dissipative systems (for example,

pollution in a river or a lake), the source terms as well as the initial or boundary conditions

may be unknown. More precisely, let N, M ∈ IN\{0} and let Ω be a bounded open and

connected subset of IRN with boundary Γ of class C2. For a time T > 0, we set

Q = Ω × (0, T ) and Σ = Γ × (0, T ). Then we consider the following system modeling a

problem of pollution [9]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂y

∂t
− ∆y + f(y) = ξ +

M∑
i=1

λiξ̂i in Q,

y = 0 on Σ,

y(0) = y0 + τŷ0 in Ω,

(1)

where

• y represents the concentration of the pollutant.

• f is a real-valued given function of class C1.

• The source term is unknown and represents pollution source of the form ξ +
∑M

i=1λiξ̂i.

The functions ξ and {ξ̂i}Mi=1 are known whereas the real coefficients {λi}Mi=1 are unknown.

• The initial condition is of the form y0 + τŷ0 where the function y0 is known while τ,

real, is unknown.

We assume that

• y0 and ŷ0 belong to L2(Ω), ξ and ξ̂i belong to L2(Q),

• the functions ξ̂i, 1 � i � M, are linearly independent,
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• the real τ is sufficiently small,

• the function f verifies

f(0) = 0 (2)

and satisfies the growth condition

|f(s1)−f(s2)−f′(0)(s1−s2)|�C
(
|s1|p−1+|s2|p−1

)
|s1 − s2| ∀s1, s2 ∈ IR, (3)

for some C > 0 and p > 1 such that p < N+4
N

.

In the model (1), we are interested in identifying the parameters λi without any attempt

of computing the missing term τŷ0. To identify these parameters, we use the method of

sentinels due to J. L. Lions [9] but in a more general framework.

The theory of sentinels introduced by J. L. Lions relies on three considerations:

– A state equation represented here by (1) whose solution y = y(x, t; λ, τ) = y(λ, τ)

depends on two families of parameters λ = {λ1, . . . , λM} and τ.

– An observation yobs which is a measurement of the concentration of the pollutant taken

on a non-empty open subset O of Ω, called observatory.

– A function S = S(λ, τ) called “sentinel” defined for h0 ∈ L2(O × (0, T )) by

S(λ, τ) =

∫ T

0

∫
O

(h0 + w)y dx dt (4)

where the control function w is to be found of minimal norm in L2(O × (0, T )) among

functions S satisfying (4) which are stationary to the first order with respect to the missing

term τŷ0, i.e.,

∂S

∂τ
(0, 0) = 0 ∀ŷ0. (5)

Using the adjoint problem, one shows that the existence of these sentinels is reduced to

the solution of exact controllability problem with constraints on the state. These types

of controllability problems were the subject of many numerical methods which in fact

reduce them to an approximate controllability problem with constraints on the state. It

is in this context, for instance, that J. P. Kernevez et al. use these sentinels in [1, 2] to

identify parameters of pollution in a river. O. Bodart apply them in [3] to identify an

unknown boundary.

Remark 1 To estimate the parameter λi, one proceeds as follows: Assume that the solution

of the state equation (1) when λ = 0 and τ = 0 is known. Then one has the following

information:

S(λ, τ) − S(0, 0) ≈
M∑
i=1

λi
∂S

∂λi
(0, 0).
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Therefore, fixing i, j ∈ {1, . . . ,M} and choosing i and j such that

∂S

∂λj
(0, 0) = 0 for j� i and

∂S

∂λi
(0, . . . , 0) = 1

one obtains the following estimate of the parameter λi:

λi ≈ S(λ, τ) − S(0, 0).

Remark 2 Notice that for the J. L. Lions’s sentinel defined by (4)–(5), the observatory

O ⊂ Ω is the support of the control function w.

In this paper, we consider the general case where the support of the control function

w is different from the observatory O. More precisely, we consider, as above, the state

equation (1) whose solution y = y(λ, τ) depends on two families of parameters λ and τ,

the observatory O ⊂ Ω where the measurement yobs is recorded and for any non-empty

open subset ω of Ω with ω�O, we look for a function S = S(λ, τ) which is solution of

the following problem: Given h0 ∈ L2(O × (0, T )), find w ∈ L2(ω × (0, T )) such that

(1) the function S defined by:

S(λ, τ) =

∫ T

0

∫
O

h0y(λ, τ) dx dt+

∫ T

0

∫
ω

w y(λ, τ) dx dt. (6)

satisfies the following conditions:

• S is stationary to the first order with respect to the missing term τŷ0:

∂S

∂τ
(0, 0) = 0 ∀ŷ0. (7)

• S is sensitive to the first order with respect to the pollution terms λiξ̂i:

∂S

∂λi
(0, 0) = ci 1 � i � M (8)

where ci, (1 � i � M), are given constants not all identically zero.

(2) The control w is of minimal norm in L2(ω × (0, T )) among “the admissible controls’,’

i.e.,

|w|L2(ω×(0,T )) = min
w̄∈E

|w̄|L2(ω×(0,T )) (9)

where E = {w̄ ∈ L2(ω × (0, T )), such that (w̄, S(w̄)) satisfies (6)–(8)}

In the sequel, we assume without loss of generality that

ξ = 0 in Q and y0 = 0 in Ω. (10)
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Under the above hypotheses on f and the data, it is proved in [4, 15] that there exists

α > 0 such that when

‖τŷ0‖L2(Ω) +

∥∥∥∥ M∑
i=1

λiξ̂i

∥∥∥∥
L2(Q)

� α

the problem (1) admits a unique solution y = y(λ, τ) in C([0, T ], L2(Ω)) ∩L2(0, T ;H1
0 (Ω)).

Moreover, the following applications

τ 	→ y(λ, τ) and λi 	→ y(λ, τ) (1 � i � M) (11)

are in C1(IR; C([0, T ], L2(Ω))).

Remark 3 Since y ∈ L2(0, T ;H1
0 (Ω)), h0 ∈ L2(O × (0, T )) and w ∈ L2(ω × (0, T )), the

relation (6) is well defined. Furthermore, in view of (11), the derivatives of y with respect

to τ denoted by

yτ =
d

dτ
y(λ, τ)|τ=0 (12)

and with respect to λi denoted by

yλi =
d

dλi
y(λ, τ)|λi=0 (13)

exist. Thus the conditions (7) and (8) are well defined.

Remark 4 In the sensitivity condition (8), the ci are chosen according to the importance

associated with the component ξ̂i of the pollution source.

Remark 5 If the function S defined by (6)–(8) exists, then it is unique since w verifies (9).

In this case, proceeding as in Remark 1, we get

λi ≈ 1

ci
(S(λ, τ) − S(0, 0)).

Definition 1.1 We will refer to the function S given by (6)–(8) as sentinel with given {ci}
sensitivity.

Let y0 be the solution of (1) when λ = 0 and τ = 0. Then, in view of (10), we have

y0 = 0 in Q. (14)

Therefore, according to (12) and (13), yτ and yλi are respectively solutions of⎧⎪⎨⎪⎩
∂yτ
∂t

− ∆yτ + f′(0)yτ = 0 in Q,

yτ = 0 on Σ,

yτ(0) = ŷ0 in Ω

(15)
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and ⎧⎪⎨⎪⎩
∂yλi
∂t

− ∆yλi + f′(0)yλi = ξ̂i in Q,

yλi = 0 on Σ,

yλi (0) = 0 in Ω

(16)

where f′(0) denotes the derivative of f at y0 = 0. Thanks to (3), the problems (15)

and (16) admit respectively unique solutions yτ ∈ C([0, T ], L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) and

yλi ∈ H2,1(Q) = L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)).

Let χω be the characteristic function of the set ω. We set

Yλ = Span(yλ1
χω, . . . , yλMχω) (17)

the vector subspace of L2(ω×(0, T )) generated by the M independent functions yλiχω, 1 �
i � M and we denote by Y ⊥

λ the orthogonal of Yλ in L2(ω × (0, T )). We also set

a0 = f′(0) (18)

and assume that⎧⎨⎩ any function k ∈ Yλ such that
∂k

∂t
− ∆k + a0k = 0 inω × (0, T ) is identically zero inω × (0, T ).

(19)

Next, we consider the following controllability problem: Given h ∈ L2(Q) and a0 ∈ L∞(Q),

find v ∈ L2(ω × (0, T )) such that

v ∈ Yλ
⊥ (20)

and such that q = q(x, t, v) ∈ H2,1(Q) which is the solution of⎧⎪⎨⎪⎩
−∂q

∂t
− ∆q + a0q = h+ vχω in Q,

q = 0 on Σ,

q(T ) = 0 in Ω,

(21)

satisfies

q(x, 0, v) = 0 in Ω (22)

with v of minimal norm in L2(ω × (0, T )), that is

|v|L2(ω×(0,T )) = min
v̄∈E

|v̄|L2(ω×(0,T )) (23)

where

E =
{
v̄ ∈ Y ⊥

λ such that (v̄, q̄ = q(x, t, v̄)) is subject to (21)–(22)
}
. (24)

The problem (20)–(23) is a linear problem of null controllability without constraint on

the control v. Few results are known for such problems. The case Y ⊥
λ = L2(ω× (0, T )) has

been widely studied. For instance, in [8] G. Lebeau and L. Robbiano solved this problem

for the heat equation. In [12] D. Russell proved exact controllability for the heat equation

as a consequence of exact controllability for the wave equation. In [14], D. Tataru showed
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that for linear equations, local and global controllability are equivalent and hold for any

time T > 0. Considering a linear Fourier boundary condition, E. Fernandez-Cara, M.

González-Burgos, S. Guerrero and J. P. Puel in [5] use the Carleman estimate for the

weak solution of heat equation with non-homogeneous Neumann boundary conditions

to prove the null controllability of the linear heat equation.

In the non-linear case, the problem of finite dimensional null controllability is studied

by E. Zuazua in [15]. The author proved that for a rather general and natural class

of non-linearities, the problem is solvable if the initial data are small enough. In [6] A.

Fursikov and O. Yu. Imanuvilov showed that, when the control acts on the boundary,

null controllability holds for bounded continuous and sufficiently small initial data.

When Y ⊥
λ �L2(ω× (0, T )), J. L. Lions gives in [9] an optimality system for the optimal

control assuming that the problem (20)–(23) has a unique solution. The proof uses Hilbert

Uniqueness Method (HUM). The success of this method rests on the unique continuation

results due to S. Mizohata [11] and J. C. Saut and B. Scheurer [13].

In this paper, we solve the null controllability problem with constraint on the control

(20)–(23) assuming that (19) holds. This allows us to prove the existence of the sentinel

(6)–(9). More precisely, we have the following results:

Theorem 1.1 Assume that the above hypotheses on Ω, ω, O, f and the data of the equa-

tion (1) are satisfied. Then the existence of the sentinel (6)–(9) holds if and only if null

controllability problem with constraint on the control (20)–(23) holds.

The proof of the null controllability problem with constraint on the control (20)–(23)

lies on the existence of a function θ and a Carleman inequality adapted to the constraint

(cf. Subsection 2.2) for which we have the following result:

Theorem 1.2 Assume that the hypotheses of Theorem 1.1 and the condition (19) are sat-

isfied. Then there exists a positive weight function θ such that, for any function h ∈ L2(Q)

with θh ∈ L2(Q), null controllability problem with constraint on the control (20)–(23) holds.

Moreover, the control is given by

v̂θ = −(ρ̂θχω − P ρ̂θ) (25)

where ρ̂θ is a solution of ⎧⎨⎩
∂ρ̂θ
∂t

− ∆ρ̂θ + a0ρ̂θ = 0 in Q,

ρ̂θ = 0 on Σ
(26)

and P is the orthogonal projection operator from L2(ω × (0, T )) into Yλ.

Remark 6 The assumption (19) has already been introduced by J. L. Lions in [9], p. 33.

This assumption is satisfied for instance if we are in the following case: Let (ωi)
M
i=1 be a

sequence of open sets such that

ωi ⊂ ω, ωi ∩ ωj � ∅ for i� j.
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Assume that the functions yλi are such that
∂yλi
∂t

− ∆yλi + a0yλi � 0 in ωi × (0, T ). Then if

yλi ∈ Yλ and
∂yλi
∂t

− ∆yλi + a0yλi = 0 in ω × (0, T ) we have yλi = 0 in ω × (0, T ), and the

assumption (19) is satisfied.

The rest of the paper is organized as follows. Section 2 is devoted to some preliminary

results. In this section, we prove Theorem 1.1 and establish the inequality adapted to the

constraint (20). In Section 3, we prove the existence and the uniqueness of the solution

for the controllability problem (20)–(23) of Theorem 1.1 and give the proof of Theorem

1.2. We finish with Section 4 where the expression of the sentinel S defined by (6)–(9) and

the estimate of the parameters λi are given.

2 Preliminary results

2.1 Proof of Theorem 1.1

Since yτ and yλi are respectively solutions of (15) and (16), the stationary condition (7)

and respectively the sensitivity condition (8) hold if and only if∫ T

0

∫
O

h0yτ dx dt+

∫ T

0

∫
ω

wyτ dx dt = 0 ∀ŷ0 ∈ L2(Ω) (27)

and ∫ T

0

∫
O

h0yλi dx dt+

∫ T

0

∫
ω

wyλi dx dt = ci 1 � i � M. (28)

In order to transform equation (27), we introduce the classical adjoint state. More precisely,

we consider the solution q = q(x, t) of the linear problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∂q

∂t
− ∆q + a0q = h0χO + wχω in Q,

q = 0 on Σ,

q(T ) = 0 in Ω,

(29)

where χO is characteristic function of the open set O. Similar to problem (16), the problem

(29) admits a unique solution q ∈ H2,1(Q). The so-called adjoint state q depends on the

unknown function w and its usefulness comes from the following observation.

First, multiplying both sides of the differential equation in (29) by yτ ∈ C([0, T ],

L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) which is solution of (15), and integrating by parts in Q, we

get ∫ T

0

∫
O

h0yτ dx dt+

∫ T

0

∫
ω

wyτ dx dt =

∫
Ω

q(0)ŷ0 dx ∀ŷ0 ∈ L2(Ω).

Thus, the condition (7) (or (27)) holds if and only if

q(0) = 0 in Ω. (30)
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Then, multiplying both sides of the differential equation in (29) by yλi ∈ H2,1(Q) which

is solution of (16), and integrating by parts in Q, we have∫ T

0

∫
Ω

qξ̂i dx dt =

∫ T

0

∫
O

h0yλi dx dt+

∫ T

0

∫
ω

wyλi dx dt 1 � i � M. (31)

Thus, the condition (8) (or (28)) is equivalent to∫ T

0

∫
Ω

qξ̂i dx dt = ci, 1 � i � M. (32)

Therefore, the above considerations show that the existence of the sentinel defined by

(6)–(9) holds if and only if the following null controllability problem with constraints

on the state q holds: Given h0 ∈ L2(O × (0, T )) and a0 ∈ L∞, find w of minimal norm in

L2(ω × (0, T )) such that the pair (w, q) verifies (29), (30) and (32).

Actuall, condition (8) (or the constraints (32) on the state q) is equivalent to constraint

on the control. Indeed, let Yλ be the real vector subspace of L2(ω× (0, T )) defined in (17).

Since Yλ is finite dimensional, there exists a unique w0 ∈ Yλ such that

ci −
∫ T

0

∫
O

h0yλi dx dt =

∫ T

0

∫
ω

w0yλi dx dt, 1 � i � M.

Therefore, the condition (28) or (32) holds if and only if

w − w0 = v ∈ Yλ
⊥. (33)

Consequently, replacing w by v + w0 in (29)1, then setting

h = h0χO + w0χω ∈ L2(Q) (34)

we finally deduce that we have the existence of the sentinel (6)–(9) if and only if null

controllability with constraint on the control (20)–(23) holds.

2.2 An adapted Carleman inequality

The observability inequality we are looking for is a consequence of Carleman’s inequality.

We consider an auxiliary function ψ ∈ C2(Ω) which satisfies the following conditions:

ψ(x) > 0 ∀x ∈ Ω, ψ(x) = 0 ∀x ∈ Γ , |∇ψ(x)| � 0 ∀x ∈ Ω − ω. (35)

Such a function ψ exists according to A. Fursikov and O. Yu. Imanuvilov [6]. We then

define for any positive parameter λ the following weight functions:

ϕ(x, t) =
eλ(m‖ψ‖∞+ψ(x))

t(T − t)
, (36)

η(x, t) =
e2λm‖ψ‖∞ − eλ(m‖ψ‖∞+ψ(x))

t(T − t)
, (37)
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for (x, t) ∈ Q and m > 1. Weight functions of this kind were first introduced by O. Yu.

Imanuvilov. Since ϕ does not vanish on Q, we set

θ =
esη

ϕ
√
ϕ

(38)

and we adopt the following notations⎧⎪⎪⎪⎨⎪⎪⎪⎩
L =

∂

∂t
− ∆+ a0I,

L∗ = − ∂

∂t
− ∆+ a0I,

V = {ρ ∈ C∞(Q) such that ρ = 0 on Σ},

where a0 is defined as in (18).

Lemma 2.1 Assume that (19) holds. Let θ be the function given by (38) and P be the

operator defined as in Theorem 1.2. Then there exists a positive constant C = C(Ω,ω, a0)

such that for any ρ ∈ V:∫ T

0

∫
Ω

1

θ2
|ρ|2 dx dt � C

(∫ T

0

∫
Ω

|Lρ|2 dx dt+
∫ T

0

∫
ω

|ρ− Pρ|2 dx dt
)
. (39)

The proof of this lemma requires that we recall the global Carleman’s inequality.

Proposition 2.1 (Global Carleman’s inequality) Let ψ, ϕ and η be the functions defined

respectively as in (35)–(37). Then, there exist numbers λ0 = λ0(Ω,ω, a0) > 1 and s0 =

s0(Ω,ω, a0, λ, T ) > 1 and there exists some number C = C(Ω,ω, a0) > 0 such that, for any

λ � λ0, for any s � s0 and for any ρ ∈ V, the following inequality holds:

∫ T

0

∫
Ω

e−2sη

sϕ

(∣∣∣∣∂ρ

∂t

∣∣∣∣2 + |∆ρ|2
)
dx dt+

∫ T

0

∫
Ω

sλ2ϕe−2sη |∇ρ|2 dx dt

+

∫ T

0

∫
Ω

s3λ4ϕ3e−2sη |ρ|2 dx dt

� C

(∫ T

0

∫
Ω

e−2sη |Lρ|2 dx dt+
∫ T

0

∫
ω

s3λ4ϕ3e−2sη |ρ|2 dx dt
)
. (40)

Proof We refer to [6, 7].

According to the definition of ϕ and η given respectively by (36) and (37), the function

θ given by (38) is positive and 1/θ = ϕ
√
ϕe−sη is bounded. So, replacing esη/ϕ

√
ϕ by θ in

(40) the following inequality holds:∫ T

0

∫
Ω

1

θ2
|ρ|2 dx dt � C

(∫ T

0

∫
Ω

1

θ2ϕ3s3λ4
|Lρ|2 dx dt+

∫ T

0

∫
ω

1

θ2
|ρ|2 dx dt

)
.
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As a consequence of the boundedness of 1/θ and 1/ϕ3s3λ4, we get the next observability

inequality: ∫ T

0

∫
Ω

1

θ2
|ρ|2 dx dt � C

(∫ T

0

∫
Ω

|Lρ|2 dx dt+
∫ T

0

∫
ω

|ρ|2 dx dt
)
. (41)

Proof of Lemma 2.1 The proof uses a well-known compactness-uniqueness argument

and the inequality (41). Indeed, suppose that (39) does not hold. Then⎧⎪⎨⎪⎩
∀n ∈ N∗, ∃ρn ∈ V,

∫T
0

∫
Ω

1
θ2 |ρn|2 dx dt = 1,

∫T
0

∫
Ω

|Lρn|2 dx dt � 1
n

and
∫T
0

∫
ω

|ρn − Pρn|2 dx dt � 1
n
.

(42)

Now, the rest of the proof consists in showing that (42) yields a contradiction. We do it

in four steps.

Step 1. We have∫ T

0

∫
ω

1

θ2
|Pρn|2 dx dt �

∫ T

0

∫
ω

1

θ2
|ρn|2 dx dt+

∫ T

0

∫
ω

1

θ2
|ρn − Pρn|2 dx dt.

Since 1/θ2 is bounded, it follows from (42) that∫ T

0

∫
ω

1

θ2
|Pρn|2 dx dt � C. (43)

Since Pρn ∈ Yλ and Yλ is finite dimensional, (Pρn)n (and so (ρn)n) is bounded in L2(ω ×
(0, T )).

Step 2. We can extract a subsequence, still denoted (ρn)n, such that on the one hand

ρn ⇀ g weakly in L2(ω × (0, T )), (44)

and on the other hand,

ρn − Pρn → 0 strongly in L2(ω × (0, T )). (45)

Next, we deduce from the compactness of P (because Yλ is finite dimensional) that there

exists σ ∈ Yλ such that

Pρn → σ strongly in L2(ω × (0, T )). (46)

We deduce from (45) and (46) that ρn → g = σ strongly in L2(ω × (0, T )). Thanks to the

continuity of P , we have Pρn → Pg strongly in L2(ω × (0, T )). Therefore, Pg = g and

g ∈ Yλ.

Step 3. In fact, we have g = 0. Indeed, from (42), we also have Lρn → 0 strongly in

L2(Q). Thus Lρn → 0 strongly in L2(ω × (0, T )). We conclude that Lρn ⇀ 0 weakly in

D′(ω × (0, T )) and so Lg = 0. The assumption (19) implies g = 0 on ω × (0, T ). Finally,

ρn → 0 strongly in L2(ω × (0, T )).
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Step 4. Since ρn ∈ V, it follows from the observability inequality (41) that∫ T

0

∫
Ω

1

θ2
|ρn|2 dx dt � C

(∫ T

0

∫
Ω

|Lρn|2 dx dt+
∫ T

0

∫
ω

|ρn|2 dx dt
)
.

Then, the conclusions in the third step yield that
∫T
0

∫
Ω

1
θ2 |ρn|2 dx dt → 0 when n → +∞.

The contradiction occurs thanks to the first condition in (42), where
∫T
0

∫
Ω

1
θ2 |ρn|2 dx dt = 1.

The proof of (39) is complete.

3 Null controllability with constraint on the control

The main tool used is the observability inequality (39) – adapted to the constraint.

3.1 Existence of optimal control variable for null controllability

Let us consider the following symmetric bi-linear form:

a(ρ, ρ̂) =

∫ T

0

∫
Ω

LρLρ̂ dx dt+

∫ T

0

∫
ω

(ρ− Pρ)(ρ̂− P ρ̂) dx dt. (47)

According to Lemma 2.1, this symmetric bi-linear form is a scalar product on V. Let V

be the completion of V with respect to the norm:

ρ 	→ ‖ρ‖V =
√
a(ρ, ρ). (48)

The closure of V is the Hilbert space V .

Remark 7 1. The norm ‖.‖V is related to the right side of the inequality (39) while the

left member of (39) leads to the norm

‖ρ‖θ =

(∫ T

0

∫
Ω

1

θ2
|ρ|2 dx dt

) 1
2

.

2. The completion of V is the weighted Hilbert space usually denoted by L2
1
θ

.

3. The inequality (39) shows that

‖ρ‖θ � C‖ρ‖V . (49)

Let θ be defined by (38) and h ∈ L2(Q) be such that θh ∈ L2(Q). Then, thanks to

Cauchy-Schwarz’s inequality and (39), the following linear form defined on V by

ρ →
∫ T

0

∫
Ω

hρ dx dt

is continuous. Therefore, Lax-Milgram’s Theorem allows us to say that, for every function

h ∈ L2(Q) such that θh ∈ L2(Q), there exists one and only one solution ρθ in V of the
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variational equation:

a(ρθ, ρ) =

∫ T

0

∫
Ω

LρLρθ dx dt+

∫ T

0

∫
ω

(ρ− Pρ)(ρθ − Pρθ) dx dt

(50)

=

∫ T

0

∫
Ω

hρ dx dt ∀ρ ∈ V .

Proposition 3.1 Assume (19) holds. For h ∈ L2(Q) such that θh ∈ L2(Q), let ρθ be the

unique solution of (51),

vθ = −(ρθχω − Pρθ) (51)

and

qθ = Lρθ. (52)

Then, the pair (vθ, qθ) is such that (20)–(22) hold. Moreover, we have

‖ρθ‖V � C ‖θh‖L2(Q) , (53)

‖vθ‖L2(ω×(0,T )) � C‖θh‖L2(Q), (54)

‖qθ‖H2,1(Q) � C‖θh‖L2(Q), (55)

where C represents different positive constants.

Proof We proceed in two steps.

Step 1. We prove that (vθ, qθ) is a solution of (20)–(22).

According to (51), we have ρθ ∈ V . Consequently qθ ∈ L2(Q) and since Pρθ ∈ Yλ, the

function vθ = −(ρθχω − Pρθ) ∈ Yλ
⊥. Next, replacing Lρθ by qθ and (−ρθχω + Pρθ) by vθ

in (51), we obtain∫ T

0

∫
Ω

qθLρ dx dt−
∫ T

0

∫
ω

vθ(ρ− Pρ) dx dt =

∫ T

0

∫
Ω

hρ dx dt, ∀ρ ∈ V .

Since Pρ ∈ Yλ and vθ ∈ Y ⊥
λ , this latter equality is reduced to∫ T

0

∫
Ω

qθLρ dx dt =

∫ T

0

∫
Ω

hρ dx dt+

∫ T

0

∫
ω

vθρ dx dt, ∀ρ ∈ V . (56)

Now, for φ ∈ L2(Q), let p be the solution of the system⎧⎨⎩
p′ − ∆p+ a0p = φ in Q,

p = 0 on Σ,

p(0) = 0 in Ω.

(57)

Then p ∈ V . Consequently, replacing ρ by p in (56), we have∫ T

0

∫
Ω

qθφ dx dt =

∫ T

0

∫
Ω

hp dx dt+

∫ T

0

∫
ω

vθp dx dt.
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Thus, qθ ∈ H2,1(Q) is the solution of the problem (21) with v = vθ (cf. [10]). In other

words qθ is the solution of the following problem:⎧⎨⎩
−q′

θ − ∆qθ + a0qθ = h+ vθχω in Q,

qθ = 0 on Σ,

qθ(T ) = 0 in Ω.

(58)

Since qθ ∈ H2,1(Q), we also have qθ ∈ C([0, T ] , L2(Ω)).

Multiplying (58)1 by ρ ∈ V and integrating by parts in Q, it follows∫
Ω

qθ(0)ρ(0) dx+

∫ T

0

∫
Ω

qθLρ dx dt =

∫ T

0

∫
Ω

hρ dx dt+

∫ T

0

∫
ω

vθρ dx dt, ∀ρ ∈ V.

As ρ ∈ V, we deduce from (56) that∫
Ω

qθ(0)ρ(0) dx = 0 ∀ρ ∈ V.

Hence, qθ(0) = 0 in Ω.

Step 2. Let us prove the estimates (53)–(55). Replacing ρ by ρθ in (51) and using the

Cauchy-Schwarz’s inequality, we get from (39), (48),

a(ρθ, ρθ) = ‖qθ‖2
L2(Q) + ‖vθ‖2

L2(ω×(0,T ))

� ‖θh‖L2(Q)‖ρθ‖θ
� C‖θh‖L2(Q)‖ρθ‖V .

Therefore, from (48), we obtain (53) and then (54). Estimate (55) is a consequence of (54)

and of the properties of the heat equation.

Proposition 3.2 Under the assumptions of Proposition 3.1, there exists a control variable v

such that the pair (v, q) satisfies (20)–(22). Moreover, we can obtain a unique control v̂θ
such that (23) holds.

Proof We have proved in Proposition 3.1 that (vθ, qθ) satisfies (20)–(22). Consequently,

the set E of the control variables v ∈ L2(ω× (0, T )) such that (v, q(x, t, v)) verifies (20)–(22)

is non-empty. Moreover, adapted observability inequality (39) shows that the choice of

the scalar product on V is not unique. Thus, proceeding as in Proposition 3.1, we can

construct infinitely many control functions v which belong to E. It is then clear that E
is a non-empty closed convex subset of L2(ω × (0, T )). Therefore, there exists a unique

control variable v̂θ of minimal norm in L2(ω × (0, T )) such that (̂vθ, q̂θ = q(x, t, v̂θ)) solves

(20)–(23).

3.2 Proof of Theorem 1.2

In this subsection, we are concerned with the proof of Theorem 1.2. That is, the optimality

system for the control v̂θ such that the pair (v̂θ, q̂θ) satisfies (20)–(23). As a classical way

to derive this optimality system is the method of penalization due to J. L. Lions [10], the

proof of Theorem 1.2 requires some preliminary results.
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Let ε > 0. For any pair (v, q) such that⎧⎪⎨⎪⎩
v ∈ Yλ

⊥,

−∂q

∂t
− ∆q + a0q ∈ L2(Q),

q = 0 on Σ, q(0) = q(T ) = 0 in Ω,

(59)

we define the functional

Jε(v, q) =
1

2
‖v‖2

L2(ω×(0,T )) +
1

2ε
‖ − ∂q

∂t
− ∆q + a0q − h− vχω‖2

L2(Q) (60)

and we consider the minimization problem

min Jε(v, q), (v, q) subject to (59). (61)

Proposition 3.3 Under the assumptions of Proposition 3.1, the problem (61) has an optimal

solution. In other words , there exists a unique pair (vε, qε) such that

Jε(vε, qε) = min{Jε(v, q), (v, q) subject to (59)} (62)

Proof Since (vθ, qθ) defined in Proposition 3.1 satisfies (59) and Jε(v, q) � 0, we can

define the real dε such that

dε = min{Jε(v, q), (v, q) subject to (59)}.

Let (vn, qn) be a minimizing sequence satisfying (59) and such that

dε � Jε(vn, qn) < dε +
1

n
< dε + 1.

In particular,

0 < dε � Jε(vθ, qθ) =
1

2
|vθ|2L2(ω×(0,T )).

It follows from the estimates (54) that there exists a constant C , independent of n such

that

Jε(vn, qn) � C2.

Therefore, from the form of Jε, we get∥∥∥∥−∂qn
∂t

− ∆qn + a0qn − h− vnχω

∥∥∥∥
L2(Q)

� C
√
ε, (63)

‖vn‖L2(ω×(0,T )) � C. (64)

According to (64), there exists vε in L2(ω × (0, T )) and a subsequence extracted from

(vn) (still called (vn)) such that

vn ⇀ vε weakly in L2(ω × (0, T )). (65)

Since vn belongs to Y ⊥
λ which is a closed vector subspace of L2(ω × (0, T )), we have

vε ∈ Y ⊥
λ . (66)
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As a consequence of (59) and (63),

‖qn‖H2,1(Q) � C.

Thus, there exists qε ∈ H2,1(Q) and a subsequence extracted from (qn) (still called (qn))

such that

qn ⇀ qε weakly in H2,1(Q). (67)

Moreover, qε verifies ⎧⎨⎩ −∂qε
∂t

− ∆qε + a0qε ∈ L2(Q),

qε = 0 on Σ, qε(T ) = qε(0) = 0 in Ω.
(68)

Finally, from (66) and (68), we deduce that (vε, qε) satisfies (59). Combining (65), (67) and

the weak lower semicontinuous of Jε, we obtain that Jε(vε, qε) � lim inf
n→+∞

Jε(vn, qn) = dε.

In other words (vε, qε) is the optimal control. The uniqueness of (vε, qε) is the immediate

consequence of the strict convexity of Jε.

Proposition 3.4 The assumptions are as in Proposition 3.1. Then, the pair (vε, qε) is optimal

solution of the problem (62) if and only if there exists a function ρε such that (vε, qε, ρε) ∈
L2(ω × (0, T )) ×H2,1(Q) × V satisfies the following approximate optimality system:

vε = −(ρεχω − Pρε) ∈ Y ⊥
λ , (69)

⎧⎪⎨⎪⎩
−∂qε

∂t
− ∆qε + a0qε = h+ vεχω − ερε in Q,

qε = 0 on Σ,

qε(T ) = 0 in Ω,

(70)

qε(0) = 0 in Ω, (71)⎧⎨⎩
∂ρε
∂t

− ∆ρε + a0ρε = 0 in Q,

ρε = 0 on Σ.
(72)

Proof We express the Euler-Lagrange optimality conditions which characterize (vε, qε):⎧⎨⎩
d

dµ
Jε(vε, qε + µϕ)|µ=0 = 0, for all ϕ ∈ C∞(Q) such that

ϕ = 0 on Σ, ϕ(0) = ϕ(T ) = 0 in Ω,

d

dµ
Jε(vε + µ v, qε)|µ=0 = 0, ∀v ∈ Yλ

⊥.

After calculations, we have⎧⎪⎨⎪⎩
∫T
0

∫
Ω

1

ε

(
−∂qε

∂t
− ∆qε + a0qε − h− vεχω

) (
−∂ϕ

∂t
− ∆ϕ+ a0ϕ

)
dx dt = 0,

for all ϕ ∈ C∞(Q) such that ϕ = 0 on Σ, ϕ(0) = 0, ϕ(T ) = 0 in Ω

(73)
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and∫ T

0

∫
ω

vεv dx dt−
∫ T

0

∫
Ω

1

ε

(
−∂qε

∂t
− ∆qε + a0zε − h− vεχω

)
v dx dt = 0, ∀v ∈ Yλ

⊥. (74)

Then we define the adjoint state

ρε = −1

ε

(
−∂qε

∂t
− ∆qε + a0qε − h− vεχω

)
. (75)

Hence, we deduce that − ∂qε
∂t

−∆qε + a0qε = h+ vεχω − ερε in Q. And since (vε, qε) verifies

(59), we have qε = 0 on Σ, qε(T ) = qε(0) = 0 in Ω. Thus (qε, vε, ρε) is such that (70) holds.

Now, replacing − 1
ε
(− ∂qε

∂t
− ∆qε + a0qε − h− vεχω) by ρε in (73) and (74), we respectively

obtain ⎧⎪⎨⎪⎩
∫T
0

∫
Ω
ρε(−

∂ϕ

∂t
− ∆ϕ+ a0ϕ) dx dt = 0, for all ϕ ∈ C∞(Q) such that

ϕ = 0 on Σ, ϕ(0) = ϕ(T ) = 0 in Ω,

(76)

and ∫ T

0

∫
ω

vεv dx dt+

∫ T

0

∫
Ω

ρεv dx dt = 0, ∀v ∈ Yλ
⊥. (77)

Therefore, from (76), we derive

∂ρε
∂t

− ∆ρε + a0ρε = 0 in Q.

Thus, ρε ∈ L2(Q) and Lρε ∈ L2(Q). Consequently, we can define ρε on Σ and prove that

ρε = 0 on Σ.

¿From (77), we have ∫ T

0

∫
ω

(vε + ρε)v dx dt = 0, ∀v ∈ Yλ
⊥.

Hence, vε + ρεχω ∈ Yλ. Since vε ∈ Yλ
⊥, we have vε + ρεχω = P (vε + ρεχω) = Pρε. Thus,

vε = −(ρεχω − Pρε).

Remark 8 Let us mention that there is no information concerning ρε(0) and ρε(T ) .

Proposition 3.5 Let (vε, qε, ρε) be defined as in Proposition 3.4. Then there exists a constant

C > 0 independent on ε such that

‖qε‖H2,1(Q) � C, (78)

‖ρε − Pρε‖L2(ω×(0,T )) � C, (79)

‖ρε‖L2(ω×(0,T )) � C, (80)

‖ρε‖V � C. (81)
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Proof From (63) and (64), we have∥∥∥∥−∂qε
∂t

− ∆qε + a0qε − h− vεχω

∥∥∥∥
L2(Q)

� C
√
ε, (82)

‖vε‖L2(ω×(0,T )) � C. (83)

Since qε verifies (59), we derive from (82) the relation (78). From (69) and (83), we

obtain (79). Then as Lρε = 0, using the definition of the norm on V given by (48), we

have (81).

On the other hand, since ρε ∈ V, applying the observability inequality (39) to

ρε, we have ‖ 1
θ
ρε‖L2(ω×(0,T ))

� C . Therefore, using (79) and the fact that 1/θ is

in L∞(Q), we deduce that ‖ 1
θ
Pρε‖L2(ω×(0,T ))

� C . Since Pρε is in Yλ which is fi-

nite dimensional, we have ‖Pρε‖L2(ω×(0,T )) � C . Hence using again (79), we obtain

estimate (80).

Proof of Theorem 1.2 We proceed in three steps:

Step 1. We study the convergence of (vε, qε)ε .

According to (83) and (78) we can extract subsequences, still denoted (qε)ε and (vε)ε such

that

vε ⇀ v0weakly in L2(ω × (0, T )), (84)

qε ⇀ q0 weakly in H2,1(Q). (85)

And, as vε belongs to Yλ
⊥ which is a closed vector subspace of L2(ω × (0, T )), we have

v0 ∈ Yλ
⊥. (86)

Since the injection of H2,1(Q) into L2(Q) is compact, the pair (v0, q0) is such that⎧⎪⎨⎪⎩
−∂q0

∂t
− ∆q0 + a0q0 = h+ v0χω in Q,

q0 = 0 on Σ,

q0(T ) = 0 in Ω,

(87)

q0(0) = 0 in Ω. (88)

Step 2. We prove that (v0, q0 = q(x, t, v0)) = (v̂θ, q̂θ = q(x, t, v̂θ)).

From the expression of Jε given by (60), we can write

1

2
‖vε‖2

L2(ω×(0,T )) � Jε(vε, qε).

Since (v̂θ, q̂θ) satisfies (20)–(22) (or equivalently verifies (59)), this latter inequality

becomes

1

2
‖vε‖2

L2(ω×(0,T )) � Jε(vε, qε) �
1

2
‖v̂θ‖2

L2(ω×(0,T )) . (89)
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Then using (84) while passing to the limit in (89), we obtain

1

2
‖v0‖2

L2(ω×(0,T )) � lim inf
ε→0

Jε(vε, qε) �
1

2
‖v̂θ‖2

L2(ω×(0,T )) .

Consequently,

‖v0‖L2(ω×(0,T )) � ‖v̂θ‖L2(ω×(0,T ))

and thus,

‖v0‖L2(ω×(0,T )) = ‖v̂θ‖L2(ω×(0,T )) .

Hence, v0 = v̂θ and since (87) has a unique solution, it follows that q0 = q̂θ.

Step 3. According to the inequalities (80) and (81), we can extract a subsequence, still

denoted (ρε)ε, such that

ρε ⇀ ρ̂θ weakly in L2(ω × (0, T )), (90)

ρε ⇀ ρ̂θ weakly in V . (91)

As P is a compact operator, we deduce from (90) that

Pρε → P ρ̂θ strongly in L2(ω × (0, T )). (92)

Therefore, combining (90) and (92), we get

vε = ρεχω − Pρε ⇀ v̂θ = ρ̂θχω − P ρ̂θ weakly in L2(ω × (0, T )).

Thus, we have proved that there exists θ given by (38) such that for a given h ∈ L2(Q)

with θh ∈ L2(Q), the unique pair (v̂θ, q̂θ) satisfies (20)–(23) with v̂θ = ρ̂θχω − P ρ̂θ , and

where ρ̂θ is a solution of (26). Since the function h defined by (34) belongs to L2(Q) if

θh ∈ L2(Q), the proof of Theorem 1.2 is complete.

4 Expression of the sentinel with given sensitivity and identification of parameter λi

We are now able to give the expression of the sentinel S defined by (6)–(9) and identify

the parameter λi.

4.1 Expression of the sentinel with given sensitivity

We consider the results obtained in the previous sections and we assume that h given

by (34) and θ given by (38) are such that θh ∈ L2(O × (0, T )). Let (v̂θ, ρ̂θ) be defined

as in Theorem 1.2. Since v̂θ = −(ρ̂θχω − P ρ̂θ) realizes the minimum in L2(ω × (0, T ))

among all controls v such that the pair (v, q) satisfies (20)–(23), using (33), we deduce that

w = w0 + v̂θ = w0 − (ρ̂θχω − P ρ̂θ). Consequently, replacing w by its expression in (6), the

function S becomes

S(λ, τ) =

∫ T

0

∫
O

h0y(λ, τ) dx dt+

∫ T

0

∫
ω

(w0 − (ρ̂θ − P ρ̂θχω)y(λ, τ) dx dt (93)

and (w, S ) is such that (7)–(9) hold.
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4.2 Identification of the parameter λi

According to (14), y0 which is the solution of the problem (1) when λ = 0 and τ = 0 is

identically zero in Q. Hence, from (93) we have

S(0, 0) =

∫ T

0

∫
O

h0y0 dx dt+

∫ T

0

∫
ω

(w0 − (ρ̂θ − P ρ̂θχω)y0 dx dt = 0.

Next, using (7), we obtain

S(λ, τ) − S(0, 0) ≈
M∑
i=1

λi
∂S

∂λi
(0, 0) for λi and τ small.

Since we have at our disposal the observation yobs which is the measure of the concentra-

tion of the pollutant in the river, we have

S(λ, τ) − S(0, 0) =

∫ T

0

∫
O

h0(yobs − y0) dx dt+

∫ T

0

∫
ω

w(yobs − y0) dx dt.

Thus, we also have the following information:

M∑
i=1

λi
∂S

∂λ i
(0, 0) ≈

∫ T

0

∫
O

h0(yobs − y0) dx dt+

∫ T

0

∫
ω

w(yobs − y0) dx dt

which, using (8), gives

M∑
i=1

λici ≈
∫ T

0

∫
O

h0(yobs − y0) dx dt+

∫ T

0

∫
ω

w(yobs − y0) dx dt.

Now, fixing i ∈ {1,M} and choosing ci � 0 and cj = 0, for all j in {1,M} with j� i, we

get this estimate of the parameter λi

λi ≈ 1

ci

{∫ T

0

∫
O

h0(yobs − y0) dx dt+

∫ T

0

∫
ω

w(yobs − y0) dx dt

}
≈ 1

ci

{∫ T

0

∫
O

h0yobs dx dt+

∫ T

0

∫
ω

wyobs dx dt

}
since y0 = 0 in Q.

5 Concluding remarks

The concept of sentinels of J. L. Lions that we revisited allows not only the identification

of parameters with given sensitivity, but also the detection of parameters by distinguishing

between them the missing data. The method is general and can be applied to other types

of problems governed by evolution equations.

https://doi.org/10.1017/S0956792507007267 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507007267


40 G. M. Mophou and O. Nakoulima

Acknowledgements

The authors wish to express their gratitude to the referees for their helpful suggestions.

References

[1] Ainseba, B. E., Kernevez, J. P. & Luce, R. (1994) Application des sentinelles à l’identification
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