Hostname: page-component-6bf8c574d5-gr6zb Total loading time: 0 Render date: 2025-02-21T03:59:09.073Z Has data issue: false hasContentIssue false

On the identification of a single body immersed in a Navier-Stokes fluid

Published online by Cambridge University Press:  01 February 2007

A. DOUBOVA
Affiliation:
Universidad de Sevilla, Dpto. E.D.A.N., Aptdo. 1160, 41080 Sevilla, SPAIN emails: doubova@us.es, cara@us.es
E. FERNÁNDEZ-CARA
Affiliation:
Universidad de Sevilla, Dpto. E.D.A.N., Aptdo. 1160, 41080 Sevilla, SPAIN emails: doubova@us.es, cara@us.es
J. H. ORTEGA
Affiliation:
Universidad del Bío-Bío, Facultad de Ciencias, Dpto. de Ciencias Básicas, Casilla 447, Campus Fernando May, Chillán, Chile and Universidad de Chile, Centro de Modelamiento Matemático UMI 2807 CNRS-UChile, Casilla 170/3, Correo 3, Santiago, Chile email: jortega@dim.uchile.cl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work we consider the inverse problem of the identification of a single rigid body immersed in a fluid governed by the stationary Navier-Stokes equations. It is assumed that friction forces are known on a part of the outer boundary. We first prove a uniqueness result. Then, we establish a formula for the observed friction forces, at first order, in terms of the deformation of the rigid body. In some particular situations, this provides a strategy that could be used to compute approximations to the solution of the inverse problem. In the proofs we use unique continuation and regularity results for the Navier-Stokes equations and domain variation techniques.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

References

[1]Alessandrini, G., Beretta, E., Rosset, E. & Vesella, S. (2000) Optimal stability for inverse elliptic boundary value problems with unknown boundaries. Ann. Scuola. Norm. Sup. Pisa CI Sci. 29 (4), 755806.Google Scholar
[2]Alessandrini, G. & Isakov, V. (1997) Analyticity and uniqueness for the inverse conductivity problem. Rend. Istit. Mat. Univ. Trieste 28 (1–2), 351369.Google Scholar
[3]Alessandrini, G., Morassi, A. & Rosset, E. (2002) Detecting cavities by electrostatic boundary measurements. Inverse Problems, 18, 1333–53.Google Scholar
[4]Alessandrini, G., Morassi, A. & Rosset, E. (2004) Detecting inclusion in an elastic body by boundary measurements. SIAM Rev. 46, 477498.Google Scholar
[5]Aparicio, N. D. & Pidcock, M. K. (1996) The boundary inverse problem for the Laplace equation in two dimensions. Inverse Problems, 12, 565577.Google Scholar
[6]Alvarez, C., Conca, C., Friz, L., Kavian, O. & Ortega, J. H. (2005) Identification of inmersed obstacle via boundary measurements. Inverse Problems, 21, 15311552.Google Scholar
[7]Andrieux, S., Abda, A. B. & Jaoua, M. (1993) Identifiabilité de frontière inaccessible par des mesures de surface. C. R. Acad. Sci. Paris Sér. I Math. 316 (5), 429434.Google Scholar
[8]Bello, J. A. (1996) L r regularity for the Stokes and Navier-Stokes problems. Ann. Mat. Pura Appl. 170 (4), 187206.CrossRefGoogle Scholar
[9]Bello, J. A., Fernández-Cara, E., Lemoine, J. & Simon, J. (1997) The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow. SIAM J. Control Optim. 35 (2), 626640.Google Scholar
[10]Beretta, E. & Vesella, S. (1998) Stable determination of boundaries from Cauchy data. SIAM J. Math. Anal. 30, 220232.CrossRefGoogle Scholar
[11]Bukhgeim, A. L., Cheng, J. & Yamamoto, M. (2000) Conditional stability in an inverse problem of determining a non-smooth boundary. J. Math. Anal. Appl. 242 (1), 5774.Google Scholar
[12]Canuto, B. & Kavian, O. (2001) Determining coefficients in a class of heat equations via boundary measurements. SIAM J. Math. Anal. 32 (5), 963986.Google Scholar
[13]Cheng, J., Hon, Y. C. & Yamamoto, M. (2001) Conditional stability estimation for an inverse boundary problem with non-smooth boundary in R3. Trans. Amer. Math. Soc. 353 (10), 41234138.CrossRefGoogle Scholar
[14]Constantin, P. & Foias, C. (1988) Navier-Stokes Equations. University of Chicago Press.Google Scholar
[15]Fabre, C. (1996/95) Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems. ESAIM Control Optim. Calc. 1, 267302.Google Scholar
[16]Fabre, C. & Lebeau, G. (1996) Prolongement unique des solutions de l'équation de Stokes. Comm. Part. Diff. Eq. 21, 573596.Google Scholar
[17]Galdi, G. P. (1994) An introduction to the mathematical theory of the Navier-Stokes equations. Springer-Verlag.Google Scholar
[18]Girault, V. & Raviart, P. A. (1986) Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer-Verlag.Google Scholar
[19]Kavian, O. (2002) Four lectures on parameter identification in elliptic partial differential operators. Lectures at the University of Sevilla (Spain).Google Scholar
[20]Kaup, P. G., Santosa, F. & Vogelius, M. (1996) Method for imaging corrosion damage in thin plates from electrostatic data. Inverse Problems, 12, 279293.Google Scholar
[21]Kwon, O. & Seo, J. K. (2001) Total size estimation and identification of multiple anomalies in the inverse conductivity problem. Inverse Problems, 17 (1), 5975.Google Scholar
[22]Ladyzhenskaya, O. A. (1969) Theory of Viscous Incompressible Flow. Gordon and Breach.Google Scholar
[23]Lions, P.-L. (1996) Mathematical Topics in Fluid Mechanics. Clarendon Press.Google Scholar
[24]Murat, F. & Simon, J. (1974) Quelques résultats sur le contrôle par un domaine géométrique. Rapport du L.A. 189 No. 74003. Université Paris VI.Google Scholar
[25]Murat, F. & Simon, J. (1976) Sur le contrôle par un domaine géométrique. Rapport du L.A. 189 (76015). Université Paris VI.Google Scholar
[26]Serre, D. (1983) Equation de Navier-Stokes Stationnaires avec Données pue Régulieère Ann. Sc. Norm. Pisa, 10 (4), 543559.Google Scholar
[27]Simon, J. (1980) Differentiation with respect to the domain in boundary value problems. Numer. Func. Anal. Optim. 2, 649687.Google Scholar
[28]Temam, R. (1985) Navier-Stokes Equations: Theory And Numerical Analysis. North-Holland.Google Scholar