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Casilla 170/3, Correo 3, Santiago, Chile

email: jortega@dim.uchile.cl

(Received 16 November 2005; revised 20 July 2006; first published online 9 February 2007)

In this work we consider the inverse problem of the identification of a single rigid body

immersed in a fluid governed by the stationary Navier-Stokes equations. It is assumed that

friction forces are known on a part of the outer boundary. We first prove a uniqueness result.

Then, we establish a formula for the observed friction forces, at first order, in terms of the

deformation of the rigid body. In some particular situations, this provides a strategy that

could be used to compute approximations to the solution of the inverse problem. In the

proofs we use unique continuation and regularity results for the Navier-Stokes equations and

domain variation techniques.

1 Introduction and main results

Let Ω ⊂ �N be a bounded connected open set (N = 2 or N = 3) whose boundary ∂Ω

is of class W 2,∞. Let γ be a nonempty open subset of ∂Ω and let us denote by 1γ the

characteristic function of γ.

We will consider the following family of subsets of Ω, where D∗ is a fixed nonempty

set:

D = {D ⊂ Ω : D is a simply connected open set,

∂D is of class W 2,∞, D ⊂⊂ D∗ ⊂⊂ Ω }.

In this paper we will deal with the following inverse problem:

Given ϕ and α in appropriate spaces, find a set D ∈ D such that a solution (u, p) of the Navier-Stokes

problem ⎧⎨⎩
−ν∆u+ (u · ∇)u+ ∇p = 0, ∇ · u = 0 in Ω \ D,

u = ϕ on ∂Ω,

u = 0 on ∂D,

(1.1)

satisfies the additional condition

σ(u, p) · n ≡ (−p Id + 2ν e(u)) · n = α on γ. (1.2)
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In (1.2), Id is the identity matrix, ν > 0 is a constant (the kinematic viscosity of the

fluid) and e(u) is the linear strain tensor, given by

e(u) =
1

2
(∇u+ t∇u).

The interpretation of problem (1.1)–(1.2) is the following. We assume that a stationary

Newtonian viscous fluid fills an unknown domain Ω \ D at rest. The velocity ϕ on the

outer boundary ∂Ω is given and we are able to measure on a part of ∂Ω the normal

stresses α = σ(u, p) · n, i.e. the force exerted by the fluid. Then the question is whether we

can determine D from Ω, ϕ and α. From the practical viewpoint, we try to compute the

shape of a body around which a real fluid flows from measurements performed far from

the body.

A related problem was considered in Alvarez et al. [6]. Another similar but more simple

problem has been analyzed in Kavian [19]. There, instead of (1.1), one has⎧⎨⎩
−∆u = 0 in Ω \ D,

u = ϕ on ∂Ω,

u = 0 on ∂D,

and the role of the additional information (1.2) is replaced by

∂u

∂n
= α on γ.

Other problems of this kind have been studied by several other authors [1, 2, 3, 4, 5, 7,

10, 11, 13, 20, 21].

Concerning the direct problem associated to (1.1), i.e. the determination of (u, p) (and

then α) from Ω, D and ϕ, we have the following result.

Theorem 1.1 Assume that D ∈ D and ϕ ∈ C1(∂Ω)N satisfies∫
∂Ω

ϕ · n dΓ = 0. (1.3)

• For each ν > 0, (1.1) possesses at least one solution (u, p) that belongs to H1(Ω \ D)N ×
L2(Ω \ D) and satisfies

||u||H1(Ω\D) �
C

ν
(ν + 1)||ϕ||C1(∂Ω) , (1.4)

where C only depends on Ω and D∗.

• There exists ν1 = ν1(Ω,D
∗, ‖ϕ‖C1 ) > 0 such that, for ν > ν1, the solution of (1.1) is unique

(p is unique up to a constant) and belongs to W 1,r(Ω\D)N ×Lr(Ω\D) for all r ∈ [1,+∞).

• Furthermore, the solutions of (1.1) satisfy σ(u, p) · n ∈ W−1/r,r(∂Ω) for all finite r.

This result is essentially well known, with a number of classical references for results

of this kind are [14, 22, 23, 28]. However, for completeness we will sketch the proof in

Appendix A.
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Figure 1. Deformations of D.

In the sequel, we will always assume that ϕ ∈ C1(∂Ω)N satisfies (1.3) and ν > ν1 .

Accordingly, for each D ∈ D, we can speak of the unique solution (u, p) of (1.1).

In the context of the inverse problem (1.1)–(1.2), the first property we will analyze is

uniqueness. Thus, let D1 and D2 be two sets in D and let us consider the Navier-Stokes

system ⎧⎨⎩
−ν∆ui + (ui · ∇)ui + ∇pi = 0, ∇ · ui = 0 in Ω \ Di,
ui = ϕ on ∂Ω,

ui = 0 on ∂Di,

(1.5)

for i = 1 and i = 2. We have the following uniqueness result:

Theorem 1.2 Assume that ϕ ∈ C1(∂Ω)N satisfies (1.3), ϕ does not vanish identically and

ν > ν1 . Let D1 and D2 be two sets in D, let (ui, pi) be the solution of (1.5) and let us set

αi = σ(ui, pi) · n for i = 1, 2. Assume that

α1 = α2 on γ. (1.6)

Then D1 = D2.

For the proof of this result, we will adapt an argument that can be found for instance

in Andrieux et al. [7] and Canuto & Kavian [12]. To this end, an appropriate unique

continuation property for Stokes-like systems will be required. Notice that the unique

continuation property we need is local in the sense that we do not know the behaviour

of the solution on the whole boundary; see more details in § 2.

We shall also be concerned by the way σ · n depends on (small) perturbations of D and

some related consequences. In order to represent the deformations of a set D ∈ D, let us

introduce

Wε = {m ∈ W 2,∞(�N; �N) : ‖m‖W 2,∞ � ε, m = 0 in Ω \ D∗ },

where ε > 0 is small enough. For each m ∈ Wε, we define a new domain D + m (see

Figure 1) by

D + m = { z ∈ �N : z = x+ m(x), x ∈ D }.

It is then known that, if ε is small enough, for any D ∈ D and any m ∈ Wε, one has

again D + m ∈ D [27].
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For each m ∈ Wε, let us consider the “perturbed” Navier-Stokes system⎧⎪⎪⎨⎪⎪⎩
−ν∆u(m) + (u(m) · ∇)u(m) + ∇p(m) = 0 in Ω \ (D + m),

∇ · u(m) = 0 in Ω \ (D + m),

u(m) = ϕ on ∂Ω,

u(m) = 0 on ∂(D + m).

(1.7)

Thanks to Theorem 1.1, there exists exactly one solution (u(m), p(m)) of (1.7) that belongs

to W 1,r(Ω \ (D + m))N × Lr(Ω \ (D + m)) and satisfies σ(u(m), p(m)) · n ∈ W−1/r,r(∂Ω) for

all finite r.

Our aim is to deduce an identity of the form

σ(u(m), p(m)) · n− σ(u(0), p(0)) · n = Lm+ o(m) on γ,

where L is a linear operator and

o(m)‖m‖−1
W 2,∞ → 0 as ‖m‖W 2,∞ → 0. (1.8)

In the sequel, for simplicity of the notation, the couple (u(0), p(0)) will be simply denoted

by (u, p).

We have the following result:

Theorem 1.3 Assume that ϕ ∈ C1(∂Ω)N satisfies (1.3), ϕ does not vanish identically and

ν > ν1 . Assume that D ∈ D and m ∈ Wε and let (u(m), p(m)) and (u, p) be the solutions of

(1.7) and (1.1), respectively. Then we have

σ(u(m), p(m)) · n− σ(u, p) · n = σ(u′(m), p′(m)) · n+ o(m) on γ, (1.9)

where o(m) satisfies (1.8) and (u′(m), p′(m)) is the solution of the linear problem⎧⎨⎩
−ν∆u′(m) + (u′(m) · ∇)u+ (u · ∇)u′(m) + ∇p′(m) = 0, in Ω \ D,

∇ · u′(m) = 0, in Ω \ D,

u′(m) + (m · ∇)u ∈ H1
0 (Ω \ D)N.

(1.10)

If, furthermore, ϕ is regular enough, for any ψ ∈ C2(γ)N satisfying∫
γ

ψ · n dΓ = 0, (1.11)

we also have ⎧⎨⎩
〈σ(u(m), p(m)) · n− σ(u, p) · n, ψ 1γ〉∂Ω

= −ν
∫

∂D

(m · n)∂u

∂n
· ∂ψ

∂n
dΓ + o(m),

(1.12)

where 〈· , ·〉∂Ω denotes the duality product in W−1/r,r(∂Ω)N ×W 1/r,r′
(∂Ω)N and (ψ, π) is the

solution of the adjoint system⎧⎨⎩
−ν∆ψ − (∇u)tψ − (u · ∇)ψ + ∇π = 0, ∇ · ψ = 0 in Ω \ D,

ψ = ψ 1Γ on ∂Ω,

ψ = 0 on ∂D.

(1.13)
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The first part of this result, i.e. the identity (1.9), was proved in Bello et al. [9] (see

Theorem 5 therein). We will present the proof of the second part in § 5. Our main tools

will be domain variation techniques [9, 25, 27] and Green’s formula.

Notice that the boundary conditions on u′(m) are implicitly given in (1.10) by imposing

u′(m) + (m · ∇)u to belong to H1
0 (Ω \ D)N .

An immediate consequence of Theorem 1.3 is the following:

Corollary 1.4 Let the assumptions of Theorem 1.3 hold and suppose that ϕ is regular enough

and m = λn+ m′ on ∂D, where λ ∈ � and (m′, n) = 0. Then, if ψ satisfies (1.11) and∫
∂D

∂u

∂n
· ∂ψ

∂n
dΓ � 0,

we have

λ = −〈σ(u(m), p(m)) · n− σ(u, p) · n, ψ 1γ〉

ν

∫
∂D

∂u

∂n
· ∂ψ

∂n
dΓ

+ o(m).

Remark 1.5 Notice that, in view of (1.9)–(1.10), for each m ∈ Wε we can compute the

local derivative (u′(m), p′(m)) and thus the difference σ(u(m), p(m)) ·n−σ(u, p) ·n on γ up to

second-order perturbations. On the other hand, we see from (1.12) that the same quantity

can be easily computed using (ψ, π), which is independent of m.

Remark 1.6 Assume that ϕ is regular enough and we have already computed a first

regular approximation D̃ to the solution of our inverse problem. Then, the associated

solution (ũ, p̃) and consequently α̃|γ ≡ σ(ũ, p̃) · n|γ are known. Our goal now is to compute

a new (and possibly better) approximation of the form D̃ + m ≡ D̃ + λn + m′, where

(m′, n) = 0 and λ ∈ �. From (1.12), for each ψ as in Corollary 1.4, we can write

〈σ(u(m), p(m)) · n− α̃, ψ 1γ〉 = −νλ
∫

∂D

∂ũ

∂n
· ∂ψ

∂n
ds+ o(λ),

where (ψ, π) is the solution of (1.13). So, the “good” strategy is to choose λ, if possible,

according to the formula

λ = − 〈α− α̃, ψ 1γ〉

ν

∫
∂D

∂ũ

∂n
· ∂ψ

∂n
ds

. (1.14)

Indeed, this is a way to ensure that, the projections of σ(u(m), p(m)) · n|γ and α|γ in the

direction of ψ coincide, at least at first order.

Remark 1.7 More generally, starting from an already computed candidate D̃ to the

solution of problem (1.1)–(1.2), let us try to determine a better candidate of the form

D̃+m, where m · n|∂D̃ ∈ M and M is a finite dimensional space. Let {f1, . . . , fd} be a basis

of M. Then we can write

m · n|∂D̃ =

d∑
i=1

aifi ,
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for some ai to be determined. Let us introduce d linearly independent functions ψi ∈ C2(γ)N

satisfying (1.11). Using again (1.12), we see now that

〈σ(u(m), p(m)) · n− α̃, ψj 1γ〉 = −ν
d∑
i=1

ai

∫
∂D

fi
∂ũ

∂n
· ∂ψj

∂n
ds+ o(m). (1.15)

Consequently, a strategy to compute the coefficients ai is to solve (if possible) the system

of equations ⎧⎪⎨⎪⎩
d∑
i=1

(∫
∂D

fi
∂ũ

∂n
· ∂ψj

∂n
ds

)
ai = −1

ν
〈α− α̃, ψj 1γ〉,

1 � j � d,

where, for each j, (ψj, πj) is the solution of (1.13) corresponding to ψj . A more detailed

analysis of the performance of this method and its application to the numerical solution

of the inverse problem (1.1)–(1.2) is under study and will appear in the near future.

The rest of this paper is organized as follows. In § 2, we will give the formulation of

a unique continuation property and we will deduce some consequences, needed for the

proof of Theorem 1.2. Theorems 1.2 is proved in § 3. In § 4, we present some comments on

other related (but different) inverse problems. § 1.3 is devoted to the proof of Theorem 5.

Finally, Appendix A deals with the proof of Theorem 1.1 (as well as other technical

results) and in Appendix B we give a sketch of the proof of the unique continuation

property we have mentioned above.

2 A unique continuation property

In this section, we will present a unique continuation property which will be used in the

proof of Theorem 1.2. Let G ⊂ �N be a bounded connected open set (N = 2 or N = 3)

whose boundary ∂G is of class W 1,∞. Then we have the following result:

Lemma 2.1 Let O ⊂ G be a nonempty open set. Assume that a ∈ L∞(G)N , b ∈ L∞(G)N and

∇ · a = ∇ · b = 0 in G. Then any solution (y, q) ∈ H1
loc(G)N × L2

loc(G) of the linear system{
−ν∆y + (a · ∇)y + (y · ∇)b+ ∇q = 0 in G,

∇ · y = 0 in G,
(2.1)

satisfying y = 0 in O is zero everywhere, i.e. satisfies y ≡ 0 in G and q ≡ Const. in G.

The proof of this lemma is similar, but not identical, to the proof of Proposition 1.1

in Fabre & Lebeau [16] (where b ≡ 0, i.e. the authors do not include terms of the form

(v · ∇)b). For clarity, we give a sketch of the proof of Lemma 2.1 in Appendix B.

As a consequence of Lemma 2.1, we obtain the following result:

Corollary 2.2 Let Γ ⊂ ∂G be a nonempty open set. Assume that a ∈ L∞(G)N , b ∈ L∞(G)N

and ∇ · a = ∇ · b = 0 in G. Then any solution (y, q) ∈ H1(G)N ×L2(G) of (2.1) that satisfies

y = 0 on ∂G and σ(y, q) · n = 0 on Γ is zero everywhere.

https://doi.org/10.1017/S0956792507006821 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507006821


Identification of a single body in a Navier-Stokes fluid 63

Proof Let us fix a point x0 ∈ Γ and a number r > 0 such that

B(x0; r) ∩ ∂G ⊂ Γ .

Here, B(x0; r) (resp. B(x0; r)) stands for the open (resp. closed) ball centered at x0 of

radius r. Then we have

σ(y, q) · n = 0 on B(x0; r) ∩ ∂G

and

y = 0 on B(x0; r) ∩ ∂G.

Let us set

G′ = G ∪ B(x0; r).

Then we can define the couple (ỹ, q̃) ∈ H1(G′) × L2(G′) by extending by zero (y, q) to

the whole set G′, i.e. by setting

(ỹ, q̃)(x) =

{
(y, q), in G,

(0, 0), in B(x0; r) ∩ Gc.

In this way, we obtain a solution (ỹ, q̃) of (2.1) in G′ which vanishes in B(x0; r)∩Gc ⊂ G′.

By applying Lemma 2.1, we deduce that ỹ = 0 in G′ and q̃ ≡ Const. in G′. In particular,

we obtain that y vanishes in G. �

3 Proof of Theorem 1.2

Let D1 and D2 be two different open sets in D, let (ui, pi) be the solution of the system⎧⎨⎩
−ν∆ui + (ui · ∇)ui + ∇pi = 0, ∇ · ui = 0 in Ω \ Di,
ui = ϕ on ∂Ω,

ui = 0 on ∂Di
(3.1)

and let us set αi = σ(ui, pi) · n for i = 1, 2.

Assume that (1.6) holds. Let us consider the open sets D1∪D2 ∈ D and O0 = Ω\D1 ∪ D2.

Let O be the unique connected component of O0 whose boundary contains ∂Ω (recall that

D1 and D2 are subset of D∗) and let us introduce

v = u1 − u2 and π = p1 − p2.

Then (v, π) ∈ H1(O)N × L2(O) and verifies⎧⎨⎩
−ν∆v + (u1 · ∇)v + (v · ∇)u2 + ∇π = 0, ∇ · v = 0 in O,

v = 0 on ∂Ω,

σ(v, π) · n = 0 on γ.

We now apply the unique continuation result of Corollary 2.2 and we deduce that

v = 0 in O,
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Ω
Γ 1

Γ 2

D 2D 1

Figure 2. Shaded is D3 \ D1.

that is to say,

u1 = u2 in O. (3.2)

For instance, let us assume that D2 \ D1 is nonempty and let us put D3 = D2 ∪ ((Ω \
D1)∩ (Ω \ O)). By hypothesis, D3 \D1 is nonempty. Moreover, ∂(D3 \D1) = Γ 1 ∪Γ 2, where

Γ 1 = ∂(D3 \ D1) ∩ ∂D1 and Γ 2 = ∂(D3 \ D1) ∩ ∂D2 (see Figure 2).

In view of (3.1) and (3.2), the couple (u1, p1) satisfies⎧⎨⎩
−ν∆u1 + (u1 · ∇)u1 + ∇p1 = 0, ∇ · u1 = 0 in D3 \ D1,

u1 = u2 = 0 on Γ 2,

u1 = 0 on Γ 1.

Of course, this implies u1 = 0 in D3 \ D1. Consequently, from Lemma 2.1 we deduce that

u1 = 0 in Ω \D1, which is impossible because u1 = ϕ on ∂Ω and ϕ is not identically zero.

This implies that D2 \ D1 is the empty set.

We can prove in the same way that the set D1 \ D2 is empty. Therefore, D1 = D2. �

4 Some comments on other inverse problems for Stokes systems

In this section we shall consider other interesting related inverse problems. For them, it

will be seen that the previous uniqueness result is more difficult to establish. First, let us

simply change the information (1.2) by

∇p = β on γ, (4.1)

where β is given. It is maybe difficult in practice to get an observation like (4.1) for the

real flow of a fluid. However, it will be seen below that the related inverse problem is

meaningful.

The new inverse problem is the following:

Given ϕ and β in appropriate spaces, find a set D ∈ D such that a solution (u, p) of the Navier-Stokes

problem (1.1) satisfies the additional condition (4.1).

This is more complicated then (1.1)–(1.2). To clarify this claim, let us discuss uniqueness

in the context of the similar but simpler linear Stokes system⎧⎨⎩
−ν∆u+ ∇p = 0, ∇ · u = 0 in Ω \ D,

u = ϕ on ∂Ω,

u = 0 on ∂D,

(4.2)

together with the additional information (4.1). We have the following:

https://doi.org/10.1017/S0956792507006821 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507006821


Identification of a single body in a Navier-Stokes fluid 65

Proposition 4.1 Assume that N = 2. If ∂Ω contains a non-empty open segment γ′, then we

have uniqueness for the inverse problem (4.2), (4.1).

Proof First, notice that it can be assumed without loss of generality that γ′ is a vertical

segment. Otherwise, it suffices to perform the change of variables

x′ = Rx+ b, u′(x′) = Ru(RT (x′ − b)), p′(x′) = p(RT (x′ − b)),

where R is an appropriate rotation matrix and b is an appropriate point in �2.

Let us argue as in the proof of Theorem 1.2. Thus, let D1 and D2 be two different open

sets in D, let (ui, pi) be the solution of the system⎧⎨⎩
−ν∆ui + ∇pi = 0, ∇ · ui = 0 in Ω \ Di,
ui = ϕ on ∂Ω,

ui = 0 on ∂Di
(4.3)

and let us assume that

∇p1 = ∇p2 on γ.

Let us introduce u = u1 − u2 and p = p1 − p2. Let us set G0 = Ω \D1 ∪ D2 and let G be

the unique connected component of G0 whose boundary contains ∂Ω. We have⎧⎨⎩
−ν∆u+ ∇p = 0, ∇ · u = 0 in G,

u = 0 on ∂Ω,

∇p = 0 on γ.

(4.4)

Applying the divergence operator to the first equation in (4.4) and taking into account

that ∇ · u = 0 in G, we see that ∆p = 0 in G and ∇p = 0 on γ. Therefore, from the

well known unique continuation property of the Laplace operator, we deduce that p is a

constant in G.

Thus, u = u1 − u2 satisfies:{
∆u = 0, ∇ · u = 0 in G,

u = 0 on ∂Ω.
(4.5)

Let G′ be a simply connected neighbourhood of γ′. Since ∇ ·u = 0 in G∩G′, there exists

a function ψ ∈ H2(G ∩ G′) such that u is the curl of ψ, i.e.

u = ∇ × ψ = (∂2ψ,−∂1ψ).

Thanks to (4.5), the following holds:{
∆(∇ × ψ) = 0 in G ∩ G′,

∂1ψ = ∂2ψ = 0 on γ′.
(4.6)

In particular, ∆(∂2ψ) = 0 in G ∩ G′, ∂2ψ = 0 on γ′ and ∂1(∂2ψ) = ∂2(∂1ψ) = 0 on γ′.

Therefore, in view of the unique continuation property, we deduce that ∂2ψ = 0 in G∩G′,

so that we have u = (0, u2(x1)) in G ∩ G′.
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But this implies that u ≡ 0 in G. Indeed, from unique continuation applied to the

functions u1 and ∂2u2, we first deduce that u is of the form u = (0, u2(x1)) in G. Since

u = 0 on ∂Ω, there exists a nonempty open set where u = 0. Consequently, u ≡ 0 in G.

Now, arguing as in the last part of the proof of Theorem 1.2, it is easy to conclude that

D1 = D2. �

From the previous proof, we see that uniqueness holds for the inverse problem (4.2),

(4.1) if Ω and any couple of sets D1 and D2 satisfy the following unique continuation

property: if u ∈ H1(G)2 and (4.5) holds, then we necessarily have u ≡ 0 in G.

Since this is true whenever ∂Ω contains a nonempty open segment, we have the following

generic result:

Corollary 4.2 Let Ω ⊂ �2 be a nonempty bounded open set. For any ε > 0 there exists

another open set Ωε with Ωε ⊃ Ω and |Ωε \Ω| � ε, such that the inverse problem (4.2), (4.1)

in Ωε satisfies uniqueness.

However, there exist open sets Ω and sets D1 and D2 such that (4.5) does not imply

u ≡ 0 in G. For instance, this happens when Ω is a ball. Indeed, let us assume that Ω

is a ball of radius R0 and let us construct a non-trivial function ψ = ψ̃(r) such that the

corresponding

u = ∇ × ψ =
ψ̃′(r)

r
(x2,−x1)

satisfies (4.5). Taking into account that ψ̃(r) is axially symmetric, we easily see that it

suffices to find nonconstant solutions of⎧⎨⎩ψ̃′′′ +
ψ̃′′

r
− ψ̃′

r2
= 0 in (0, R0),

ψ̃′(R0) = 0.
(4.7)

Thus, we can take for instance

ψ̃(r) = a

(
r2

2
− R2

0 log r

)
,

where a ∈ �, a� 0.

When Ω is a ball, the uniqueness of (4.2), (4.1) is, to our knowledge, an open question.

Thus, we see that even for N = 2 only partial results are known concerning the uniqueness

of this inverse problem.

When N = 3, the situation is much more interesting and, obviously, less understood.

Of course, for the Navier-Stokes system (1.1) together with (4.1), the uniqueness of the

associated inverse problem remains open (for N = 2 and N = 3). Apparently, this is a

nontrivial and rather difficult question.

Let us now present some ideas concerning similar evolution problems. Let T > 0 be

given and let us consider the following inverse problem:
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Given the nonzero functions ϕ, u0 and α in appropriate spaces, find a set D ∈ D such that the solution

(u, p) of ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut − ν∆u+ ∇p = 0, ∇ · u = 0 in (Ω \ D) × (0, T ),

u = ϕ on ∂Ω × (0, T ),

u = 0 on ∂D × (0, T ),

u(x, 0) = u0(x) in Ω \ D,

(4.8)

satisfies the additional condition

σ(u, p) · n = α on γ × (0, T ). (4.9)

We can try to follow the arguments in the proof of Theorem 1.2 in order to get

uniqueness for (4.8), (4.9). Thus, let D1, D2 be two different open sets in D and let (ui, pi)

be a solution of (4.8) associated to D = Di for i = 1, 2. Let us assume that

σ(u1, p1) · n = σ(u2, p2) · n = α on γ × (0, T ).

Let us set u = u1 − u2 and p = p1 − p2. Then, again setting G0 = Ω \ D1 ∪ D2 and G

the unique connected component of G0 whose boundary contains ∂Ω, we have that the

couple (u, p) satisfies⎧⎪⎨⎪⎩
ut − ν∆u+ ∇p = 0, ∇ · u = 0 in G× (0, T ),

u = 0 on ∂Ω × (0, T ),

σ(u, p) · n = 0 on γ × (0, T ).

(4.10)

Therefore, in view of the unique continuation property given in Fabre [15] we have u = 0

in G× (0, T ), whence u1 = u2 in G× (0, T ).

Now, let us assume that D2 \D1 is nonempty and let us introduce D3 = D2 ∪ ((Ω \D1) ∩
(Ω \ O)). By hypothesis, D3 \ D1 is nonempty. Moreover, ∂(D3 \ D1) = Γ 1 ∪ Γ 2, where

Γ 1 = ∂(D3 \ D1) ∩ ∂D1 and Γ 2 = ∂(D3 \ D1) ∩ ∂D2. Then we find that⎧⎪⎨⎪⎩
u1
t − ν∆u1 + ∇p1 = 0, ∇ · u1 = 0 in (D3 \ D1) × (0, T ),

u1 = 0 on (Γ 1 ∪ Γ 2) × (0, T ),

u1(x, 0) = u0(x) in D3 \ D1.

(4.11)

This is not in contradiction with the fact that u1 = ϕ on ∂Ω × (0, T ). But it suggests to

consider a new inverse problem:

Given the nonzero functions ϕ, ϕ̄, u0, α and ᾱ in appropriate spaces with ϕ � ϕ̄, find a set D ∈ D
such that

(1) The solution (u, p) of (4.8) associated with ϕ satisfies

σ(u, p) · n = α on γ × (0, T ). (4.12)

(2) The solution (ū, p̄) of (4.8) associated with ϕ̄ satisfies

σ(ū, p̄) · n = ᾱ on γ × (0, T ). (4.13)

https://doi.org/10.1017/S0956792507006821 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507006821


68 A. Doubova et al.

We have the following:

Proposition 4.3 For the inverse problem (4.2), (4.12), (4.12), one has uniqueness.

Proof Again, let D1 and D2 be as above and let (ui, pi) and (ūi, p̄i) be the solutions of

(4.8) for D = Di associated to ϕ and ϕ̄, respectively. Then, arguing as before we find

that u1 = u2 and ū1 = ū2 in G × (0, T ), where G is the unique connected component of

G0 = Ω \ D1 ∪ D2 whose boundary touches ∂Ω.

Now, let us once more assume that D2 \ D1 is nonempty and let us introduce D3 =

D2∪((Ω\D1)∩(Ω\O)). By hypothesis, D3\D1 is nonempty. Moreover, ∂(D3\D1) = Γ 1∪Γ 2,

where Γ 1 = ∂(D3 \ D1) ∩ ∂D1 and Γ 2 = ∂(D3 \ D1) ∩ ∂D2. In (D3 \ D1) × (0, T ) we have

that both (u1, p1) and (ū1, p̄1) solve (4.11). Therefore, thanks to the uniqueness of solution

of (4.11) and the unique continuation property from Fabre [15], we must have

u1 ≡ ū1 in (Ω \ D1) × (0, T ).

This implies ϕ = ϕ̄, which is an absurd.

Arguing as before, this proves that D1 = D2. �

We can also consider the inverse problem associated with the time-dependent Navier-

Stokes system⎧⎪⎪⎨⎪⎪⎩
ut + (u · ∇)u− ν∆u+ ∇p = 0, ∇ · u = 0 in (Ω \ D) × (0, T ),

u = ϕ on ∂Ω × (0, T ),

u = 0 on ∂D × (0, T ),

u(x, 0) = u0(x) in Ω \ D,

(4.14)

together with (4.12) and (4.13). In this setting, we can prove a uniqueness result of the same

kind provided we have the unique continuation property for the linearized Navier-Stokes

system and the uniqueness of solution of the nonlinear Navier-Stokes equations. This is

the case when the boundaries of Ω and D and the data ϕ and u0 are regular enough and

either N = 2 or u0 is small enough.

5 Proof of Theorem 1.3

To prove the equality (1.9), we apply the domain variation techniques introduced in Murat

& Simon [24, 25] and Simon [27], and particularized in Bello et al. [9] to Navier-Stokes

systems. Notice that the main difficulty in seeing that the mapping m �→ (u(m), p(m))

is differentiable stems from the fact that u(m) and p(m) are functions defined for x ∈
Ω \ (D + m), a domain that depends on m. The right way to proceed is as follows:

• First, we introduce a suitable change of variables, we rewrite the equations satisfied by

(u(m), p(m)) in a fixed domain Ω \ D and we prove the existence of the derivative of

the transported variable (u(m), p(m)) ◦ (Id + m). This leads to the definition of the total

derivative of (u(m), p(m)) at 0:

(u̇(m), ṗ(m)) = lim
t→0

(u(tm), p(tm)) ◦ (Id + m) − (u, p)

t
.
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• Then, we prove the existence of the local derivative (u′(m), p′(m)) of the mapping m �→
(u(m), p(m)), which is defined as follows: For any open set ω ⊂⊂ Ω \ D, we put

(u′(m), p′(m))|ω = lim
t→0

(u(tm), p(tm))|ω − (u, p)|ω
t

.

From [9], we have the following result:

Lemma 5.1 Assume that ν > ν1. Then

• The mapping m �→ (u(m), p(m)) ◦ (Id + m), which is defined in Wε and takes values in

H1(Ω\D)N×L2(Ω\D), is differentiable at 0, with (total) derivative denoted by (u̇(m), ṗ(m)).

That is to say, there exists a linear continuous mapping m �→ (u̇(m), ṗ(m)) such that

(u(m), p(m)) ◦ (Id + m) − (u, p) = (u̇(m), ṗ(m)) + o(m), (5.1)

where o(m) satisfies (1.8).

• For each ω ⊂⊂ Ω \D, the mapping m �→ (u(m), p(m))|ω , which is defined in Wε and takes

values in H1(ω)N×L2(ω), is differentiable at 0. In other words, m �→ (u(m), p(m)) is locally

differentiable. The local derivative at 0 in the direction m is denoted by (u′(m), p′(m)).

• Furthermore, (u′(m), p′(m)) is the unique solution of the linear system (1.10) and

(u̇(m), ṗ(m)) = (u′(m), p′(m)) + (m · ∇)(u, p), (5.2)

where (u, p) = (u(0), p(0)).

In view of (5.1) and (5.2), taking into account that m(x) = 0 in a neighborhood of ∂Ω,

we find that

σ(u(m), p(m)) · n− σ(u, p) · n = σ(u′(m), p′(m)) · n+ o(m) on γ.

This proves (1.9).

Let us now assume that ϕ is regular enough. Then the solution (u, p) of (1.1) satisfies

(u, p) ∈ H2(Ω \ D) ×H1(Ω \ D) and, thanks to the fact that

u′(m) + (m · ∇)u ∈ H1
0 (Ω \ D)N,

we have:

u′(m) = 0 on ∂Ω and u′(m) = −(m · n)∂u

∂n
on ∂D;

see Remark A.1 in Appendix A.

Let ψ ∈ C2(γ)N satisfy (1.11) and let (ψ, π) be the associated solution of (1.13). By

multiplying (1.10) by ψ and integrating by parts in Ω \D, using Green’s formula, we easily
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find that

0 =

∫
Ω\D

(−ν∆u′(m) + (u′(m) · ∇)u+ (u · ∇)u′(m) + ∇p′(m))ψ dx

=

∫
Ω\D

u′(m)(−ν∆ψ − (∇u)tψ − (u · ∇)ψ + ∇π) dx

+ 〈σ(u′(m), p′(m)) · n, ψ 1γ〉∂Ω −
∫

∂D

u′(m) · (σ(ψ, π) · n) ds.

Consequently,

〈σ(u′(m), p′(m)) · n, ψ 1γ〉∂Ω

=

∫
∂D

u′(m)(σ(ψ, π) · n) ds = −
∫

∂D

(m · n)∂u

∂n
· (σ(ψ, π) · n) ds.

On the boundary ∂D, since u vanishes, we have

∂u

∂n
· n =

N∑
i=1

∂ui
∂n
ni =

N∑
i=1

∂iui = ∇ · u = 0.

On the other hand, since ψ also vanishes on ∂D,

e(ψ) · n =
1

2

N∑
i=1

(∂iψj + ∂jψi)ni =
1

2

∂ψ

∂n
+

1

2
(∇ · ψ)n,

whence

σ(ψ, π) · n = ν
∂ψ

∂n
+ ν(∇ · ψ)n− πn.

Then,

∂u

∂n
· (σ(ψ, π) · n) = ν

∂u

∂n
· ∂ψ

∂n
on ∂D

and we obtain that

〈σ(u′(m), p′(m)) · n, ψ 1γ〉∂Ω = −ν
∫

∂D

(m · n)∂u

∂n
· ∂ψ

∂n
ds. (5.3)

Now, using (5.3) in (1.9) and taking into account that σ(u(m), p(m)) · n and σ(u, p) · n
belong to W−1/r,r(∂Ω)N , we get (1.12).

This ends the proof of Theorem 1.3.

6 Conclusions

We have considered the inverse problem of the identification of a single rigid body

immersed in a Navier-Stokes fluid when friction forces are known on a part of the

outer boundary. We have proved a uniqueness result, we have established a formula that

provides the observed friction forces, at first order, in terms of the deformation of the

rigid body and we have presented a strategy that can be used to compute appropriate

approximations to the solution.
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We have also considered other similar inverse problems (see § 4). For some of them,

several open questions have been stated.

Appendix A Some technical results

For completeness, in this section we will present a sketch of the proof of Theorem 1.1,

which provides existence, uniqueness and regularity properties of the solution of (1.1).

For the proof we will use the standard Galerkin method and some properties of Sobolev

spaces.

As mentioned above, there are many classical references for these questions [14, 22, 23,

28].

Proof of Theorem 1.1

1. Existence: Assume that D ∈ D and ϕ ∈ C1(∂Ω)N is such that
∫

∂Ω
ϕ · n ds = 0. For

simplicity, the usual norms in the space L2(Ω \D∗)N , H1(Ω \D∗)N , . . . will be respectively

denoted by || · ||L2 , || · ||H1 , . . .

For any given regular domain O ⊂ �N , let us set

V (O) = { v ∈ H1
0 (O)N : ∇ · v = 0 }.

Then, for every α > 0, there exists Φ∗
α , with Φ∗

α ∈ H1(Ω \ D∗)N , that satisfies⎧⎪⎨⎪⎩
∇ · Φ∗

α = 0 in Ω \ D∗,

Φ∗
α = ϕ on ∂Ω,

Φ∗
α = 0 on ∂D∗

||Φ∗
α||H1(Ω\D∗) � C(Ω,D∗)||ϕ||C1(∂Ω)

and ∣∣∣∣∫
Ω\D∗

(u · ∇)Φ∗
α · u dx

∣∣∣∣ � α‖u‖2
H1(Ω\D∗)

for all u ∈ V (Ω \ D∗) (see [17, 18]). Let us take

Φα =

{
Φ∗
α in Ω \ D∗,

0 in the rest.
(A 1)

Then we have Φα ∈ H1(Ω \ D)N ,∣∣∣∣∫
Ω

(u · ∇)Φα · u dx
∣∣∣∣ � α‖u‖2

H1 (A 2)

and

‖Φα‖H1 � C(Ω,D∗)‖ϕ‖C1(∂Ω) . (A 3)

Let us introduce F with F = ν∆Φα − (Φα · ∇)Φα . Then

‖F‖H−1(Ω\D) � C(Ω,D∗)(ν + 1)‖ϕ‖C1 . (A 4)
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We will look for a solution u of the system (1.1) of the form

u = w + Φα.

Observe that the couple (w, p) must satisfy⎧⎨⎩
−ν∆w + (w · ∇)Φα + (Φα · ∇)w + (w · ∇)w + ∇p = F in Ω \ D,

∇ · w = 0 in Ω \ D,

w = 0 on ∂Ω ∪ ∂D.

(A 5)

Thus, it will be sufficient to show that there exists a positive constant α such that the

nonlinear system (A5) possesses at least one weak solution, more precisely, a couple (w, p)

that belongs to V (Ω \ D)N × L2(Ω \ D) and satisfies the partial differential equations in

(A 5) in the weak or distributional sense. To this end, a standard Galerkin method can be

used.

Let {v1, v2, . . .} be a basis of V (Ω \ D)N . We set Vn = [v1, . . . , vn] (the space spanned by

vi for 1 � i � n). Then the n-th approximated problem is the following:{
ν(∇wn,∇v) + ((wn · ∇)Φα + (Φα · ∇)wn + (wn · ∇)wn , v) = 〈F, v〉H−1

∀v ∈ Vn , wn ∈ Vn .
(A 6)

As usual, in order to obtain the existence result, the key point is to prove a priori estimates

on the approximated solutions {wn}n�1 . Taking v = wn in (A 6) we have

ν‖∇wn‖2
L2 =

∫
Ω\D

(wn · ∇)Φα · wn dx+ 〈F, wn〉H−1 .

Thanks to (A 2), we deduce that

ν‖∇wn‖2
L2 � α||∇wn||2L2 +

ν

2
||∇wn||2L2 +

1

2ν
||F ||2H−1 . (A 7)

Now, let us take α =
ν

4
. Then, from (A 7), we easily obtain

‖∇wn‖L2 �
2

ν2
||F ||2H−1 (A 8)

and, consequently, wn is uniformly bounded in V (Ω \ D)N . In a classical way, this proves

the existence of a solution (w, p) of (A 5) that belongs to V (Ω \ D)N × L2(Ω \ D).

Finally, from (A 8) and (A 4) we deduce that

||∇u||L2(Ω\D) �
C(Ω,D∗)

ν
(ν + 1)||ϕ||C1(∂Ω) .

Obviously, this proves (1.4). Therefore, (A 5) possesses at least one solution with the

desired regularity and estimate.

2. Uniqueness: Let us assume that there exist two solutions (u1, p1) and (u2, p2) of (1.1)

that satisfy (1.4). Let us set

u = u1 − u2 and p = p1 − p2.
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We have that (u, p) satisfies the following system:⎧⎨⎩
−ν∆u+ (u · ∇)u1 + (u2 · ∇)u+ ∇p = 0 in Ω \ D,

∇ · u = 0 in Ω \ D,

u = 0 on ∂Ω ∪ ∂D.

(A 9)

By multiplying the first equation of (A 9) by u and integrating in Ω \ D, we get

ν‖∇u‖2
L2 = −

∫
Ω\D

(u · ∇)u1 · u dx.

Therefore, we have

ν‖∇u‖2
L2 � C‖∇u1‖L2‖u‖L3‖u‖L6 � C(Ω,D∗)‖∇u1‖L2‖∇u‖2

L2 . (A 10)

But, in view of the estimates (1.4) satisfied by ui, we have

||∇u1||L2 �
C(Ω,D∗)

ν
(ν + 1)||ϕ||C1(∂Ω) .

Combining this inequality and (A 10), we see that

‖∇u‖2
L2 �

(ν + 1)

ν2
C(Ω,D∗)‖ϕ‖C1(∂Ω)‖∇u‖2

L2 .

Consequently, if ν > ν1 for some ν1 = ν1(Ω,D
∗, ‖ϕ‖C1(∂Ω)) > 0, we necessarily have

‖∇u‖2
L2 � 0.

This proves the uniqueness of (u, p) (of course, p is unique up to a constant).

Now, notice that we can easily repeat the arguments in the previous point with a

function Φ∗
α that satisfies Φ∗

α ∈ W 1,r(Ω \ D)N for all r ∈ [1,+∞). As a consequence, the

solution (w, p) of (A 5) satisfies

−ν∆w + (w · ∇)w + ∇p = F̃ ,

with

F̃ = ν∆Φα − (Φα · ∇)Φα − (w · ∇)Φα + (Φα · ∇)w ∈ W−1,r(Ω \ D)N

for all r ∈ [1,+∞). From standard regularity properties of the Navier-Stokes system (see

for instance [26]), we deduce that w ∈ W
1,r
0 (Ω \ D)N and p ∈ Lr(Ω \ D).

Therefore, if ν > ν1, (1.1) possesses exactly one solution (u, p) with this regularity.

3. Regularity of σ(u, p) · n: Let us assume that ν > ν1 and let us see that σ(u, p) · n ∈
W−1/r,r(∂Ω) for all r ∈ [1,+∞).

Let us fix r. In view of well known results, it suffices to prove that σ(u, p) ∈ Lr(Ω\D)N×N

and ∇ · σ(u, p) ∈ Lr(Ω \ D)N; for instance, see [8].

But this is very easy to check. Indeed, we have (u, p) ∈ W 1,r(Ω \ D)N × Lr(Ω \ D) and

consequently σ(u, p) ∈ Lr(Ω \ D)N×N . On the other hand, ∇ · σ(u, p) = (u · ∇)u, whence we

also have ∇ · σ(u, p) ∈ Lr(Ω \ D)N . �
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Remark A.1 Let us now assume that ϕ is sufficiently smooth. For instance, let us suppose

that ϕ ∈ C2(∂Ω)N . Then the weak solutions of (1.1) are in fact strong solutions, that is to

say, they satisfy (u, p) ∈ W 2,r(Ω \ D)N ×W 1,r(Ω \ D) for all r ∈ [1,+∞), with appropriate

estimates. Indeed, we can assume in this case that Φ ∈ W 2,r(Ω \ D)N . Then w = u− Φ is,

together with p, a solution of a Stokes problem{
−ν∆w + ∇p = F̃ , ∇ · w = 0 in Ω \ D,

w = 0 on ∂Ω ∪ ∂D,

where F̃ ∈ Lr(Ω \ D)N and ∂(Ω \ D) is regular enough. In view of the W 2,r-regularity

theory for Stokes problems (cf. [8] and the references therein), we have (w, p) ∈ W 2,r(Ω \
D)N ×W 1,r(Ω \ D). Obviously, this provides the same regularity for (u, p).

Appendix B Sketch of the proof of Lemma 2.1

As we already have mentioned, the proof of Lemma 2.1 is based on the ideas and the

arguments in Fabre & Lebeau [16]. The main difference is that, in Fabre & Lebeau [16],

b ≡ 0 and the proof does not hold in our case.

The proof will be composed of four steps. First, we recall an appropriate local Carleman

inequality from Fabre & Lebeau [16]. Then, using this Carleman inequality, we prove the

result of Lemma 2.1 but in a ball and for potentials a and b with sufficiently small L∞

norms. Next, in the third step we will show the result in small balls and, finally, we will

conclude the proof.

Step 1: A local Carleman inequality.

Lemma B.1 Let U ⊂ �N be an open set, K ⊂ U a nonempty compact set, ajk ∈ C∞(�N)

for 1 � j � s, 1 � k � N and ϕ ∈ D(�N). Let us set

L1f =

s∑
j=1

N∑
k=1

ajk∂kfj ∀f = (f1, . . . , fs) ∈ L2(U)s

and

a0(x, ξ) =

N∑
j=1

(
ξ2
j − (∂jϕ(x))2

)
, b0(x, ξ) = 2

N∑
j=1

ξj ∂jϕ(x) ∀(x, ξ) ∈ U × �N

and let us assume that ϕ satisfies the following property:⎧⎨⎩
∇ϕ does not vanish in U; furthermore,

∃C0 > 0 such that ∂ξa0(x, ξ) · ∂xb0(x, ξ) − ∂xa0(x, ξ) · ∂ξb0(x, ξ) � C0

for all (x, ξ) ∈ U × �N such that a0(x, ξ) = b0(x, ξ) = 0.

(B 1)

Then, there exist constants C > 0 and h1 > 0 such that, for any couple (y, F) ∈ H1
0 (U) ×

L2(U)s satisfying supp (y) ∪ supp (F) ⊂ K and ∆y − L1F ∈ L2(U) and any h ∈ (0, h1), one
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has: ∫
K

e2ϕ/h(|y|2 + h2|∇y|2) dx � C

∫
K

e2ϕ/h(h|F |2 + h3|∆y − L1F |2) dx. (B 2)

Step 2: A unique continuation property for small coefficients.

We will deduce here the result of Lemma 2.1 but for potentials with sufficiently small

norm.

Let us consider (2.1) in B(0; 2), where B(0; r) will denote the open ball of radius r > 0

centred at the origin:{
−ν∆v + (a · ∇)v + (v · ∇)b+ ∇q = 0 in B(0; 2),

∇ · v = 0 in B(0; 2).
(B 3)

We have the following result, which is a modified version of Lemma 3.1 in Fabre &

Lebeau [16] (where b ≡ 0):

Lemma B.2 Assume that a ∈ L∞(B(0; 2))N , b ∈ L∞(B(0; 2))N and ∇ · a = ∇ · b = 0 in

B(0; 2). Then there exists ε > 0 such that, if

‖a‖∞ � ε and ‖b‖∞ � ε,

any solution (v, q) ∈ H1(B(0; 2))N × L2(B(0; 2)) of (B 3) satisfying v = 0 in B(0; 1) is zero

everywhere.

Proof of Lemma B.2 Let (v, q) ∈ H1(B(0; 2))N×L2(B(0; 2)) be a solution of (B 3) satisfying

v = 0 in B(0; 1). Since q ≡ Const. in B(0; 1), it is not restrictive to assume that it also

vanishes in B(0; 1). Let us notice that Lemma B.1 can be applied in this context for some

appropriate choices of U, K , L1 and ϕ.

Indeed, let us choose ε > 0 and let us set

K =

{
x ∈ �N :

3

4
� |x| � 2 − ε

}
, U =

{
x ∈ �N :

1

2
< |x| < 2

}
.

For δ > 4, let ϕ ∈ D(�N) be such that

ϕ(x) = e−δ|x|2 ∀ x ∈ B(0; 2). (B 4)

Arguing as in Fabre & Lebeau [16] we get

∂ξa0(x, ξ) · ∂xb0(x, ξ) − ∂xa0(x, ξ) · ∂ξb0(x, ξ) � 16δ3e−3δ/4

(
δ

4
− 1

)
.

Therefore, (B 1) is satisfied by this function ϕ in this open set U. Now, let us introduce a

function ζ ∈ D(
◦
K) such that

ζ = 1 in 1 − ε � |x| � 2 − 2ε
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and we set

ṽ = ζv, q̃ = ζq, (B 5)

where (v, q) ∈ H1(B(0; 2))N × L2(B(0; 2)) is a solution of (B 3). Obviously, we have

(ṽ, q̃) ∈ H1
0 (

◦
K)N × L2(

◦
K).

Using (B 3), we obtain that

−ν∆ṽ + ∇q̃ + ∇ · (ṽb) = − (a · ∇) ṽ + J1 in
◦
K, (B 6)

where J1 ∈ L2(
◦
K) is given by

J1 = b(v · ∇)ζ − 2ν∇ζ · ∇v − νv∆ζ + (a · ∇ζ)v + q∇ζ, (B 7)

since ∇ · v = 0 in U. We take the divergence in the first equation of (B 3) and we deduce

∆q = −∇ · ((a · ∇)v + (v · ∇)b) = −∇ · ((a · ∇)v + (∇v) b), (B 8)

where we have used that

∂i(vj∂jbi) = ∂j(∂ivjbi),

which is a consequence of the identities ∇ · v = ∇ · b = 0. Then, taking into account (B 8)

we deduce that q̃ satisfies

∆q̃ + ∇ · ((a · ∇)ṽ) + ∇ · ((∇ṽ)b) = J2 in
◦
K , (B 9)

with J2 ∈ L2(
◦
K) given by

J2 = (a · ∇)v · ∇ζ + ∇ · ((a · ∇ζ)v) + ∇ζ · ((b · ∇)v)

+ ∇ · ((b · ∇ζ)v) + 2∇ζ · ∇q + q∆ζ. (B 10)

So, we are ready now to apply Lemma B.1. In fact, we will do this twice. More precisely,

let us first take s = N + 1,

L1f = −1

ν
∂kf − 1

ν

N∑
j=1

∂jfj ∀f = (f0, f1, . . . , fN) ∈ L2(U)N+1,

y = ṽk and F = (q̃, ṽ1bk, . . . , ṽNbk). Thanks to (B 6), we have (y, F) ∈ H1
0 (U) × L2(U),

∆y − L1F ∈ L2(U) and supp (y) ∪ supp (F) ⊂ K . Applying Lemma B.1 we deduce that

there exist C > 0 and h1 > 0 such that, for any h ∈ (0, h1), the following holds:∫
K

e2ϕ/h(|ṽ|2 + h2|∇ṽ|2) dx � Ch

∫
K

e2ϕ/h(|q̃|2 + |bṽ|2) dx

+Ch3

∫
K

e2ϕ/h|(a · ∇)ṽ|2 dx+ Ch3

∫
K

e2ϕ/h|J1|2 dx

https://doi.org/10.1017/S0956792507006821 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507006821


Identification of a single body in a Navier-Stokes fluid 77

with J1 ∈ L2(
◦
K) given by (B 7). Thus, we also have∫

K

e2ϕ/h(|ṽ|2 + h2|∇ṽ|2) dx � Ch

∫
K

e2ϕ/h|q̃|2 dx+ Ch3

∫
K

e2ϕ/h|J1|2 dx (B 11)

for sufficiently small h, more precisely, for 0 < h < h2 := min(h1, C(‖a‖−2
∞ + ‖b‖−2

∞ ).

Notice that J1 is independent of h and has the same support than ∇ζ. This we will use

below.

To get a suitable estimates for the first term in the right hand side of (B 11), let us use

again Lemma B.1. This time, we take s = N,

L1f = −∇ · f ∀f = (f1, . . . , fN) ∈ L2(U)N,

y = q̃ and F = (a · ∇)ṽ+(∇ṽ)b. In view of (B 5) and (B 9), we have (y, F) ∈ H1
0 (U)×L2(U)N ,

∆y − L1F ∈ L2(U) and supp (y) ∪ supp (F) ⊂ K . Therefore, thanks to Lemma B.1 there

exist C > 0 and h3 > 0 such that⎧⎪⎨⎪⎩
∫
K

e2ϕ/h(|q̃|2 + h2|∇q̃|2) dx � Ch

∫
K

e2ϕ/h(|(a · ∇)ṽ|2 + |(∇ṽ)b|2) dx

+Ch3

∫
K

e2ϕ/h|J2|2 dx
(B 12)

for any h ∈ (0, h3), where J2 ∈ L2(
◦
K) is given by (B 10).

Taking into account the inequality (B 12) in (B 11) we deduce that there exists a positive

constant R0 such that⎧⎪⎨⎪⎩
∫
K

e2ϕ/h(|ṽ|2 + h2|∇ṽ|2) dx � R0h
2(‖a‖2

∞ + ‖b‖2
∞)

∫
K

e2ϕ/h|∇ṽ|2 dx

+

∫
K

e2ϕ/h(h3|J1|2 + h4|J2|2) dx
(B 13)

for any h ∈ (0, h4) with h4 = min(h2, h3), where J1 and J2 are respectively given by (B 7)

and (B 10). Notice that h4 can be chosen in the form:

h4 = Cmin(1, ‖a‖−2
∞ , ‖b‖−2

∞ ).

Let us now assume that

‖a‖∞ � ε and ‖b‖∞ � ε, where ε :=
1

2
√
R0

.

Then, we deduce from (B 13) that∫
K

e2ϕ/h(|ṽ|2 + h2|∇ṽ|2) dx � C

∫
K

e2ϕ/h(h3|J1|2 + h4|J2|2) dx (B 14)

for any h ∈ (0, h4).

Finally, to conclude the proof, we will argue as in Fabre & Lebeau [16].

Since J1 and J2 (respectively given by (B 7) and (B 10)) have the same support than ∇ζ,
we obtain that J1 and J2 vanish outside the ring 2 − 2ε � |x| � 2.
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We have from (B 4) that ϕ is a radially decreasing positive function in U, so we have∫
K

e2ϕ/h(h3|J1|2 + h4|J2|2) dx � e
2ϕ(2−2ε)

h

∫
K

(h3|J1|2 + h4|J2|2 dx. (B 15)

On the other hand, we also have∫
K

e2ϕ/h(|ṽ|2 + h2|∇ṽ|2) dx�

∫
1�|x|�2−3ε

e2ϕ/h(|ṽ|2 + h2|∇ṽ|2) dx

� e
2ϕ(2−3ε)

h

∫
1�|x|�2−3ε

(|ṽ|2 + h2|∇ṽ|2) dx.
(B 16)

Combining (B 14), (B 15) and (B 16), the following is found:∫
1�|x|�2−3ε

(|ṽ|2 + h2|∇ṽ|2) dx � Ch3e
2
h
(ϕ(2−2ε)−ϕ(2−3ε))

∫
U

|J3|2 dx, (B 17)

where J3 ∈ L2(
◦
K) is independent of h. Using that ϕ(2 − 3ε) − ϕ(2 − 2ε) > 0 and passing

to the limit in (B 17) as h → 0, we get

ṽ = 0 in 1 � |x| � 2 − 3ε.

As (B 5) shows, we have ṽ = ζv and, since ζ = 1 in 1 � |x| � 2 − 3ε, we finally deduce

that v = 0 in B(0; 2 − 3ε). Since ε > 0 is arbitrarily small, we finally deduce that v vanish

identically. �

Step 3: A unique continuation for small balls.

We can now deduce a result similar to Lemma B.2 for not necessarily small coefficients

but in a small ball. More precisely, arguing as in the proof of Lemma 3.2 in [16], we

obtain from Lemma B.2 the following:

Lemma B.3 Let G be an open connected such that x0 ∈ G. Assume that a ∈ L∞(G)N ,

b ∈ L∞(G)N and ∇ · a = ∇ · b = 0 in G. There exists r0 > 0 such that, if 0 < r < r0 , any

solution (v, q) ∈ H1(G)N × L2(G) of (2.1) satisfying v = 0 in B(x0; r) vanishes in B(x0; 2r).

Furthermore, r0 can be chosen as follows:

r0 = min

(
ε

‖a‖∞
,

ε

‖b‖∞
,
ρ

2

)
, (B 18)

where ε is the constant given in Lemma B.2 and ρ is such that B(0; ρ) ⊂ G.

Step 4: Conclusion.

To achieve the proof of Lemma 2.1, we consider a solution (v, q) of (2.1) satisfying v = 0

in Ω.

We assume that B(x0; ρ0) ⊂ Ω and let x̄ be another point in G. There exists γ̃ ∈ C∞([0, 1])

with γ̃(0) = x0, γ̃(1) = x̄ and such that γ̃(t) ∈ G for all t ∈ [0, 1]. Let Ū ⊂⊂ G be a bounded

https://doi.org/10.1017/S0956792507006821 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507006821


Identification of a single body in a Navier-Stokes fluid 79

open neighbourhood of γ̃([0, 1]). There exists ρ1 ∈ (0, ρ0] such that B(x; ρ1) ⊂ U for all

x ∈ γ̃([0, 1]). Let us set

r0 = min

(
ε

‖a‖∞
,

ε

‖b‖∞
,
ρ1

2

)
.

In view of Lemma B.3, for r ∈ (0, r0) and any x ∈ γ̃([0, 1]), the equalities v = 0 and η = 0

in B(x; r) imply v = 0 in B(x; 2r).

We fix now r with 0 < r < r0 . It is then clear that

sup{ t ∈ [0, 1] : u = 0 in B(γ(τ); r) ∀τ � t } = 1.

Hence, v = 0 in B(x̄; r). �
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