Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-06T03:07:29.990Z Has data issue: false hasContentIssue false

On the breakup of air bubbles in a Hele-Shaw cell

Published online by Cambridge University Press:  21 December 2010

PAVEL ETINGOF
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA e-mail: etingof@math.mit.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the problem of breakup of an air bubble in a Hele-Shaw cell. In particular, we propose some sufficient conditions of breakup of the bubble, and ways to find the contraction points of its parts. We also study regulated contraction of a pair of bubbles (in which the rates of air extraction from the bubbles are controlled) and study various asymptotic questions (such as the asymptotics of contraction of a bubble to a degenerate critical point, and asymptotics of contraction of a small bubble in the presence of a big bubble)

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

References

[1]Entov, V. M. & Etingof, P. I. (1991) Bubble contraction in Hele-Shaw cells. Q. J. Mech. Appl. Math. 44 (4), 507535.CrossRefGoogle Scholar
[2]Entov, V. M. & Etingof, P. I. (1997) Viscous flows with time-dependent free boundaries in a non-planar Hele-Shaw cell. Eur. J. Appl. Math. 8 (1), 2335.CrossRefGoogle Scholar
[3]Gustafsson, B. (1983) Quadrature identities and the Schottky double. Acta Appl. Math. 1 (3), 209240.CrossRefGoogle Scholar
[4]Gustafsson, B. & Vasiliev, A. (2006) Conformal and Potential Analysis in Hele-Shaw Cells. Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel.Google Scholar
[5]Howison, S. D. (1986) Cusp development in Hele-Shaw flow with a free surface. SIAM J. Appl. Math. 46 (1), 2026.CrossRefGoogle Scholar
[6]Kufarev, P. P. (1950) The problem of the contour of the oil-bearing region for a circle with an arbitrary number of gaps (in Russian). Dokl. Akad. Nauk SSSR (NS) 75, 507510.Google Scholar
[7]Lee, S.-Y., Bettelheim, E. & Wiegmann, P. (2006) Bubble break-off in Hele-Shaw flows: singularities and integrable structures. Physica D 219 (1), 2234.Google Scholar
[8]Polubarinova-Kochina, P. Y. (1945) On the displacement of the oil-bearing contour. C. R. (Dokl.) Acad. Sci. URSS (NS) 47, 250254.Google Scholar
[9]Richardson, S. (1981) Some Hele-Shaw flows with time-dependent free boundaries. J. Fluid Mech. 102, 263278.CrossRefGoogle Scholar
[10]Varchenko, A. N. & Etingof, P. I. (1992) Why the Boundary of a Round Drop Becomes a Curve of Order Four. American Mathematical Society, Providence, RI.Google Scholar