Published online by Cambridge University Press: 20 November 2015
In this paper, we study the following non-local problem: \begin{equation*}\begin{cases}\displaystyle u_t=d{1\over\rho}\nabla\cdot(\rho V\nabla u)+b(\bar{u}-u)+ g(x) u^2(1-u) &\displaystyle \quad \textrm{in} \; \Omega\times (0,\infty),\\[3pt]\displaystyle 0\leq u\leq 1 & \quad\displaystyle \textrm{in}\ \Omega\times (0,\infty),\\[3pt]\displaystyle \nu \cdot V\nabla u=0 &\displaystyle \quad \textrm{on} \; \partial\Omega\times (0,\infty).\vspace*{-2pt}\end{cases}\end{equation*}