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In this paper, we study the following non-local problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = d

1

ρ
∇ · (ρV∇u) + b(ū− u) + g(x)u2(1 − u) in Ω × (0,∞),

0 � u � 1 in Ω × (0,∞),

ν · V∇u = 0 on ∂Ω × (0,∞).

This model, proposed by T. Nagylaki, describes the evolution of two alleles under the joint

action of selection, migration, and partial panmixia – a non-local term, for the complete

dominance case, where g(x) is assumed to change sign at least once to reflect the diversity of

the environment. First, properties for general non-local problems are studied. Then, existence

of non-trivial steady states, in terms of the diffusion coefficient d and the partial panmixia

rate b, is obtained under different signs of the integral
∫
Ω
g(x)dx. Furthermore, stability and

instability properties for non-trivial steady states, as well as the trivial steady states u ≡ 0

and u ≡ 1 are investigated. Our results illustrate how the non-local term – namely, the partial

panmixia – helps the migration in this model.

Key words: partial panmixia, non-local effects, non-trivial steady states, stability

1 Introduction

The aim of this paper is to study a genetic model of two alleles with partial panmixia in

the complete dominance case.

To motivate our studies, first recall the model dealing with two types of genes (alleles)

A1, A2 as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = dΔu+ g(x)u(1 − u)[hu+ (1 − h)(1 − u)] in Ω × (0,∞),

0 � u � 1 in Ω × (0,∞),

∂u/∂ν = 0 on ∂Ω × (0,∞),

(1.1)
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where Ω is a bounded smooth domain in �N , N � 1, ν is the unit outer normal vector to

∂Ω, g(x) changes signs in Ω and 0 � h � 1 is a constant. In this model, u(x, t) represents

the frequency of the allele A1 at location x and time t. Thus, 1 − u(x, t) denotes that

of the allele A2 and therefore only solutions with 0 � u � 1 are under consideration.

Moreover, the allele A1 has selective advantage in the region where g(x) > 0 and selective

disadvantage where g(x) < 0. The assumption that g(x) changes sign in Ω signifies that

the environment is so heterogeneous that the selection changes its direction at least once

in Ω. (See [3, 15, 23] for more details of the derivation for the model.)

The constant h represents the degree of dominance which plays an important role in

determining the qualitative properties of solutions to equation (1.1). For the case without

dominance, i.e. 0 < h < 1, the existence of non-trivial steady states has been studied in [3]

and [21]. Under the more stringent condition 1/3 � h � 2/3, the uniqueness of non-trivial

steady states was verified in [1, 5] and [10]. However, the case with complete dominance,

i.e. h = 1, which means that A2 is completely dominant, or similarly h = 0, which implies

that A1 is completely dominant, seems more challenging. Because in this case the linearized

problem at one of the trivial steady states always has zero as the principal eigenvalue,

which makes it impossible to determine the local stability based on linearized analysis

and different approaches are needed. It remained completely open until 2010 when

progress was finally made in [12,19] concerning the existence and stabilities properties of

non-trivial steady states; however, to this date, the uniqueness is still not resolved.

Furthermore, in the model (1.1), the term Δu represents population dispersal, which

corresponds to the diffusion approximation for short-distance migration. From the as-

sumption that most species have a small portion of long-distance migrants, recently partial

panmixia is introduced as the limiting case of long-distance migration. See [16–18] and the

references therein. More precisely, in [17], if ρ(x) > 0 on Ω is the normalized population

density, i.e.
∫
Ω
ρ(x)dx = 1, and, for any function P (x, t), its averages with respect to ρ(x)

is denoted by

P̄ (t) =

∫
Ω

P (x, t)ρ(x)dx,

then global panmixia is represented by the term B(ū− u), where B is the scaled panmictic

rate. Some general results concerning the effect of incorporating partial panmixia into

single-locus clines maintained by migration and selection were also established in [17].

These analyses have been extended in [11]. Among other things, in [11], the effect of the

parameter B on the dynamics of the model with conservative migration

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut =

1

ρ
∇ · (ρV∇u) + B(ū− u) + λg(x)f(u) in Ω × (0,∞),

0 � u � 1 in Ω × (0,∞),

ν · V∇u = 0 on ∂Ω × (0,∞),

(1.2)

is studied for the case without dominance. Here, V (x) denotes the N × N symmetric,

positive definite, single-generation covariance matrix of local migration, the positive

constant λ represents the selection intensity, and f satisfies

f ∈ C2([0, 1]), f(0) = f(1) = 0, f > 0 in (0, 1) and f′(0) > 0 > f′(1). (1.3)
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In this paper, we consider the complete dominance case with partial panmixia

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = d

1

ρ
∇ · (ρV∇u) + b(ū− u) + g(x)u2(1 − u) in Ω × (0,∞),

0 � u � 1 in Ω × (0,∞),

ν · V∇u = 0 on ∂Ω × (0,∞),

(1.4)

where, in comparison to the model (1.2), d > 0 and b > 0 are the ratios of the local

and non-local migration rates to the intensity of selection respectively. It is clear that the

function u2(1 − u) in the reaction term of model (1.4) does not satisfies (1.3).

Remark 1.1 Notice that the choices of parameters in model (1.4) are different from those

in (1.2). This is because we are interested in studying the interaction between local and

non-local diffusion terms in this paper.

In this paper, we will always assume that

(A) ρ(x) > 0 in Ω,
∫
Ω
ρ(x)dx = 1, ρ(x) ∈ C1,α(Ω̄), for some 0 < α < 1. The

matrix V (x) = (vij(x))1�i,j�N designates an N ×N symmetric, positive

definite matrix, uniformly with respect to x, with vij(x) ∈ C1,α(Ω̄), i.e. there exists

a positive constant κ such that

ξ� · V (x)ξ � κ|ξ|2 for ∀ξ ∈ �N, x ∈ Ω.

(A1) g(x) ∈ Cα(Ω̄), and changes sign in Ω.

As a preliminary for our study of the model (1.4), in the first part of this paper, we

consider a general non-local problem as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d
1

ρ
∇ · (ρV∇u) + f(x, u, ū) in Ω × (0, T ),

ν · V∇u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

(1.5)

and always impose the conditions (A) and

(A2) f(x, u, ū) is Cα for x ∈ Ω̄ and C1 in u and ū.

Several basic properties of (1.5) will be discussed. First, the local existence and unique-

ness of (1.5), as well as backward uniqueness, will be established in Theorems 2.1 and

2.2 respectively. Then in Section 2.3, we will demonstrate that the comparison principle

holds for problem (1.5) with fū � 0. We will also present an example, which shows that

problem (1.5) might not admit comparison principles if the condition fū � 0 is violated.

Finally, in Section 2.4, it is proved that if problem (1.5) admits a Lyapunov functional,

then its ω-limit set ω[u0] consists of only steady states. Without non-local terms, these

results are classical for semi-linear parabolic equations, the proofs are also quite standard.

The details will be included for the convenience of readers.
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In the second part of this paper, we will focus on model (1.4). In fact, we will study a

more general problem than (1.4) as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = d

1

ρ
∇ · (ρV∇u) + b(ū− u) + g(x)f(u) in Ω × (0,∞),

0 � u � 1 in Ω × (0,∞),

ν · V∇u = 0 on ∂Ω × (0,∞),

(1.6)

where it is assumed that

(A3) f ∈ C1([0, 1]), f(0) = f(1) = 0, f > 0 in (0, 1).

It is worth pointing out that under assumption (A3), f could be degenerate of any order

at 0 and/or 1.

Let u∗(x) denote a steady state of (1.6) with 0 � u∗ � 1, by the maximum principle, it

is easy to see that there are only two possibilities:

• u∗(x) ≡ 0 or u∗(x) ≡ 1, i.e. a trivial steady state;

• 0 < u∗(x) < 1 in Ω̄. In this case, u∗ must be non-constant, i.e. a non-trivial steady state.

First, the existence and non-existence properties of non-trivial steady states of (1.6) will

be investigated. For existence, our main result can be stated in two cases depending on ḡ

as follows.

Theorem 1.1 Suppose that (A), (A1) and (A3) hold.

(i) ḡ = 0: Then, (1.6) admits a stable non-trivial steady state for any d, b > 0.

(ii) ḡ �= 0: Then, (1.6) admits a stable non-trivial steady state for d, b > 0 small.

For non-existence, we present our main result in three cases depending on ḡ.

Theorem 1.2 Suppose that (A), (A1) and (A3) hold.

(i) ḡ �= 0: If f satisfies that

lim
s→0+

f(s)

sk1
= a1 > 0 for some k1 � 1, and (1.7)

lim
s→1−

f(s)

(1 − s)k2
= a2 > 0 for some k2 � 1, (1.8)

then there does not exist non-trivial steady state of (1.6) for d+ b large.

(ii) ḡ > 0: If f satisfies (1.8) and

f′(s) � 0 in (0, δ0) for some δ0 > 0, (1.9)

then (1.6) has no non-trivial steady state for d+ b large.

(iii) ḡ < 0: If f satisfies (1.7) and

f′(s) � 0 in (1 − δ0, 1) for some δ0 > 0, (1.10)

then (1.6) does not admit non-trivial steady state for d+ b large.
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Remark 1.2 Theorems 1.1 and 1.2 confirm our belief that partial panmixia seems to further

enhance the effects of random dispersal; in fact, it seems that they play similar roles in this

selection-migration model. However, the proofs are much more involved now and require new

ideas. We will address these difficulties more specifically in Section 3.

Next, we analyze the stability properties of the two trivial steady states u ≡ 0 and u ≡ 1

of (1.6). In the following, let u(·, t; u0) denote the unique classical solution of (1.6) with

initial value u0 ∈ C(Ω̄). Since for problem (1.6), only solutions with values in [0, 1] are in

consideration, define

K := {u ∈ C(Ω̄) : 0 � u(x) � 1, ∀ x ∈ Ω̄}. (1.11)

By maximum principle, it is easy to show that u0 ∈ K implies that u(·, t; u0) ∈ K. Therefore,

we are mainly interested in the stability of the steady state u∗ relative to K. We say u∗

is stable relative to K if for each ε > 0 there is δ > 0 such that for u0 ∈ K and

‖u0 − u∗‖L∞ � δ, the solution ‖u(·, t; u0)− u∗‖L∞ � ε for all t > 0. It is said to be unstable

if it is not stable. In particular, u ≡ 0 is stable relative to K if and only if u ≡ 0 is stable

from above and similarly u ≡ 1 is stable relative to K if and only if u ≡ 1 is stable from

below. Moreover, we say u∗ is linearly stable if the linearized operator L of (1.6) at u∗

only has eigenvalues with negative real parts. It is said to be linearly unstable if L has an

eigenvalue with positive real part.

We discuss the stability of u ≡ 0 first. It is worth pointing out that, compared with

model (1.2), the key feature in model (1.4) is that the function u2(1 − u) in the reaction

term is degenerate at 0. Thus, the condition f′(0) = 0 will be imposed while studying the

stability of u ≡ 0. The main result here is as follows.

Theorem 1.3 Under the assumptions (A), (A1) and (A3), the following statements hold

for problem (1.6).

(i) ḡ = 0: If (1.9) holds with |{s ∈ (0, δ0) : f′(s) = 0}| = 0 for some δ0 > 0, then u ≡ 0

is unstable for any d, b > 0.

(ii) ḡ > 0: Then, u ≡ 0 is unstable for any d, b > 0 provided that either (1.7) or (1.9)

holds.

(iii) ḡ < 0: If f′(0) = 0, (1.7) holds and either (1.8) or (1.10) is satisfied, then u ≡ 0 is

stable for any d, b > 0.

The proof of Theorem 1.3 is based on the techniques devised in proving [12, Theorem

1.1] – a combination of variational method and degree theory.

About the stability of u ≡ 1, we present two results. The first one is a dual version of

Theorem 1.3.

Theorem 1.4 Under the assumptions (A), (A1) and (A3), the following statements hold

for problem (1.6).

(i) ḡ = 0: If (1.10) holds with |{s ∈ (1 − δ0, 1) : f′(s) = 0}| = 0 for some δ0 > 0, then

u ≡ 1 is unstable for any d, b > 0.
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(ii) ḡ < 0: Then, u ≡ 1 is unstable for any d, b > 0 provided that either (1.8) or (1.10)

holds.

(iii) ḡ > 0: If f′(1) = 0, (1.8) holds and either (1.7) or (1.9) is imposed, then u ≡ 1 is

stable for any d, b > 0.

The second result is more closely related to model (1.4), as the condition that f′(1) < 0 is

imposed. To state the result, we denote the principal eigenvalue of the following non-local

eigenvalue problem:

b(φ̄− φ) + g(x)f′(1)φ = μφ in Ω, (1.12)

by

μ0(b) = sup
φ∈L2(Ω)\{0}

∫
Ω

[
−b(φ2 − φ̄2) + g(x)f′(1)φ2

]
ρdx∫

Ω
φ2ρdx

; (1.13)

and the principal eigenvalue of the “local” problem

⎧⎨
⎩
d
1

ρ
∇ · [ρV∇ϕ] + g(x)f′(1)ϕ = �ϕ in Ω,

ν · V∇ψ = 0 on ∂Ω,

(1.14)

by �0(d).

Theorem 1.5 For problem (1.6), assume that (A), (A1), (A3) are valid and f′(1) < 0.

(i) ḡ � 0: u ≡ 1 is linearly unstable for all d, b > 0.

(ii) ḡ > 0: There exist b∗ > 0 and d∗ > 0 such that u ≡ 1 is linearly stable if either

d > 0, b � b∗ or d � d∗, b > 0. In fact, b∗, d∗ are the unique roots of μ0(b) = 0,

�0(d) = 0 respectively. Moreover, there exists a strictly decreasing, concave continuous

function D = D(b) in [0, b∗] with D(0) = d∗ and D(b∗) = 0 such that for 0 < b < b∗,

u ≡ 1 is linearly stable if d > D(b) and linearly unstable if 0 < d < D(b).

Remark 1.3 Notice that, the condition f′(1) < 0 in Theorem 1.5 is stronger than the condi-

tions in (i) and (ii) of Theorem 1.4. Indeed when ḡ � 0, the instability of u ≡ 1 in (i) and

(ii) of Theorem 1.4 can be improved to be linear instability as stated in (i) of Theorem 1.5.

However, when ḡ > 0, the stability properties of u ≡ 1 for the case f′(1) = 0 in Theorem

1.4 (iii) are dramatically different from that of the case f′(1) < 0 in Theorem 1.5 (ii).

Indeed, when f′(1) = 0, u ≡ 1 is always unstable. While when f′(1) < 0, the stability of

u ≡ 1 changes as d and b vary and our result indicates that the local migration rate d and

non-local migration rate b play similar roles in the change of stability.

The stability analysis in Theorems 1.3–1.5 has many consequences. First, under certain

conditions, when ḡ = 0, both u ≡ 0 and u ≡ 1 are unstable for all d, b > 0. Thus,

(1.6) admits at least one stable steady state. This has been proved in Theorem 1.1 using

variational method. Moreover, if ḡ �= 0, some multiplicity results and global asymptotic

behaviours of system (1.6) follow easily from Theorems 1.1–1.5 combined. For clarity, we

now summarize these consequences in three theorems based on the signs of ḡ.
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Theorem 1.6 Suppose that (A), (A1), (A3) hold and ḡ = 0. Assume further that (1.9)

holds with |{s ∈ (0, δ0) : f′(s) = 0}| = 0 and (1.10) holds with |{s ∈ (1 − δ0, 1) : f′(s) =

0}| = 0. Then, (1.6) admits at least one non-trivial stable steady state for all d, b > 0.

Theorem 1.7 Suppose that (A), (A1), (A3) hold and ḡ < 0. In addition, assume that

f′(0) = 0, condition (1.7) holds and either (1.8) or (1.10) is satisfied. Then for d, b both

small, (1.6) admits at least two non-trivial steady states – one is stable and the other is

unstable. Moreover, u ≡ 0 is globally stable for d+ b large.

Theorem 1.8 Suppose that (A), (A1), (A3) hold and ḡ > 0. The following statements hold.

(i) Assume that f′(1) = 0, condition (1.8) holds and either (1.7) or (1.9) is imposed.

Then for d, b both small, (1.6) admits at least two non-trivial steady states – one is

stable and the other is unstable. Moreover, u ≡ 1 is globally stable for d+ b large.

(ii) Assume that f′(1) < 0 and either (1.7) or (1.9) holds, then for 0 � b < b∗ and

0 < d < D(b), there exists a non-trivial stable steady state of (1.6). Moreover, u ≡ 1

is globally stable for d+ b large.

In summary, we wish to reiterate our earlier remark that the non-local partial panmixia

seems to have similar qualitative effects as the local random diffusion. It would be

interesting to estimate how quantitatively this non-local term affects this model. To be

more specific, a natural question is whether the introduction of non-local partial panmixia

is advantageous to the existence of non-trivial steady states.

This paper is organized as follows. Section 2 is devoted to the study of various properties

of the general non-local problem (1.5), which will be needed in proving our main results.

In Section 3, we focus on the genetic model (1.6). We will establish Theorems 1.1, 1.2 in

Sections 3.1 and 3.2 respectively, Theorems 1.3–1.5 are proved in Section 3.3. Finally, in

Section 3.4, short proofs of Theorems 1.6–1.8 will be included.

2 General results

In this section, we mainly consider the general non-local problem (1.5) and for simplicity

denote Au ≡ d 1
ρ
∇ · (ρV∇u).

2.1 Local existence and uniqueness

We first deal with local existence, uniqueness, as well as continuous dependence on initial

data, of solutions to problem (1.5).

Theorem 2.1 Suppose that (A) and (A2) hold and u0 ∈ L∞(Ω). Then, the problem (1.5)

has a unique solution u ∈ C2+α,1+α/2(Ω̄ × (0, T ]) for T > 0 small. Moreover, for u0, v0 ∈
L∞(Ω) and 1 < p � ∞, we have

‖u(·, T ; u0) − v(·, T ; v0)‖Lp � C‖u0 − v0‖Lp ,

where C depends on p, T and Ω only.
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Proof For convenience, the following notations are prepared. First, for 1 < p < ∞, let

X = Lp(Ω) and define, for u ∈ X,

‖u‖X = ‖u‖Lp =

(∫
Ω

|u|pρdx
)1/p

.

Then, the domain of A is

D(A) = {u ∈W 2,p(Ω) : ν · V∇u = 0 on ∂Ω}.

Here,

W 2,p(Ω) = {u ∈W 2(Ω) | Dβu ∈ Lp(Ω) for all |β| � 2},
is equipped with the norm

‖u‖W 2,p =

⎛
⎝∫

Ω

∑
|β|�2

|Dβu|pρdx

⎞
⎠

1/p

,

where β = (β1, . . . , βn), βi =integer� 0, |β| =
∑
βi. Next, let L(X) be the Banach algebra

of all bounded linear operators P : X → X, endowed with the norm

‖P‖L(X) = sup
u∈X, ‖u‖X=1

‖Pu‖X.

Given u0 ∈ L∞(Ω), fix any T > 0 and set

R = 4 sup
0<t�T

∥∥etAu0

∥∥
X
, M0 = sup

0�t�T
‖etA‖L(X).

Also denote Y = {u ∈ C((0, t0];X) : ‖u(·, t)‖X � R, ∀ t ∈ (0, t0]}, where t0 ∈ (0, T ] will be

chosen properly, and

‖u‖C((0,t0];X) = sup
0<s�t0

‖u(·, s)‖X.

For v ∈ Y , define

Γ (v)(·, t) = etAu0 +

∫ t

0

e(t−s)Af(·, v(·, s), v̄(s))ds.

We claim that Γ is a contraction mapping which maps Y into itself provided that t0 is

sufficiently small.

Assume that v1, v2 ∈ Y . First, according to assumption (A2), there exists L = L(R) such

that

‖f(x, v1, v̄1) − f(x, v2, v̄2)‖X � L‖v1 − v2‖X. (2.1)

Then, we have

‖Γ (v1) − Γ (v2)‖C((0,t0];X)

=

∥∥∥∥
∫ t

0

e(t−s)A[f(·, v1(·, s), v̄1(s)) − f(·, v2(·, s), v̄2(s))]ds
∥∥∥∥
C((0,t0];X)

� t0LM0 ‖v1 − v2‖C((0,t0];X) �
1

2
‖v1 − v2‖C((0,t0];X) , (2.2)
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if t0 � 1
2
(LM0)

−1. Thus, for v ∈ Y , according to (2.2),

‖Γ (v)‖C((0,t0];X)

� ‖Γ (v) − Γ (0)‖C((0,t0];X) + ‖Γ (0)‖C((0,t0];X)

�
1

2
‖v‖C((0,t0];X) +

∥∥∥∥etAu0 +

∫ t

0

e(t−s)Af(·, 0, 0)ds

∥∥∥∥
C((0,t0];X)

�
1

2
R +

1

4
R + t0M0‖f(·, 0, 0)‖X � R,

provided that t0 is sufficiently small.

Hence for t0 small, Γ has a unique fixed point in Y , i.e., there exists u(·, t) ∈ Y such

that

u(·, t) = etAu0 +

∫ t

0

e(t−s)Af(·, u(·, s), ū(s))ds. (2.3)

Furthermore, by [13, Proposition 7.1.10], it follows that the problem (1.5) locally admits

a unique solution u(·, t) ∈W 2,p(Ω), i.e., u satisfies (1.5) for 0 < t < t0 and

u ∈ C1((0, t0];X)) ∩ C((0, t0];D(A)) ∩ C([0, t0];X). (2.4)

Fix any 0 < δ < t0 and denote Qδ = Ω×(δ, t0]. Note that we already have obtained that

u ∈W 2,1
p (Qδ) for any p > 1. Thus, by choosing p properly such that α = 2− (N+2)/p > 0,

we have u ∈ Cα,α/2(Q̄δ). Then, from parabolic regularity and assumptions (A), (A2), it

follows that u ∈ C2+α,1+α/2(Q̄δ). Since δ > 0 is arbitrary, we have u ∈ C2+α,1+α/2(Ω̄ × (0, t])

for t > 0 small.

It remains to verify the continuous dependence on initial data. Due to (2.1) and (2.3),

it is standard to calculate that for 0 < t < t0,

‖u(·, t) − v(·, t)‖X
� ‖etA(u0 − v0)‖X +

∫ t

0

∥∥e(t−s)A [f(·, u(·, s), ū) − f(·, v(·, s), v̄)]
∥∥
X
ds

� M0‖(u0 − v0)‖X +M0Lt‖u− v‖C((0,t0];X).

This implies that when t0 <
1

2M0L
,

‖u− v‖C((0,t0];X) � 2M0‖(u0 − v0)‖X.

For any fixed T > 0, as long as the solutions remain bounded in X, this process can be

repeated finitely many times to achieve the desired conclusion.

Note that so far, we have assumed that X = Lp(Ω) for any 1 < p <∞. To show

‖u(·, t; u0) − v(·, t; v0)‖L∞ � C‖u0 − v0‖L∞ ,

one simply needs set X = L∞(Ω) and repeat the arguments above. We omit the details.

�
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2.2 Backward uniqueness

To study backward uniqueness of problem (1.5), we consider

⎧⎨
⎩
ut = Au+ f(x, u, ū) in Ω × (0, t0],

ν · V∇u = 0 on ∂Ω × (0, t0].
(2.5)

Theorem 2.2 Suppose that (A), (A2) hold and that ut0 (x) satisfies

Aut0 + f(x, ut0 , ūt0 ) = 0.

Let u(x, t) be a solution of (2.5) with u(x, t0) = ut0 (x). Then, u(x, t) ≡ ut0 (x).

Proof Let v(x, t) = u(x, t) − ut0 (x). It is easy to see that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vt = Av + b(x, t)v̄ + c(x, t)v in Ω × (0, t0],

ν · V∇v = 0 on ∂Ω × (0, t0],

v(x, t0) = 0 in Ω,

where

b(x, t) =
f(x, u, ū) − f(x, u, ūt0 )

ū− ūt0
, c(x, t) =

f(x, u, ūt0 ) − f(x, ut0 , ūt0 )

u− ut0
.

Now introduce

Λ(t) =

∫
Ω
[d∇v · (V∇v) + v2]ρdx∫

Ω
v2ρdx

.

Direct computation yields that

1

2
Λ′(t) =

∫
Ω
[d∇v · (V∇vt) + vvt]ρdx∫

Ω
v2ρdx

− Λ(t)

∫
Ω
vvtρdx∫

Ω
v2ρdx

= −
∫
Ω
vt[Av − v + Λ(t)v]ρdx∫

Ω
v2ρdx

= −
∫
Ω
[Av − v + Λ(t)v + v − Λ(t)v + bv̄ + cv][Av − v + Λ(t)v]ρdx∫

Ω
v2ρdx

= −
∫
Ω
[Av − v + Λ(t)v]2ρdx∫

Ω
v2ρdx

+ (Λ(t) − 1)

∫
Ω
v[Av − v + Λ(t)v]ρdx∫

Ω
v2ρdx

−
∫
Ω
[bv̄ + cv][Av − v + Λ(t)v]ρdx∫

Ω
v2ρdx

= −
∫
Ω
[Av − v + Λ(t)v]2ρdx∫

Ω
v2ρdx

−
∫
Ω
[bv̄ + cv][Av − v + Λ(t)v]ρdx∫

Ω
v2ρdx

� −1

2

∫
Ω
[Av − v + Λ(t)v]2ρdx∫

Ω
v2ρdx

+ C
v̄2 +

∫
Ω
v2ρdx∫

Ω
v2ρdx

�
K

2
. (2.6)

https://doi.org/10.1017/S0956792515000601 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000601


Non-local effects 11

Suppose that the conclusion does not hold. Let t1 be the time such that ‖v‖L2 �= 0 for

0 < t < t1, while ‖v‖L2 = 0 for t1 � t � t0. Note that this must be the case due to the

existence and uniqueness result in Theorem 2.1.

Now for 0 < t < t1, by (2.6), we have

1

2

d

dt
ln

1∫
Ω
v2ρdx

= −
∫
Ω
vvtρdx∫

Ω
v2ρdx

= −
∫
Ω
v[Av + bv̄ + cv]ρdx∫

Ω
v2ρdx

= Λ(t) −
∫
Ω
v[v + bv̄ + cv]ρdx∫

Ω
v2ρdx

� Λ(0) +Kt+K0 � K1,

where K1 = Λ(0) +Kt1 +K0. Hence,

1

2

(
ln

1∫
Ω
v2(·, t1)ρdx

− ln
1∫

Ω
v2(·, 0)ρdx

)
� K1t1 <∞.

However, the choice of t1 implies that

ln
1∫

Ω
v2(·, t1)ρdx

= +∞.

This is a contradiction. �

2.3 Comparison principle

Next, we present the comparison principle for the non-local problem (1.5).

Theorem 2.3 In the problem (1.5), suppose that assumptions (A) and (A2) hold, fū � 0

and u0, v0 ∈ L∞(Ω) satisfy u0 � v0 and u0 � v0, then u(x, t; u0) < v(x, t; v0) whenever t > 0

and solutions u(x, t; u0), v(x, t; v0) both exist.

Proof Setting w(x, t) = u(x, t) − v(x, t), we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
wt = Aw + b(x, t)w̄ + c(x, t)w in Ω × (0, T ),

ν · V∇w = 0 on ∂Ω × (0, T ),

w(x, 0) = u0(x) − v0(x) in Ω.

(2.7)

Here, we have assumed that solutions u(x, t; u0), v(x, t; v0) both exist in (0, T ], T > 0, and

b(x, t) =
f(x, u, ū) − f(x, u, v̄)

ū− v̄
� 0, c(x, t) =

f(x, u, v̄) − f(x, v, v̄)

u− v
.

Assume that |c(x, t)| � K for (x, t) ∈ Ω × (0, T ). Setting wK (x, t) = e−Ktw(x, t), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(wK )t = AwK + b(x, t)w̄K + c̃(x, t)wK in Ω × (0, T ),

ν · V∇wK = 0 on ∂Ω × (0, T ),

wK (x, 0) = u0(x) − v0(x) in Ω,

(2.8)
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where c̃(x, t) = c(x, t) − K � 0. Since w̄K (0) < 0, there exists δ > 0 small such that

w̄K(t) < 0 for 0 < t � δ. Therefore,

(wK )t = AwK + b(x, t)w̄K + c̃(x, t)wK � AwK + c̃(x, t)wK

in (x, t) ∈ Ω × (0, δ).

Suppose that (x1, t1) ∈ Ω̄ × (0, δ] satisfies

wK (x1, t1) = sup
x∈Ω̄,0<t<δ

wK(x, t) � 0.

Then, the maximum principle and Hopf boundary lemma together yield a contradiction.

Hence, wK(x, t) < 0 in Ω̄ × (0, δ].

Therefore, without loss of generality, we may assume that wK (x, 0) = u0(x) − v0(x) < 0

in Ω̄. Let t2 denote the time when wK (x, t) < 0 for 0 � t < t2 and there exists x2 ∈ Ω̄ such

that wK (x2, t2) = 0. Then since b(x, t) � 0, we have

(wK )t = AwK + b(x, t)w̄K + c̃(x, t)wK � AwK + c̃(x, t)wK

in (x, t) ∈ Ω× (0, t2]. A similar contradiction can be derived due to the maximum principle

and Hopf boundary lemma. Hence, wK (x, t) < 0 for 0 < t < T . �

Indeed, (1.5) might not enjoy comparison principles if the condition fū � 0 is not

satisfied. For the rest of this sub-section, we will demonstrate that how a counterexample

can be constructed if the condition fū � 0 is violated.

Example 2.1. Consider

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = Δu− u+
up

ūq
in Ω × (0, T ),

∂u

∂ν
= 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) � 0 in Ω,

(2.9)

where Ω = B1(0), 0 < p−1 < q and p > n+2
n

. Problem (2.9) can be viewed as a special case

for the shadow system of an activator–inhibitor model due to Gierer and Meinhardt [8,9],

and we refer interested readers to [7] for properties of general shadow systems.

Let u(x, t; u0) denote the solution of (2.9). It is proved in [8, 9] that blow-up solution

exists for proper choice of initial value u0(x) ∈ C1(Ω̄). However, choosing v0(x) ≡M0 with

M0 = supx∈Ω u0(x), then u(x, t; v0) = V (t) which satisfies

⎧⎨
⎩
Vt = −V + Vp−q in (0, T ),

V (0) = M0.

The condition p − q < 1 guarantees that u(x, t; v0) = V (t) remains finite for all time.

Hence, obviously, u(x, t; u0) � u(x, t; v0) fails for some t > 0, i.e., problem (2.9) does not

support comparison principles.
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Moreover, according to the arguments in [8], if in addition, p > n
n−2

, then for 0 < δ < δ0,

there exists uδ(x) such that u(x, t; uδ) blows up at some finite time Tδ and for 0 < t < Tδ

1

|Ω|

∫
Ω

u(x, t; uδ)dx = c+ O(δ2),

where the positive constant c is independent of δ.

Now, a more interesting counter-example can be constructed as follows. Given any

ε > 0, assume that kε(s) satisfies

• kε(s) is a C1 continuous function in �;

• kε(s) = s−q for s ∈ (c− ε, c+ ε);

• kε is non-decreasing in (−∞, c− 2ε) ∪ (c+ 2ε,∞).

The existence of such functions is obvious. Then, consider the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = Δu− u+ kε(ū)u
p in B1(0) × (0, T ),

∂u

∂ν
= 0 on ∂B1(0) × (0, T ),

u(x, 0) = u0(x) in B1(0).

(2.10)

This corresponds to the case that f = −u + kε(ū)u
p and the condition fū � 0 is only

violated in (c− ε, c+ ε), where ε can be arbitrarily small. However, we can always choose

δ = δ(ε) small enough and u0(x) = uδ such that for 0 < t < Tδ

1

|Ω|

∫
Ω

u(x, t; uδ)dx = c+ O(δ2) ∈ (c− ε, c+ ε).

Hence, with this initial value, the solution of problem (2.10) coincides with that of (2.9),

and based on the previous discussions, when 0 < p− 1 < q and p > n
n−2

, the solution of

(2.10) blows up at finite time and thus comparison principle fails.

2.4 ω-limit set

In this section, we investigate properties of ω-limit set of the solution u(x, t) to problem

(1.5). For clarity, let Y denote a Banach space, then the ω-limit set of the solution u(x, t)

in Y is denoted by ω[u0|Y ] and defined as follows:

ω[u0|Y ] =
{
z ∈ Y | z = lim

n→∞
u(·, tn) where lim

n→∞
tn = ∞

}
.

Before presenting the main result, we propose the following assumption:

(A4) There exist a constant γ > 0 and a functional

J[u](t) =

∫
Ω

[
1

2
d∇u · (V∇u) − F(x, u, ū)

]
ρdx,
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such that if u(x, t) is a classical solution of problem (1.5), then

d

dt
J[u](t) � −γ

∫
Ω

u2
t (x, t)ρdx.

Here comes the main result in this section.

Theorem 2.4 For problem (1.5), assume that (A), (A2) and (A4) are valid. If (1.5) admits

a global solution u(x, t) with

sup
t>0

‖u(·, t)‖Lp � C0 <∞,

for some p > N + 1, then the following statements hold.

(i) ω[u0|L∞(Ω)] �= ∅.
(ii) ω[u0|L∞(Ω)] = ω[u0|C2(Ω̄)].

(iii) ω[u0|L∞(Ω)] consists of only steady states of (1.5).

The following lemma collects some facts on the asymptotics of the heat semi-group

under no-flux boundary conditions, which will be useful in the proof of Theorem 2.4.

Lemma 2.1 Suppose that (A) holds. Let λ1 denote the first non-zero eigenvalue of⎧⎨
⎩
−Aψ = −d1

ρ
∇ · (ρV∇ψ) = λψ in Ω,

ν · V∇ψ = 0 on ∂Ω.

Then, we have the following estimates.

(i) If 1 � q � p � ∞, then for all w ∈ Lq(Ω) with w̄ = 0, we have

‖etAw‖Lp � C1

(
1 + t−

N
2 ( 1

q
− 1

p
)
)
e−λ1t‖w‖Lq for all t > 0.

(ii) If 1 � q � p � ∞, then

‖∇etAw‖Lp � C2

(
1 + t−

1
2− N

2 ( 1
q
− 1

p
)
)
e−λ1t‖w‖Lq for all t > 0

is true for all w ∈ Lq(Ω).

(iii) If 2 � p <∞, then

‖∇etAw‖Lp � C3e
−λ1t‖∇w‖Lp for all t > 0

holds for all w ∈W 1,p(Ω).

This lemma can be verified by applying similar arguments as in [24, Lemma 1.3] with

obvious modifications, since the key element of the proof, the point-wise estimates for

Green’s function of the problem ut = Au with no-flux boundary conditions, has already

been obtained in [14, Theorem 2.2]. We omit the details here.
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The proof of Theorem 2.4 (i) is based on Lemma 2.1, while that of Theorem 2.4 (ii),

(iii) is standard. We include the details here for the convenience of readers.

Proof of Theorem 2.4 (i) Due to parabolic regularity, we assume, without loss of

generality, that u0 ∈ W 1,p(Ω). Again, denote X = Lp(Ω). Recall that by (2.3), u(x, t)

satisfies

u(·, t) = etAu0 +

∫ t

0

e(t−s)Af(·, u(·, s), ū(s))ds.

From (A2) and Lemma 2.1, it follows that

‖∇u(·, t)‖X � ‖∇etAu0‖X +

∫ t

0

‖∇e(t−s)Af(·, u(·, s), ū(s))‖Xds

� C3‖∇u0‖X + C2

∫ t

0

(
1 + (t− s)−

1
2

)
e−λ1(t−s)‖f(·, u(·, s), ū(s))‖Xds

� C3‖u0‖W 1,p + C̃2

(
‖f(·, 0, 0)‖X + LC0

)
,

where

C̃2 = C2

∫ ∞

0

(
1 + (t− s)−

1
2

)
e−λ1(t−s)ds <∞.

This shows that ‖u(·, t)‖W 1,p is uniformly bounded in t and thus {u(·, t)| t > 0} is relatively

compact in L∞(Ω). It follows that ω[u0|L∞(Ω)] �= ∅.
Now we will prove (ii) and (iii) simultaneously. Assume that φ ∈ ω[u0|L∞(Ω)]. By

definition, there exists a sequence 0 < t1 < t2 < · · · → ∞ such that

lim
n→∞

u(·, tn) = φ in L∞.

First, we claim that u(x, tn + t) is relatively compact in C((0, t∗];C
2(Ω̄)). Note that the

arguments in establishing (i) already indicate that for t∗ > 0, u(x, tn + t) is uniformly

bounded in L∞(Ω × (0, t∗)), so is f(x, u(x, tn + t), ū(tn + t)). Hence, by standard arguments

involving parabolic regularity estimates, u(x, tn + t) is relatively compact in

Cα,α/2(Ω̄ × [δ, t∗])
⋂
C([δ, t∗];C

1(Ω̄))

for any given δ ∈ (0, t∗]. This, together with (A2), yields that f(x, u(x, tn + t), ū(tn + t)) is

bounded in Cα,α/2(Ω̄× [δ, t∗]). So it follows from global Schauder estimates [4, Theorem 6

in Chapter 3] that u(x, tn+ t) is bounded in C2+α,1+α/2(Ω̄× [δ, t∗]), hence relatively compact

in C([δ, t∗];C
2(Ω̄)). Therefore, the claim is valid since δ is arbitrary.

Next, let h(x, t) denote the solution of problem (1.5) with initial value φ, i.e.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ht = d
1

ρ
∇ · (ρV∇h) + f(x, h, h̄) in Ω × (0, t∗),

ν · V∇h = 0 on ∂Ω × (0, t∗),

h(x, 0) = φ(x) in Ω.

(2.11)
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By Theorem 2.1, one sees that

sup
0<t�t∗

‖u(·, tn + t) − h(·, t)‖L∞ � C(t∗)‖u(·, tn) − φ(·)‖L∞ → 0 as n→ ∞.

Together with the claim, we have, given any δ ∈ (0, t∗] and any compact set K ⊂ Ω,

lim
n→∞

sup
δ�t�t∗

‖u(·, tn + t) − h(·, t)‖C1(Ω̄) = 0 (2.12)

and

lim
n→∞

sup
δ�t�t∗

‖u(·, tn + t) − h(·, t)‖C2(K) = 0. (2.13)

On the other hand, according to (A4),∫ tn+t∗

t1+t∗

∫
Ω

u2
t (x, τ)dxdτ �

1

γ
{J[u](t1 + t∗) − J[u](tn + t∗)} .

Since u(·, tn + t∗) is bounded in C1(Ω̄), J[u](tn + t∗) remains bounded as n→ ∞. It follows

that ∫ ∞

t1+t∗

∫
Ω

u2
t (x, τ)dxdτ <∞,

which, together with (2.13), implies that for any δ ∈ (0, t∗) and any compact set K ⊂ Ω,

0 = lim
n→∞

∫ tn+t∗

tn+δ

∫
Ω

u2
t (x, τ)ρdxdτ

= lim
n→∞

∫ t∗

δ

∫
Ω

u2
t (x, tn + τ)ρdxdτ

� lim
n→∞

∫ t∗

δ

∫
K

u2
t (x, tn + τ)ρdxdτ

= lim
n→∞

∫ t∗

δ

∫
K

[Au(x, tn + τ) + f(x, u(x, tn + τ), ū(tn + τ))]2 ρdxdτ

=

∫ t∗

δ

∫
K

[
Ah(x, τ) + f(x, h(x, τ), h̄(τ))

]2
ρdxdτ.

Therefore,

Ah(x, t) + f(x, h(x, t), h̄(t)) = 0 in Ω × (0, t∗)

and thus ht(x, t) = 0 in Ω × (0, t∗). Moreover, since h(x, t) is a solution of problem (2.11)

with initial value φ ∈ L∞(Ω), similar to (2.4), one sees that

lim
t→0

h(·, t) = φ(·) in L∞(Ω).

Thus, h(x, t) ≡ φ(x). This clearly implies that φ(x) is a steady state of (1.5), hence (iii) is

proved. Furthermore, due to (2.12) and (2.13), we have

lim
n→∞

u(·, tn + t∗) = φ in C1(Ω̄)
⋂
C2(Ω),

i.e., φ ∈ ω[u0|C1(Ω̄)
⋂
C2(Ω)]. (ii) follows immediately. �
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2.5 Further remarks

All the properties established in Section 2 so far can be easily extended to more general

non-local models⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d
1

ρ
∇ · (ρV∇u) + f(x, u, I(u)) in Ω × (0, T ),

ν · V∇u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

(2.14)

where I(u) =
∫
Ω
�(u)ρ(x)dx, with assumptions

(A2)′ f(x, u, ξ) is Cα in x ∈ Ω̄, C1 in u and ξ, and �(u) is C1 in u.

For clarity, we state these properties for model (2.14).

Theorem 2.5 (Well posedness) Suppose that (A) and (A2)′ hold and u0 ∈ L∞(Ω). Then,

the problem (2.14) has a unique solution u ∈ C2+α,1+α/2(Ω̄× (0, t]) with 0 < α < 1, for t > 0

small. Moreover, for u0, v0 ∈ L∞(Ω),

‖u(·, t; u0) − v(·, t; v0)‖L∞ � C‖u0 − v0‖L∞ ,

where C depends on p, t and Ω only.

Theorem 2.6 (Backward uniqueness) Suppose that (A), (A2)′ hold and ut0 (x) satisfies

d
1

ρ
∇ · (ρV∇ut0 ) + f(x, ut0 , I(ut0 )) = 0.

Let u(x, t) be a solution of

⎧⎨
⎩
ut = d

1

ρ
∇ · (ρV∇u) + f(x, u, I(u)) in Ω × (0, t0],

ν · V∇u = 0 on ∂Ω × (0, t0],

with u(x, t0) = ut0 (x). Then u(x, t) ≡ ut0 (x).

Theorem 2.7 (Comparison principle) In problem (2.14), suppose that (A) and (A2)′ hold,

and either, fξ � 0 and �′(u) � 0, or, fξ � 0 and �′(u) � 0. Then for u0, v0 ∈ L∞(Ω)

satisfying u0 � v0 and u0 � v0, we have u(x, t; u0) < v(x, t; v0) whenever t > 0 and solutions

u(x, t; u0), v(x, t; v0) both exist.

Theorem 2.8 (ω-limit set) For problem (2.14), assume that (A), (A2)′ are valid and there

exist a constant γ > 0 and a functional

J[u](t) =

∫
Ω

[
1

2
d∇u · (V∇u) − F(x, u, I(u))

]
ρdx,
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such that for all classical solutions u(x, t) of problem (2.14), it holds that

d

dt
J[u](t) � −γ

∫
Ω

u2
t (x, t)ρdx.

Then if (2.14) admits a global solution u(x, t) with

sup
t>0

‖u(·, t)‖L∞ � C0 <∞,

we have the following statements:

(i) ω[u0|L∞(Ω)] �= ∅.
(ii) ω[u0|L∞(Ω)] = ω[u0|C1(Ω̄)

⋂
C2(Ω)].

(iii) ω[u0|L∞(Ω)] consists of steady states of (2.14).

The proofs of these theorems are the same as before – with obvious modifications, thus

the details are omitted.

3 An integro-PDE model

3.1 Existence of non-trivial steady states

To prove Theorem 1.1, following the basic idea in [19] we look for a global minimizer of

the following variational functional on H1(Ω):

J[u] =

∫
Ω

[
d

2
∇u · (V∇u) +

b

2
u2 − b

2
ū2 − g(x)F(u)

]
ρdx, (3.1)

where F(u) =
∫ u

0
f(s)ds with f(u) > 0 for u ∈ (0, 1) and f(u) = 0 outside the interval

(0, 1). In proving the existence of a convergent minimizing sequence, a main step is to

construct first a bounded minimizing sequence {uk}∞k=1 in H1(Ω). In the case without partial

panmixia, i.e. b = 0, in [19], this step can be achieved rather quickly as we can always

assume that 0 � uk � 1, since the non-linearity f(u) has been modified to be 0 outside

the interval (0, 1). However, when b > 0, the assumption 0 � uk � 1 can no longer be

imposed directly and more care is needed in deriving this desired property.

Proof of Theorem 1.1 First, observe that, since F(u) is bounded,

β = inf{J[u] : u ∈ H1(Ω)} > −∞.

We claim that when ḡ = 0, neither u ≡ 0 nor u ≡ 1 is a global minimizer for any d, b > 0.

Obviously, J[0] = 0 and J[1] = 0. Now, choose φ ∈ H1(Ω) such that
∫
Ω
gφρdx > 0 and
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fix 0 < c < 1. We compute

J[c+ εφ]

=

∫
Ω

[
d

2
ε2∇φ · (V∇φ) +

b

2
(c+ εφ)2 − b

2
(c+ εφ̄)2 − g(x)F(c+ εφ)

]
ρdx

= −ε
[
f(c)

∫
Ω

g(x)φρdx+ O(ε)

]
< 0

for ε small.

Next, we claim that for ḡ �= 0, neither u ≡ 0 nor u ≡ 1 is a global minimizer for d, b > 0

small.

It is clear that J[0] = 0 and

J[1] = −
∫
Ω

g(x)F(1)ρdx = −
[∫

Ω+

g(x)F(1)ρdx+

∫
Ω−

g(x)F(1)ρdx

]
,

where Ω+ = {x ∈ Ω | g(x) > 0}, Ω− = {x ∈ Ω | g(x) < 0}. For convenience, denote

δ1 =

∫
Ω+

g(x)F(1)ρdx > 0 and δ2 = −
∫
Ω−

g(x)F(1)ρdx > 0.

Now for d, b > 0 small, we need find ũ ∈ H1(Ω) such that

J[ũ] < min{J[0], J[1]} = min{0,−δ1 + δ2}.

Notice that −
∫
Ω
g(x)F(χ{g(x)>0})ρdx = −

∫
Ω+
g(x)F(1)ρdx = −δ1, hence there exists ũ ∈

H1(Ω) such that

−
∫
Ω

g(x)F(ũ)ρdx < min

{
−δ1

2
,−δ1 +

δ2

2

}
.

Moreover, there exists ε > 0 small enough such that for d, b < ε∫
Ω

[
d

2
∇ũ · (V∇ũ) +

b

2
ũ2 − b

2
¯̃u2

]
ρdx < min

{
δ1

2
,
δ2

2

}
.

Therefore, J[ũ] < min{J[0], J[1]} = min{0,−δ1 + δ2}, and our assertion is proved.

To proceed, we assume the following holds:

β = inf{J[u] : u ∈ H1(Ω)} < min{J[0], J[1]}.

Let {uk}∞k=1 be a minimizing sequence, i.e., J[uk] decreases to β. If {uk}∞k=1 is bounded in

H1(Ω), then, by passing to subsequence if necessary,

ukj ⇀ u weakly in H1(Ω) and ukj → u strongly in L2(Ω),

it follows that ∫
Ω

∇u · (V∇u)ρdx � lim inf
kj→∞

∫
Ω

∇ukj · (V∇ukj )ρdx

and ukj → u a.e. in Ω. By Lebesgue dominated convergence theorem, we obtain that
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J[u] � β. Therefore, u is a global minimizer of J[u] which is different from 0 and 1, and

the existence of non-trivial steady state of (1.6) would then be established if 0 � u � 1.

We now come to the new, key part of this proof. We will show that there exists a

minimizing sequence, still denoted by {uk}∞k=1, such that 0 � uk � 1 for all k � 1. Then,

from the definition of J[u], it is a bounded minimizing sequence in H1(Ω), and, therefore

the global minimizer u obtained from this minimizing sequence has the desired property that

0 � u � 1.

Again, we assume that J[uk] < min{J[0], J[1]} for k � 1. Note that under this assump-

tion, we always have

|{x ∈ Ω | 0 < uk < 1}| �= 0.

As an intermediate step, we show that there exists a minimizing sequence, still denoted by

{uk}∞k=1, such that 0 � ūk � 1 for all k � 1. First, if |{x ∈ Ω | uk < 0}| �= 0 for some k � 1,

then simply replace uk by

ũk =

⎧⎨
⎩

0 if uk(x) < 0,

uk(x) if uk(x) � 0.

We now show that J[ũk] � J[uk].

According to the definition of J[u], we only need demonstrate that

∫
Ω

(ũ2
k − ¯̃u2

k)ρdx �

∫
Ω

(u2
k − ū2

k)ρdx. (3.2)

Denote Ωk
+ = {x ∈ Ω : uk(x) > 0}, Ωk

− = {x ∈ Ω : uk(x) < 0}. Then, one has

∫
Ω

(u2
k − ū2

k)ρdx−
∫
Ω

(ũ2
k − ¯̃u2

k)ρdx

=

∫
Ωk

−

u2
kρdx−

(∫
Ωk

+

ukρdx+

∫
Ωk

−

ukρdx

)2

+

(∫
Ωk

+

ukρdx

)2

=

∫
Ωk

−

u2
kρdx−

(∫
Ωk

−

ukρdx

)2

− 2

∫
Ωk

+

ukρdx

∫
Ωk

−

ukρdx

�

∫
Ωk

−

u2
kρdx−

(∫
Ωk

−

ukρdx

)2

�

∫
Ωk

−

u2
kρdx−

∫
Ωk

−

u2
kρdx

∫
Ωk

−

ρdx � 0.

Thus, (3.2) holds and J[ũk] � J[uk] follows. Now we obtain a new minimizing sequence,

still denoted by {uk}∞k=1 satisfying uk � 0.

Now, if 0 � uk � 1 for all k � 1, then we are done. Otherwise, if |{x ∈ Ω | uk > 1}| �= 0

for some k � 1, define

uk∗ =

⎧⎨
⎩
uk uk � 1,

1 uk > 1.
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To show that J[uk∗] < J[uk], it suffices to verify that∫
Ω

(u2
k∗ − ū2

k∗)ρdx <

∫
Ω

(u2
k − ū2

k)ρdx. (3.3)

Similarly, set Bk = {x ∈ Ω : uk(x) > 1} and ηk(x) = uk(x) − 1 > 0 for x ∈ Bk . Direct

computation yields that∫
Ω

(u2
k − ū2

k)ρdx−
∫
Ω

(u2
k∗ − ū2

k∗)ρdx

=

∫
Ω

(u2
k − u2

k∗)ρdx− (ū2
k − ū2

k∗)

=

∫
Bk

η2
kρdx+ 2

∫
Bk

ηkρdx−
[
ū2
k −

(
ūk −

∫
Bk

ηkρdx

)2
]

=

∫
Bk

η2
kρdx+ 2(1 − ūk)

∫
Bk

ηkρdx+

(∫
Bk

ηkρdx

)2

=

∫
Bk

η2
kρdx+ 2

∫
Ω

(1 − uk)ρdx

∫
Bk

ηkρdx+

(∫
Bk

ηkρdx

)2

=

∫
Bk

η2
kρdx+ 2

∫
Ω\Bk

(1 − uk)ρdx

∫
Bk

ηkρdx−
(∫

Bk

ηkρdx

)2

> 0.

Hence, (3.3) follows and we obtain a non-trivial global minimizer.

Finally, it is standard to show the existence of a stable non-trivial global minimizer and

the details will be included in Appendix A for completeness. �

3.2 Non-existence of non-trivial steady states

In this sub-section, we will demonstrate the non-existence of non-trivial steady states of

problem (1.6) provided that d+b is large. Similar to [19, Theorem 1.2], it seems natural to

assume that the conclusion of Theorem 1.2 does not hold and then derive a contradiction

by limiting arguments. However, due to the presence of the non-local term, not only the

case that d → 0 but also the case that b → ∞ requires extra care and one difficulty in

handling the latter case is the lack of elliptic regularity.

Proof of Theorem 1.2 We assume that under conditions in (i), (ii) and (iii) respectively,

there exist sequences {dk}∞k=1 and {bk}∞k=1 with

lim
k→∞

(dk + bk) = ∞

such that for d = dk and b = bk , problem (1.6) admits a non-trivial steady state, denoted

by uk(x), i.e., uk(x) satisfies

⎧⎨
⎩
d
1

ρ
∇ · [ρV∇u] + b(ū− u) + g(x)f(u) = 0 in Ω,

ν · V∇u = 0 on ∂Ω,

(3.4)
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with d = dk and b = bk . First of all, multiplying the first equation in (3.4) by ukρ and

integrating it over Ω, we get∫
Ω

[
dk∇uk · (V∇uk) + bk(uk − ūk)

2
]
ρdx =

∫
Ω

g(x)f(uk)ukρdx � C.

This implies that uk → c a.e. as k → ∞, where c ∈ [0, 1] is a constant.

Now we treat the three cases (i), (ii), and (iii) separately.

(i) First, assume that 0 < c < 1. Multiplying the first equation in (3.4) by ρ and

integrating it, we have
∫
Ω
g(x)f(uk)ρdx = 0, which yields that ḡ = 0 by letting k → ∞.

This is a contradiction.

Secondly, assume that c = 0. Since limk→∞(dk+bk) = ∞, we will consider the following

two cases separately:

Case 1. limk→∞ bk = ∞;

Case 2. there exists B > 0 such that bk � B and limk→∞ dk = ∞.

In Case 1, set vk = uk/ūk . Then, vk satisfies⎧⎪⎨
⎪⎩
dk

1

ρ
∇ · (ρV∇vk) + bk(1 − vk) + g(x)

f(uk)

uk
vk = 0 in Ω,

ν · V∇vk = 0 on ∂Ω.

(3.5)

We claim that there exists K > 0 such that for k > K , 0 � vk � 2 in Ω̄.

Let vk(zk) = maxΩ̄ vk(x). Then at x = zk , we have

bk(1 − vk(zk)) + g(zk)
f(uk(zk))

uk(zk)
vk(zk) � 0,

which implies that bk(vk(zk) − 1) � cvk(zk) for some constant c > 0. This gives that

(bk − c)vk(zk) < bk. Hence, since limk→∞ bk = ∞, the assertion follows.

From (3.5), we easily obtain that∫
Ω

[
dk∇vk · (V∇vk) + bk(vk − 1)2

]
ρdx =

∫
Ω

g(x)
f(uk)

uk
v2kρdx � C.

Thus one sees that, by passing to a subsequence if necessary, limk→∞ vk = 1 a.e. in Ω.

Multiplying (3.5) by ρ(x)(ūk)
−k1+1 and integrating it directly, we have∫

Ω

g(x)
f(uk)

(uk)k1
(vk)

k1ρdx = 0.

Again by letting k → ∞, assumption (1.7) and Lebesgue dominated convergence theorem

yield that ḡ = 0 since limk→∞ uk = 0 and limk→∞ vk = 1 a.e. in Ω. This is a contradiction.

In Case 2, set wk(x) = uk(x)/‖uk‖L∞ . Then, wk satisfies⎧⎪⎨
⎪⎩
dk

1

ρ
∇ · (ρV∇wk) + bk(w̄k − wk) + g(x)

f(uk)

uk
wk = 0 in Ω,

ν · V∇wk = 0 on ∂Ω.

(3.6)
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By assumption (A1) and elliptic regularity, we have ‖wk‖C2,α(Ω̄) is uniformly bounded and

thus there exist w ∈ C2(Ω̄), and a subsequence of {wk}∞k=1, still denoted by {wk}∞k=1, such

that wk → w in C2(Ω̄). Hence, clearly w satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ρ
∇ · (ρV∇w) = 0 in Ω,

ν · V∇w = 0 on ∂Ω,

‖w‖L∞ = 1.

This implies that w ≡ 1 in Ω. Then similarly, multiplying the first equation in (3.6) by

ρ(x)(‖uk‖L∞ )−k1+1 and integrating it, we obtain that∫
Ω

g(x)
f(uk)

(uk)k1
(wk)

k1ρdx = 0,

which, due to assumption (1.7), implies that ḡ = 0 by letting k → ∞. This is a contradiction.

Finally, assume that c = 1. Set ũk = 1 − uk , then, based on assumption (1.8), a

contradiction can be derived in a similar fashion as in the case c = 0 by studying the

problem satisfied by ũk , and this completes the proof of (i).

(ii) According to assumptions in (ii), it is easy to see that the cases 0 < c < 1 and

c = 1 can be handled by applying the same approaches in the proof of (i) to derive

contradictions.

It remains to deduce a contradiction provided that c = 0. Similar to the proof of (i),

the following two cases will be considered:

Case 1. limk→∞ bk = ∞;

Case 2. there exists B > 0 such that bk � B and limk→∞ dk = ∞.

In Case 1, first notice that we only have uk → 0 a.e. as k → ∞. Then, it implies that

ūk → 0 as k → ∞. Moreover, same as the arguments in Case 1 in the proof of (i), we can

derive that there exists K > 0 such that for k > K , 0 � uk � 2ūk in Ω̄. Hence, it follows

that there exists K1 > 0 such that

‖uk‖L∞ < δ0 for k > K1. (3.7)

For k > K1, dividing the equation (3.4) for uk by f(uk)/ρ and integrating, we have

∫
Ω

[
dk

1
ρ
∇ · (ρV∇uk)
f(uk)

+
bk(ūk − uk)

f(uk)
+ g(x)

]
ρdx = 0,

which is equivalent to∫
Ω

[
dk

∇uk · (V∇uk)
f2(uk)

f′(uk) +
bk(ūk − uk)

f(uk)
− bk(ūk − uk)

f(ūk)

]
ρdx+ ḡ = 0.

This implies that

dk

∫
Ω

f′(uk)

f2(uk)
∇uk · (V∇uk)ρdx+ bk

∫
Ω

f′(ξk)

f(uk)f(ūk)
(ūk − uk)

2ρdx+ ḡ = 0,
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where ξk ∈ (0, δ0). This implies that ḡ � 0 since f′(s) � 0 in (0, δ0). This contradicts the

assumption that ḡ > 0.

In Case 2, since bk � B and limk→∞ dk = ∞, by elliptic regularity, we have {uk}∞k=1 is

bounded in C2,α(Ω̄) for some 0 < α < 1. Moreover, observe that uk → 0 a.e. as k → ∞,

thus it is routine to derive that ‖uk‖L∞ → 0 as k → ∞. Then following the arguments in

Case 1, a contradiction can be derived.

(iii) Set ũk = 1 − uk and consider the problem satisfied by ũk . The proof in (ii) can be

applied to yield a contradiction. This completes the proof. �

3.3 Local stability of u ≡ 0 and u ≡ 1

This section is devoted to the proofs of Theorems 1.3–1.5, which are about the stabil-

ity/instability properties of model (1.6) at u ≡ 0 and u ≡ 1. For clarity, we point out that

in this section, conditions (A), (A1) and (A3) are always assumed.

The proofs of Theorem 1.3 (i) and (ii) are divided into the following two lemmas. We

first make use of an energy functional to show that under the assumption ḡ � 0, when

u ≡ 0 is isolated, it must be unstable. Then in the second lemma, verify that the conditions

in Theorem 1.3 (i) and (ii) guarantee the isolation of u ≡ 0 and thus Theorem 1.3 (i) and

(ii) are proved.

Lemma 3.1 Assume that ḡ � 0 and u ≡ 0 is an isolated equilibrium of (1.6), then u ≡ 0 is

unstable for all d > 0, b > 0.

Proof As in (3.1), define

J[u] =

∫
Ω

[
d

2
∇u · (V∇u) +

b

2
u2 − b

2
ū2 − g(x)F(u)

]
ρdx,

where F(u) =
∫ u

0
f(s)ds with f(u) > 0 for u ∈ (0, 1) and f(u) = 0 outside the interval

(0, 1). Direct computation yields that d
dt
J[u](t) = −

∫
Ω
u2
t ρdx � 0, thus, J[u(·, t; u0)] is

decreasing in t. Moreover, by Theorems 2.3 and 2.4, for any u0 ∈ K, the ω-limit set ω[u0]

is non-empty and consists of equilibria of (1.6). Since u ≡ 0 is an isolated equilibrium of

(1.6), there exists � > 0 such that u ≡ 0 is the only equilibrium in {u ∈ K : ‖u‖L∞ � �},
where K is defined in (1.11). Then, we will consider two cases separately.

Case 1: ḡ > 0. For any 0 < δ < 1, letting u0 = δ, we have

J[u0] = −F(δ)ḡ < 0 = J[0].

This means that there exist a sequence {tk}∞k=1 and u∞ ∈ C2(Ω) such that

u(·, tk; u0) → u∞ ∈ ω[u0] in L∞,

where u∞ �= 0 is an equilibrium. Thus ‖u∞‖L∞ > �, which implies that for k large,

‖u(·, tk; u0)‖L∞ > �/2. Therefore, u ≡ 0 is unstable.
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Case 2: ḡ = 0. We may choose 0 < φ ∈ C1(Ω̄) such that
∫
Ω
gφρdx > 0. Let u0 = c+ εφ,

where c ∈ (0, 1) and ε > 0 is small. Then,

J[u0] = J[c+ εφ]

=

∫
Ω

[
d

2
ε2∇φ · (V∇φ) +

b

2
(c+ εφ)2 − b

2
(c+ εφ̄)2 − g(x)F(c+ εφ)

]
ρdx

= −ε
[
f(c)

∫
Ω

g(x)φρdx+ O(ε)

]
< 0

for ε > 0 sufficiently small. Hence for any 0 < δ < 1, we can find u0 ∈ K such that

‖u0‖L∞ < δ and ω[u0] does not contain 0. Then similar to Case 1, it can be proved that

u ≡ 0 is unstable.

In summary, if ḡ � 0, then for any d, b > 0, u ≡ 0 is unstable provided that it is an

isolated equilibrium. �

Thanks to Lemma 3.1, to prove (i) and (ii) of Theorem 1.3, it suffices to show that

u ≡ 0 is an isolated equilibrium of (1.6) when the assumptions in (i) and (ii) of Theorem

1.3 are imposed. This is verified in the following lemma.

Lemma 3.2 For problem (1.6), u ≡ 0 is an isolated equilibrium for all d, b > 0, if one of

the following statements is valid:

(a) ḡ = 0 and condition (1.9) holds with |{s ∈ (0, δ0) : f′(s) = 0}| = 0;

(b) ḡ > 0, and (1.7) holds;

(c) ḡ > 0, and (1.9) holds.

Proof Suppose, for contradiction, that u ≡ 0 is not an isolated equilibrium of (1.6) for

some d, b > 0. Then there exists a sequence of equilibria {uk}∞k=1 with 0 < uk < 1 and

limk→∞ ‖uk‖L∞ = 0. We will discuss how to obtain contradictions under assumptions in

(a), (b) and (c) respectively.

First, assume that (a) is valid. Recall that uk satisfies

⎧⎨
⎩
d
1

ρ
∇ · (ρV∇u) + b(ū− u) + g(x)f(u) = 0 in Ω,

ν · ∇u = 0 on ∂Ω,

(3.8)

where f(u) > 0 since 0 < u < 1. Dividing the equation by f(uk)/ρ and integrating it, we

have ∫
Ω

[
d
∇uk · (V∇uk)

f2(uk)
f′(uk) +

b(ūk − uk)
2

f(uk)f(ūk)
f′(ξk)

]
ρdx+ ḡ = 0, (3.9)

where ξk(x) ∈ [min{uk(x), ūk},max{uk(x), ūk}]. Since limk→∞ ‖uk‖L∞ = 0, there exists

K > 0 such that for k > K , ‖uk‖L∞ < δ0, then a contradiction arises immediately from

the assumptions and (3.9).
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Next assume (b) holds. Dividing the equation (3.8) for uk by (uk)
k1/ρ and integrating

it, we get∫
Ω

[
dk1

∇uk · (V∇uk)
(uk)k1+1

+ b
(ūk)

k1 − (uk)
k1

(uk)k1 (ūk)k1
(ūk − uk) + g(x)

f(uk)

(uk)k1

]
ρdx = 0.

This indicates that ∫
Ω

g(x)
f(uk)

(uk)k1
ρdx � 0.

Since limk→∞ ‖uk‖L∞ = 0 and (1.7) holds, by letting k → ∞, we have a1ḡ � 0. This is a

contradiction.

At the end, assume that (c) is true. Since limk→∞ ‖uk‖L∞ = 0, the left-hand side of (3.9)

is strictly positive for large k. This is impossible. �

We summarize that, as mentioned earlier, Theorem 1.3 (i) and (ii) follow immediately

from Lemmas 3.1 and 3.2. By considering the equation satisfied by 1 − u, Theorem 1.4

(i) and (ii) can be proved in the same way. Since similarly Theorem 1.4 (iii) is the dual

version of Theorem 1.3 (iii), we only demonstrate the proof of Theorem 1.3 (iii) as follows.

Degree theory is employed to handle Theorem 1.3 (iii). We argue by contradiction and

suppose that for problem (1.6) with some d = D, u ≡ 0 is unstable. This, together with

Theorem 1.4 (i), implies the existence of non-trivial steady state with d = D. Then, note

that a steady state of (1.6) satisfies

u−H(d, u) = u−
(
−1

ρ
∇ · (ρV∇) + ΛI

)−1 [
b

d
(ū− u) +

1

d
g(x)f(u) + Λu

]
= 0.

The conditions in Theorem 1.3 (iii) ensure that non-trivial steady states of (1.6) are

uniformly bounded away from both u ≡ 0 and u ≡ 1 for d � D. Thus, the degree of

I −H(d, ·) is well defined for d � D in certain set of functions bounded away from u ≡ 0

and u ≡ 1. On the one side, prove that the degree of I −H(d, ·) at 0 is 1 at d = D. On the

other side, Theorem 1.2 indicates that the degree of I −H(d, ·) at 0 is 0 for d large. This

contradicts to homotopy invariance.

Proof of Theorem 1.3 (iii) Now we focus on the case that ḡ < 0. For clarity, the proof

will be divided into three steps.

Step 1. We claim that for any D > 0, there exists δ1 = δ1(D) > 0 such that

(1) minΩ̄ u � δ1 for any non-trivial steady state of (1.6) with d � D if (1.7) holds.

(2) maxΩ̄ u � 1 − δ1 for any non-trivial steady state of (1.6) with d � D provided that

either (1.8) or (1.10) is imposed.

Suppose that (1) is not true, then there exist {uk}∞k=1 and {dk}∞k=1 satisfying

limk→∞ minΩ̄ uk = 0 and dk � D, where uk is a steady state of (1.6) with d = dk ,

i.e., uk satisfies ⎧⎨
⎩
dk

1

ρ
∇ · (ρV∇uk) + b(ūk − uk) + g(x)f(uk) = 0 in Ω,

ν · V∇uk = 0 on ∂Ω.
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By elliptic regularity, there exist a subsequence of {uk}∞k=1, still denoted by {uk}∞k=1,

u0 ∈ C2(Ω̄) and λ0 ∈ [0, 1/D] such that

1/dk → λ0 and uk → u0 in C2(Ω̄).

Hence, u0 satisfies

⎧⎨
⎩

1

ρ
∇ · (ρV∇u0) + λ0b(ū0 − u0) + λ0g(x)f(u0) = 0 in Ω,

ν · V∇u0 = 0 on ∂Ω,

and minΩ̄ u0 = 0. Due to the Maximum principle, we have u0 ≡ 0, which tells us

uk → 0 in C2(Ω̄).

Next, consider the problem satisfied by ũk = uk/‖uk‖L∞ as follows:

⎧⎪⎨
⎪⎩
dk

1

ρ
∇ · (ρV∇ũk) + b(¯̃uk − ũk) + g(x)

f(uk)

uk
ũk = 0 in Ω,

ν · V∇ũk = 0 on ∂Ω.

(3.10)

We may assume that ũk → ũ0 in C2(Ω̄) by passing to a subsequence if necessary, where ũ0

satisfies ⎧⎨
⎩

1

ρ
∇ · (ρV∇ũ0) + λ0b(¯̃u0 − ũ0) = 0 in Ω,

ν · V∇ũ0 = 0 on ∂Ω.

Here, f′(0) = 0 is used. This implies that ũ0 equals a constant. While maxΩ̄ ũ0 = 1, we

have ũ0 ≡ 1.

Now, back to (3.10), we easily obtain that∫
Ω

g(x)
f(uk)

(uk)k1
(ũk)

k1ρdx = 0,

which, by letting k → ∞, immediately yields that ḡ = 0 due to condition (1.7). A

contradiction arises and (1) is proved.

As for the proof of (2), suppose that (2) is not true, then there exist {uk}∞k=1 and {dk}∞k=1

satisfying limk→∞ maxΩ̄ uk = 1 and dk � D, where uk is a steady state of (1.6) with d = dk .

Similar to (1), we can show that uk → 1 in C2(Ω̄) by passing to a subsequence if necessary.

First, assume that (1.8) is valid. Recall that uk satisfies

⎧⎨
⎩
dk

1

ρ
∇ · (ρV∇uk) + b(ūk − uk) + g(x)f(uk) = 0 in Ω,

ν · V∇uk = 0 on ∂Ω.

Multiplying the equation for uk by ρ(x)(1 − uk)
−k2 and integrating, we obtain

∫
Ω

[
−dkk2

∇uk · (V∇uk)
(1 − uk)k2+1

+
b(ūk − uk)

(1 − uk)k2
− b(ūk − uk)

(1 − ūk)k2
+ g(x)

f(uk)

(1 − uk)k2

]
ρdx = 0,
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which gives that

∫
Ω

[
−dkk2

∇uk · (V∇uk)
(1 − uk)k2+1

+ b
(ūk − uk)

[
(1 − ūk)

k2 − (1 − uk)
k2
]

(1 − uk)k2 (1 − ūk)k2

]
ρdx

+

∫
Ω

g(x)
f(uk)

(1 − uk)k2
ρdx = 0.

This clearly shows that ∫
Ω

g(x)
f(uk)

(1 − uk)k2
ρdx � 0.

Then by letting k → ∞, one easily sees that, according to condition (1.8), ḡ � 0, which is

a contradiction.

Secondly, assume that (1.10) is satisfied. Dividing the equation of uk by f(uk)/ρ and

integrating by parts, we have∫
Ω

[
dk

∇uk · (V∇uk)
f2(uk)

f′(uk) + b
(ūk − uk)

2

f(uk)f(ūk)
f′(ξ)

]
ρdx+ ḡ = 0,

where ξ(x) ∈ [min{uk(x), ūk},max{uk(x), ūk}]. Note that uk → 1 in C2(Ω̄), combined with

condition (1.10), we get ḡ � 0, which is a contradiction.

Therefore, our assertion is established.

Step 2. For any d > 0, choose Λ = Λ(d) > 0 sufficiently large such that the mapping

u �→ b

d
(ū− u) +

1

d
g(x)f(u) + Λu

is increasing for all x ∈ Ω̄ and u ∈ [0, 1].

Let I denote the identity map from C(Ω̄) to C(Ω̄) and
(
− 1
ρ
∇ · (ρV∇) + ΛI

)−1

is

the inverse of the operator − 1
ρ
∇ · (ρV∇) + ΛI with no flux boundary condition. Define

H(d, u) : � × C(Ω̄) → C(Ω̄) by

H(d, u) =

(
−1

ρ
∇ · (ρV∇) + ΛI

)−1 [
b

d
(ū− u) +

1

d
g(x)f(u) + Λu

]
.

It is standard to check that H(d, ·) is compact, strictly order-preserving and maps K into

itself, where K is defined in (1.11).

According to the claim in Step 1, there exists δ1 = δ1(D) > 0 such that

δ1 � u(x) � 1 − δ1 in Ω̄

for any non-trivial steady state of (1.6) with d � D. This demonstrates that for any d � D,

H(d, ·) has no fixed points on ∂Uε where

Uε := {u ∈ C(Ω̄) : ε < u(x) < 1 − ε, ∀ x ∈ Ω̄},

provided that 0 < ε < δ1.

Therefore, due to the homotopy invariance of Leray–Schauder degree, deg(I −
H(d, ·),Uε, 0) is independent of d ∈ [D,∞], provided that 0 < ε < δ1 = δ1(D).
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Step 3. Suppose that for problem (1.6) with some d = D, u ≡ 0 is unstable. Then, there

exists a minimal non-trivial solution of (3.4), denoted by u1. Since u ≡ 0 is unstable from

above and there exists no further fixed point of H(d, ·) between 0 and u1, we may get

strict lower solutions as close to u ≡ 0 as we wish.

On the other hand, by Theorem 1.4 (ii), when ḡ < 0, u ≡ 1 is unstable from below.

Similarly, there exists a maximal non-trivial solution of (3.4) with d = D, denoted by u2

and we may get strict upper solutions as close to u ≡ 1 as we wish.

Now, fix ε = δ1(D)/2 and choose a strict lower solution u1 with 0 < u1 < ε and a strict

upper solution û2 with 1 − ε < û2 < 1. Then we have S ⊃ Uε, where

S := {u ∈ C(Ω̄) : u1 < u(x) < û2, ∀ x ∈ Ω̄}.

It is routine to show that H(D, ·) has no fixed points on ∂S .

Next, take any u0 ∈ S and for (σ, u) ∈ [0, 1] × S , define

h(σ, u) := (1 − σ)u0 + σH(D, u).

Thanks to the choice of S , it can be verified that for all σ ∈ [0, 1], h(σ, ·) has no fixed

points on ∂S . We omit the details here. Then, again by the homotopy invariance of

Leray–Schauder degree, we see that

deg(I −H(D, ·),S , 0) = deg(I − u0,S , 0) = 1.

Moreover, no fixed points of H(D, ·) are allowed in the claim in S \Uε due to Step 1, thus

it follows that

deg(I −H(D, ·),Uε, 0) = 1. (3.11)

However, according to Theorem 1.2, if ḡ < 0

deg(I −H(d, ·),Uε, 0) = 0 (3.12)

when d > 0 large enough.

Therefore, based on the conclusion obtained in Step 2, (3.11) and (3.12) together give

rise to a contradiction. �

We remark that in Theorem 1.3 (i), the assumption |{s ∈ (0, δ0) : f′(s) = 0}| = 0 in

addition to (1.9) cannot be removed due to the following example, which is constructed

based on [12, Example 2.4].

Example 3.1. Let Ω = (−1, 1). For each k = 1, 2, . . . , set ak =
(

1
2

)k−1
and define

f(s)|[ak+1 ,ak] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ck if k is odd,

fk if k is even,

0 if k = ∞,

where, ck = 3ak+1

2k
and fk is chosen properly as in [12, Example 2.4] to guarantee that f
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satisfies (A3) and (1.9). Then one can check that, for each odd positive integer k,

uk(x) = ak+1 +
ck

2

(
−1

3
x3 + x+

2

3

)
, −1 � x � 1

is a solution of ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δu+ (ū− u) +

(
3

2
x− 1

6
x3

)
f(u) = 0 in (−1, 1),

0 � u � 1 in (−1, 1),

u′(−1) = u′(1) = 0.

(3.13)

Moreover, it is routine to verify that

‖uk‖L∞ =
k + 1

k
ak+1 =

k + 1

k

(
1

2

)k
→ 0 as n→ ∞.

Therefore, u ≡ 0 is not an isolated solution of (3.13) and u ≡ 0 is stable from above.

For the rest of this section, we will focus on the proof of Theorem 1.5, which is mainly

based on linearized analysis. Compared with that of Theorem 1.4, the key difference is

that f′(1) < 0 now.

A useful lemma will be prepared first.

Lemma 3.3 For the non-local eigenvalue problem

b(φ̄− φ) + h(x)φ = μφ (3.14)

where h(x) ∈ C(Ω̄), Ω ⊂ �N , given any ε > 0, there exists hε ∈ CN(Ω̄) such that ‖h −
hε‖L∞ < ε and the non-local eigenvalue problem

b(φ̄− φ) + hε(x)φ = μφ (3.15)

admits a principal eigenvalue with strictly positive eigenfunction in C(Ω̄).

This is a standard result for linear operator with non-local diffusion and the proof will

be included in Appendix B for the convenience of readers.

Proof of Theorem 1.5

(i) The linearized problem of (1.6) at u ≡ 1 is

⎧⎨
⎩
d
1

ρ
∇ · [ρV∇ψ] + b(ψ̄ − ψ) + g(x)f′(1)ψ = λψ in Ω,

ν · V∇ψ = 0 on ∂Ω,

(3.16)

and let λ0(d, b) denote the principle eigenvalue, which can be characterized as
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follows:

λ0(d, b) = sup
0	=ψ∈H1(Ω)

∫
Ω

[
−d∇ψ · (V∇ψ) − b(ψ − ψ̄)2 + g(x)f′(1)ψ2

]
ρdx∫

Ω
ψ2ρdx

. (3.17)

This shows that

λ0(d, b) >

∫
Ω
g(x)f′(1)ρdx∫

Ω
ρdx

= f′(1)ḡ � 0,

where the above strict inequality is due to the assumption that g is non-constant.

Hence, u ≡ 1 is linearly unstable for any d, b > 0.

(ii) First, we claim that μ0(b), defined in (1.13), admits a unique positive root b∗. By

Lemma 3.3, for any ε > 0, there exists gε ∈ CN(Ω̄) such that ‖g − gε‖L∞ < ε, the

principal eigenvalue of

b(φ̄− φ) + gε(x)f
′(1)φ = μεφ in Ω (3.18)

exists, denoted by με(b) and the corresponding normalized eigenfunction φε,b(x), i.e.

‖φε,b‖L2 =
(∫

Ω
φ2
ε,bρdx

)1/2

= 1, is strictly positive and continuous in Ω̄.

Noting that

με(b) = sup
φ∈L2(Ω)\{0}

∫
Ω

[
−b(φ2 − φ̄2) + gε(x)f

′(1)φ2
]
ρdx∫

Ω
φ2ρdx

,

we see immediately that

f′(1)ḡε � με(b) � max
Ω̄

(f′(1)gε(x)) = f′(1) min
Ω̄
gε(x). (3.19)

Moreover, it follows from (3.18) that

φε,b(x) =
b

b− f′(1)gε(x) + με(b)
φ̄ε,b.

Letting b → ∞, one sees that φε,b → 1 in L∞ because of (3.19) and ‖φε,b‖L2 = 1. Next,

integrating (3.18) after multiplying it by ρ, we have

lim
b→∞

με(b) = f′(1)ḡε < 0.

Furthermore, it is routine to verify that

lim
b→0

με(b) = f′(1) min
Ω̄
gε(x) > 0.

According to the definitions of μ0(b) and με(b), it is obvious that |μ0(b)−με(b)| < −f′(1)ε.

Since ε is arbitrary, we have

lim
b→0

μ0(b) = f′(1) min
Ω̄
g(x) > 0, lim

b→∞
μ0(b) = f′(1)ḡ < 0.
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Moreover, μ0(b) is continuous and strictly decreasing in b, thus there exists b∗ > 0 such

that

μ0(b) > 0 for 0 < b < b∗, μ0(b
∗) = 0 and μ0(b) < 0 for b > b∗. (3.20)

The claim is proved. Then, due to (1.13) and (3.17), it is clear that μ0(b) > λ0(d, b) for any

d > 0. Hence by (3.20), for d > 0, b � b∗, u ≡ 1 is linearly stable.

Secondly, let us designate d∗. For the eigenvalue problem (1.14), we have

�0(d) = sup
0	=ϕ∈H1(Ω)

∫
Ω

[
−d∇ϕ · (V∇ϕ) + g(x)f′(1)ϕ2

]
ρdx∫

Ω
ϕ2ρdx

.

Based on this characterization, it is routine to show that

lim
d→0

�0(d) = f′(1) min
Ω̄
g(x) > 0.

On the other hand, similar to (3.19), we have, for all d > 0,

f′(1)ḡ � �0(d) � f′(1) min
Ω̄
g(x).

then standard arguments show that for any small ε > 0, we have �0(d) � f′(1)ḡ + ε for

all d large. Thus,

lim
d→∞

�0(d) = f′(1)ḡ < 0.

Also, one sees that �0(d) is decreasing in d. Therefore, there exists d∗ > 0 such that

�0(d) > 0 for 0 < d < d∗, �0(d
∗) = 0 and �0(d) < 0 for d > d∗.

This immediately implies that for d � d∗, b > 0, u ≡ 1 is linearly stable since λ0(d, b) <

�0(d) � 0.

Now, fix 0 < b < b∗, since μ0(b) > 0 and φε,b(x) ∈ CN(Ω̄), it can be used as a test

function to show that when d is small enough, λ0(d, b) > 0. Then similar to previous

arguments, we obtain that there exists D = D(b) > 0 such that

λ0(d, b) > 0 for 0 < d < D(b), λ0(D(b), b) = 0 and λ0(d, b) < 0 for d > D(b).

Therefore, u ≡ 1 is linearly unstable if 0 < d < D(b) and linearly stable if d > D(b). It

is also clear that D(0)
.
= limb↘0 D(b) = d∗, D(b∗)

.
= limb↘b∗ D(b) = 0 and D(b) is strictly

decreasing in b.

Finally, it remains to verify that D = D(b) is concave in [0, b∗]. Notice that D(b) satisfies

λ0(D(b), b) = 0. Then for any 0 � b1 < b2 � b∗, it is easy to see that

λ

(
D(b1) + D(b2)

2
,
b1 + b2

2

)
<

1

2
[λ0(D(b1), b1) + λ0(D(b2), b2)] = 0.

Thus, D(b1)+D(b2)
2

> D( b1+b2

2
). The proof is complete. �

Remark 3.1 One mathematical difficulty in studying non-local diffusion is that linear oper-

ator like (1.12) may not have a principal eigenvalue with continuous eigenfunctions; e.g., μ0,
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which is defined in (1.13), may not be attained by a continuous function. We refer interested

readers to [2, 6, 20, 22] and references therein for more information on spectral theory for

non-local diffusion operators.

3.4 Some consequences

In this section, we provide the proofs of Theorems 1.6–1.8, which contain the consequences

of Theorems 1.1–1.5.

Proof of Theorem 1.6 In this theorem, ḡ = 0. Notice that according to the assumptions,

both u ≡ 0 and u ≡ 1 are unstable according to the stability analysis in Theorem 1.3 (i)

and Theorem 1.4 (i). Hence, (1.6) admits at least one non-trivial stable steady state for all

d, b > 0. �

Proof of Theorem 1.7 The key assumptions here are ḡ < 0 and f′(0) = 0. The stability

analysis in Theorems 1.3 (iii) and 1.4 (ii) shows that for any d, b > 0, u ≡ 0 is stable while

u ≡ 1 is unstable. Together with the results established in Theorems 1.1 (ii) and 1.2 (iii),

the conclusion follows. �

Proof of Theorem 1.8

(i) Assume that ḡ > 0 and f′(1) = 0. Indeed, this is the dual version of Theorem 1.7.

Thus, it can be proved similarly.

(ii) Assume that ḡ > 0 and f′(1) < 0. By the stability analysis in Theorem 1.3 (ii) and

Theorem 1.5, u ≡ 0 is always unstable while for any 0 � b < b∗ and 0 < d < D(b),

u ≡ 1 is linearly unstable. This yields the existence of non-trivial stable steady state

of problem (1.6) provided that 0 � b < b∗ and 0 < d < D(b). Moreover, note that

the condition f′(1) < 0 implies condition (1.8) and for either d or b large enough,

u ≡ 1 is linearly stable. Thus by Theorem 1.2 (i) and (ii), u ≡ 1 is globally stable if

either d or b is large enough.
�

4 Concluding remarks

No progress on the complete dominance case in the model describing the evolution of

genes under the joint action of selection and migration had been made until 2010. Partial

panmixia, an additional action which is important in taking into account the action of

long-distance migration, has been proposed by T. Nagylaki. Mathematically, this poses

a challenging problem involving non-local effects in partial differential equations. In this

paper, developing theories to handle the dynamics of non-local equations, we have made

substantial progress on this important model in genetics; namely, we have obtained

existence, non-existence, and stability properties of steady states. Moreover, the methods

we have developed here will be useful for other related problems as well. We plan to

pursue the interesting and significant issues – qualitative as well as quantitative properties

of solutions affected by non-local terms, and the uniqueness of non-trivial steady states

(which seems to be a very difficult problem) in a future paper.
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Appendix A Existence of stable global minimizer

In this appendix, we include the following standard arguments for the existence of a stable

global minimizer to complete the proof of Theorem 1.1. More precisely, we will show that

if

min{J[u] : u ∈ H1(Ω)} < min{J[0], J[1]},
then there exists at least one stable global minimizer solution, where J[·] is defined in

(3.1). Suppose that all the global minimizers are unstable. W.l.o.g., assume that v0 is a

global minimizer which is unstable from above. For clarity, the arguments leading to a

contradiction will be divided into two steps.

Step 1. We will show that there exists a minimal steady state of (1.6) above v0, denoted by

v1, which is a global minimizer stable from below and satisfies v0 < v1 < 1.

For 0 � v � 1, set

X+(v) = {w : 1 � w � v, w �= v}, X−(v) = {w : 0 � w � v, w �= v},
S = {u : u is a steady state of (1.6)}, S+(v) = S ∩X+(v).

Then, define Ψ (x) = inf ṽ∈S+(v0) ṽ(x), x ∈ Ω̄. Note that S+(v0) �= ∅ since it contains v ≡ 1.

Hence, Ψ is well defined.

Given any ε > 0 and finite number of points x1, . . . , xk ∈ Ω̄, there exist v1, . . . , vk ∈ S+(v0)

such that

Ψ (xi) � vi(xi) � Ψ (xi) + ε, i = 1, . . . , k,

which gives that

Ψ (xi) � (v1 ∧ v2 ∧ · · · ∧ vk)(xi) � Ψ (xi) + ε, i = 1, . . . , k.

It follows that Ψ is an accumulation point of S+(v0) in the topology of point-wise

convergence of Ω̄. Furthermore, note that S+(v0) is bounded below by v0 and above by

v ≡ 1. Thus, S+(v0) is relatively compact in C1(Ω̄)∩C2(Ω) due to the elliptic regularity. This

implies that Ψ is also an accumulation point of S+(v0) in the topology of C1(Ω̄)∩C2(Ω).

Hence, Ψ ∈ S+(v0) ∪ {v0}.
Now to show Ψ ∈ S+(v0), it suffices to show that v0 is isolated from S+(v0) in the

L∞ norm. Recall that v0 is unstable from above if there exists ε0 > 0 such that for any

δ > 0 small enough, there exists ψ ∈ C(Ω̄) which satisfies v0 � ψ � v0 + δ � 1 in Ω and

u(x0, t0;ψ) � v0(x0) + ε0 for some x0 ∈ Ω, t0 > 0. This indicates that

{w ∈ C(Ω̄) : ‖w − v0‖L∞ < ε0} ∩ S+(v0) = ∅.
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Therefore, there exists a minimal steady state above v0, denoted by v1. By maximum

principle, it is easy to see that v1 > v0 in Ω̄. Thus, Ψ = v1.

Next, let us investigate the properties of v1. For any ε > 0, choose v ∈ X+(v0) ∩X−(v1)

and close to v0 such that

J[v] < J[1], J[v] < J[v0] + ε.

Then, either ω[v] = {v0} or ω[v] = {v1}. The assumption that v0 is unstable from above

implies that ω[v] = {v1}. Thus,

J[v1] < J[v] < J[1], J[v1] < J[v] < J[v0] + ε.

It follows that v1 < 1 and v1 is also a global minimizer since ε is arbitrary. Moreover, it is

standard to show that for v ∈ X+(v0) ∩X−(v1), u(·, t; v) converges to v1 in C(Ω̄) ∩ C2(Ω̄).

Hence, v1 is stable from below.

Step 2. Define

S0 = {v0 < u < 1 : u is a global minimizer stable from below.}

Clearly, Step 1 tells us S0 �= ∅ since v1 ∈ S0. The partial order “�” is defined as

u, v ∈ S, u � v if u(x) � v(x) in Ω̄.

By Zorn’s Lemma, there exists a maximal well-ordered subset of S0, denoted by W . Two

cases will be handled respectively.

Case 1. Assume that W has a greatest element w. Since w ∈ S0, then w must be unstable

from above. By repeating the arguments in Step 1, one obtains a minimal steady state

above w, denoted by w̃, such that w̃ ∈ S0. Hence, W ∪{w̃} is a greater well-ordered subset

of S0 than W . This is a contradiction.

Case 2. Assume that W has no greatest element. Define ŵ = supu∈W u(x), then ŵ � W.

We claim that ŵ ∈ S0. For this purpose, it is enough to find a sequence

u1 � u2 � · · · � uk � · · · in S0

such that uk → ŵ in C2(Ω̄). Let {xl ∈ Ω : l ∈ �} be a dense subset of Ω. For every l,

there exists a sequence {u(l)
k }k�1 in W such that u(l)

k (xl) increases to ŵ(xl) as k → ∞.

Note that W is well ordered, so we set

uk = max{u(l)
k : 1 � l � k}.

Then, u1 � u2 � · · · � uk � · · · and uk ∈W . It is also clear that

lim
k→∞

uk(xl) � lim
k→∞

u
(l)
k (xl) = ŵ(xl) and lim

k→∞
uk(xl) � ŵ(xl).

Hence,

lim
k→∞

uk(xl) = ŵ(xl). (A 1)

Furthermore, {uk} ⊂ S0 yields that {uk} is bounded in C2,α(Ω̄). Hence, by passing to a

subsequence if necessary, we have uk → φ in C2(Ω̄) for some φ ∈ C2(Ω̄).
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We claim that φ = ŵ. Assume that this is not true, then on the one hand, there exists

x0 ∈ Ω such that

φ(x0) < ŵ(x0) − ε for some ε > 0.

Since φ ∈ C2(Ω̄), there exists a neighbourhood O1 of x0 such that

φ(x) < ŵ(x0) − ε for all x ∈ O1. (A 2)

On the other hand, there exists u0 ∈W such that

u0(x0) > ŵ(x0) − ε,

and similarly, there exists a neighbourhood O2 of x0 such that

u0(x) > ŵ(x0) − ε for all x ∈ O2. (A 3)

Then due to (A 1), (A 2) and (A 3), one sees that for any xl ∈ O1 ∩ O2,

ŵ(x0) − ε < u0(xl) � ŵ(xl) = lim
k→∞

uk(xl) = φ(xl) < ŵ(x0) − ε.

This is impossible and thus φ = ŵ.

Moreover, according to the choice of φ, it follows immediately that φ = ŵ is a global

minimizer stable from below. Hence, ŵ ∈ S0 and W ∪{ŵ} is a greater well-ordered subset

of S0 than W . This gives the desired contradiction.

Therefore, there exists a stable global minimizer. The proof is complete.

Appendix B Proof of Lemma 3.3

Instead of (3.14), we will study the more general non-local eigenvalue problem

Lφ := d

∫
Ω

k(x− y)φ(y)ρ(y)dy + h(x)φ(x) = μφ(x), (B 1)

with the following assumptions imposed:

(B) h(x) ∈ C(Ω̄), k(x) ∈ C(�N), k(x) = k(−x) � 0, k(0) > 0 and
∫

�N k(x)dx = 1.

The following result, which immediately yields Lemma 3.3 with h(x) = g(x)−b, d = b/α

and k(x) suitably chosen, will be established.

Proposition B.1 Assume that (B) is valid. Given any ε > 0, there exists hε ∈ CN(Ω̄) such

that ‖h− hε‖L∞ and the non-local eigenvalue problem

d

∫
Ω

k(x− y)φ(y)ρ(y)dy + hε(x)φ(x) = μφ(x)

admits a principal eigenvalue with strictly positive eigenfunction in C(Ω̄).

Before proving this proposition, we will present some properties related to the eigen-
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values of problem (B 1), and in particular, provide a criterion in determining the existence

of principal eigenvalue of (B 1) with strictly positive eigenfunction in C(Ω̄).

Denote

μ0 = sup
‖φ‖

L2=1

〈Lφ,φ〉, where 〈φ,ψ〉 =

∫
Ω

φ(x)ψ(x)ρ(x)dx,

and for α > maxΩ̄ h(x), ψ ∈ L2(Ω), define

Tαψ :=
d
∫
Ω
k(x− y)ψ(y)ρ(y)dy

α− h(x)
.

Lemma B.1 Assume that (B) holds, then μ0 � maxΩ̄ h(x).

Since h(x) ∈ C(Ω̄), this lemma can be verified easily by choosing a sequence of test

functions in L2(Ω) which concentrate at the maximum point of h(x). We omit the details.

Lemma B.2 Assume that (B) holds, then the following statements are equivalent:

(i) μ0 > maxΩ̄ h(x);

(ii) There exists α0 > maxΩ̄ h(x) such that the spectral radius r(Tα0
) = 1;

(iii) (B 1) admits a principal eigenvalue with a strictly positive eigenfunction in C(Ω̄).

Furthermore, μ0 = α0.

Proof Let X = C(Ω̄) and X+ = {u ∈ X : u � 0}. First, for any α > maxΩ̄ h(x), it is

easy to check that by Arzela–Ascoli Theorem, Tα is a compact operator from X to X.

Moreover, since the interior of X+ is not empty and for 0 �= u ∈ X+, Tαu > 0 in Ω̄, by

Krein–Rutman Theorem, we have r(Tα) > 0 and r(Tα) is a simple eigenvalue of Tα with

a strictly positive eigenfunction in X = C(Ω̄).

Now, assume that (ii) holds. Let ψ0 denote the strictly positive eigenfunction of Tα in

C(Ω̄), with ‖ψ0‖L2 = 1, corresponding to the simple eigenvalue r(Tα0
) = 1, i.e.,

d
∫
Ω
k(x− y)ψ0(y)ρ(y)dy

α0 − h(x)
= ψ0,

which is equivalent to

Lψ0 = d

∫
Ω

k(x− y)ψ0(y)ρ(y)dy + h(x)ψ0 = α0ψ0.

This implies that μ0 � α0. Thus, (i) is proved.

Next, we will demonstrate that μ0 = α0, which automatically yields ψ0 is the corres-

ponding eigenfunction of (B 1) and thus (iii) follows.

Suppose that this is not true, i.e. μ0 > α0. Then, according to the definition of μ0,

there exists a sequence of functions φn satisfying ‖φn‖L2 = 1, 〈Lφn, φn〉 increases to μ0 as

n→ ∞ and φn ⇀ φ∞ in L2. Without loss of generality, we may assume that φn � 0, and

thus φ∞ � 0.
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Set ψn = φn − εψ0, where ε > 0 is arbitrary. Clearly,

〈Lψn, ψn〉 � μ0〈ψn, ψn〉.

Direct computations imply that

〈Lψn, ψn〉 = 〈Lφn − εLψ0, φn − εψ0〉 = 〈Lφn, φn〉 − 2εα0〈φn, ψ0〉 + ε2α0,

and

μ0〈ψn, ψn〉 = μ0〈φn − εψ0, φn − εψ0〉 = μ0

(
1 − 2ε〈φn, ψ0〉 + ε2

)
.

Thus, it follows that, as n→ ∞

−2εα0〈φ∞, ψ0〉 + ε2α0 � −2εμ0〈φ∞, ψ0〉 + ε2μ0. (B 2)

Obviously 〈φ∞, ψ0〉 � 0. If 〈φ∞, ψ0〉 > 0, a contradiction arises in (B 2) due to the fact

that μ0 > α0 and ε > 0 is arbitrary. Hence, 〈φ∞, ψ0〉 = 0, which yields that φ∞ ≡ 0 since

φ∞ � 0 and ψ0 > 0 in Ω̄. Then, using the condition that φn ⇀ φ∞ = 0 in L2, it is routine

to verify that

μ0 = lim
n→∞

〈Lφn, φn〉

= lim
n→∞

∫
Ω

[
d

∫
Ω

k(x− y)φn(y)ρ(y)dy + h(x)φn(x)

]
φn(x)ρ(x)dx

= lim
n→∞

∫
Ω

h(x)φ2
n(x)ρ(x)dx � max

Ω̄
h(x). (B 3)

This is a contradiction since μ0 > α0 > maxΩ̄ h(x). Thus, we have established that (ii)

implies (iii) and μ0 = α0.

Now assume that (iii) holds. Let φ0 denote the strictly positive eigenfunction in C(Ω̄)

corresponding to μ0, i.e.,

Lφ0 = d

∫
Ω

k(x− y)φ0(y)ρ(y)dy + h(x)φ0(x) = μ0φ0(x).

This is equivalent to

(μ0 − h(x))φ0 = d

∫
Ω

k(x− y)φ0(y)ρ(y)dy.

Clearly, the right-hand side is continuous and strictly positive in Ω̄, therefore μ0 >

maxΩ̄ h(x), i.e., (i) holds.

It remains to show that (i) implies (ii). Since μ0 > maxΩ̄ h(x), similar to the arguments

at the beginning of the proof, one sees that r(Tμ0
) > 0 and r(Tμ0

) is a simple eigenvalue of

Tμ0
with strictly positive eigenfunction in C(Ω̄), denoted by ψ̂0. We only need demonstrate

that r(Tμ0
) = 1.
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Suppose that r(Tμ0
) > 1. Based on the definition of Tα, it is clear that there exists

α̃ > μ0 such that r(Tα̃) = 1. However, according to what we have proved, this yields that

α̃ = μ0, which is impossible. Therefore, r(Tμ0
) � 1.

Now suppose that r(Tμ0
) < 1 and a contradiction will be derived. The idea is again

similar as before.

According to the definition of μ0, there exists a sequence of functions φ̂n such that

‖φ̂n‖L2 = 1, 〈Lφ̂n, φ̂n〉 approaches μ0 as n → ∞ and φ̂n ⇀ φ̂∞ in L2. Without loss of

generality, we assume that φ̂n � 0, φ̂∞ � 0 and ‖ψ̂0‖L2 = 1. Similarly, we set ψ̂n = φ̂n−εψ̂0,

where ε > 0 is arbitrary and it holds that

〈Lψ̂n, ψ̂n〉 � μ0〈ψ̂n, ψ̂n〉,

which can be rewritten as

〈Lφ̂n − εLψ̂0, φ̂n − εψ̂0〉 � μ0

(
1 − 2ε〈φ̂n, ψ̂0〉 + ε2

)
. (B 4)

For the left-hand side of (B 4), recall that ψ̂0 satisfies

Tμ0
ψ̂0 =

d
∫
Ω
k(x− y)ψ̂0(y)ρ(y)dy

μ0 − h(x)
= r(Tμ0

)ψ̂0,

which is equivalent to

Lψ̂0 = d

∫
Ω

k(x− y)ψ̂0(y)ρ(y)dy + h(x)ψ̂0(x) =
[
r(Tμ0

)μ0 + (1 − r(Tμ0
))h(x)

]
ψ̂0.

Then direct computation yields that

lim
n→∞

{
〈Lφ̂n − εLψ̂0, φ̂n − εψ̂0〉 − μ0

(
1 − 2ε〈φ̂n, ψ̂0〉 + ε2

)}
= lim

n→∞

{
〈Lφ̂n, φ̂n〉 − 2ε〈φ̂n,Lψ̂0〉 + ε2〈Lψ̂0, ψ̂0〉 − μ0

(
1 − 2ε〈φ̂n, ψ̂0〉 + ε2

)}
= 2ε

(
μ0〈φ̂∞, ψ̂0〉 − 〈φ̂∞,Lψ̂0〉

)
+ O(ε2)

= 2ε
〈
φ̂∞, (1 − r(Tμ0

))(μ0 − h(x))ψ̂0

〉
+ O(ε2) > 0

for ε > 0 small enough if φ̂∞ � 0, since μ0 > maxΩ̄ h(x), r(Tμ0
) < 1, ψ̂0 is strictly positive

and φ̂∞ is non-negative. This contradicts (B 4). Therefore, φ̂∞ ≡ 0. Then similar to the

computation in (B 3), we have μ0 � maxΩ̄ h(x), which contradicts (i).

Therefore, r(Tμ0
) = 1 and thus (ii) is established. The proof is complete. �

We also include a simple example to demonstrate that it is possible that μ0 = maxΩ̄ h(x)

and μ0 cannot even be achieved by functions in L2(Ω). Assume that

• Ω = (−1, 1);

• ρ(x) = 1/2 in Ω;

• k(x) = 1/k0 for |x| � 2, k(x) = 0 for |x| � 3, k(x) ∈ C(�),
∫

� k(x)dx = 1, k(x) � 0,

where k0 > 0 is chosen properly;

• d = k0.
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We claim that set h(x) = 2 − c|x|2/3, where c � 3, then μ0 = maxΩ̄ h(x) = 2 and cannot be

achieved in L2. First, the non-local eigenvalue problem in (B 1) becomes

Lφ =
1

2

∫ 1

−1

φ(x)dx+ (2 − c|x|2/3)φ(x) = μφ(x)

and Tα is defined as follows:

Tαψ =

1
2

∫ 1

−1
ψ(x)dx

α− 2 + c|x|2/3 .

For any α > maxΩ̄ h(x) = 2, according to the proof of Lemma B.2, r(Tα) is a simple
eigenvalue of Tα with strictly positive eigenfunction, denoted by ψα, in C(Ω̄), i.e.,

1
2

∫ 1

−1
ψα(x)dx

α− 2 + c|x|2/3 = r(Tα)ψα.

This implies that

r(Tα) =
1

2

∫ 1

−1

1

α− 2 + c|x|2/3 dx.

Since r(Tα) is decreasing in α, we have

r(Tα) < lim
α↘2

r(Tα) =
1

2

∫ 1

−1

1

2 − 2 + c|x|2/3 dx =
3

c
� 1,

since c � 3. Thanks to Lemmas B.1, B.2, one sees that μ0 = maxΩ̄ h(x) = 2. Suppose that
μ0 = 2 is achieved by 0 �= φ0 ∈ L2, then

Lφ0 =
1

2

∫ 1

−1

φ0(x)dx+ (2 − c|x|2/3)φ0(x) = μ0φ0(x).

This gives that

φ0(x) =
1

c|x|2/3
1

2

∫ 1

−1

φ0(x)dx,

which clearly is not in L2. The claim is verified.
Now we are ready to verify Proposition B.1.

Proof of Proposition B.1 Since h(x) ∈ C(Ω̄), there exists hε ∈ CN(Ω̄) such that ‖h −
hε‖L∞ < ε, hε(xε) = maxΩ̄ hε(x) = maxΩ̄ h(x) for some xε ∈ Ω̄ and all the partial

derivatives of hε at xε up to order N − 1 are 0. Then for

Tα,εψ =
d
∫
Ω
k(x− y)ψ(y)ρ(y)dy

α− hε(x)
,

it is routine to show that

lim
α↘maxΩ̄ h(x)

r(Tα,ε) = +∞ and lim
α→+∞

r(Tα,ε) = 0.

Hence, there exists α0 > maxΩ̄ h(x) such that r(Tα0 ,ε) = 1. The desired conclusion now

follows from Lemma B.2 immediately. �
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