Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-06T11:12:52.107Z Has data issue: false hasContentIssue false

A moving boundary problem for the Stokes equations involving osmosis: Variational modelling and short-time well-posedness

Published online by Cambridge University Press:  24 November 2015

FRIEDRICH LIPPOTH
Affiliation:
Institute of Applied Mathematics, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany email: lippoth@ifam.uni-hannover.de
MARK A. PELETIER
Affiliation:
Faculty of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the Netherlands emails: m.a.peletier@tue.nl, g.prokert@tue.nl
GEORG PROKERT
Affiliation:
Faculty of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the Netherlands emails: m.a.peletier@tue.nl, g.prokert@tue.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Within the framework of variational modelling we derive a one-phase moving boundary problem describing the motion of a semipermeable membrane enclosing a viscous liquid, driven by osmotic pressure and surface tension of the membrane. For this problem we prove the existence of classical solutions for a short-time.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

References

[1] Amann, H. (1995) Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, xxxvi+335 pp.CrossRefGoogle Scholar
[2] Antanovskii, L. K. (1993) Analyticity of a free boundary in plane quasi-steady flow of a liquid form subject to variable surface tension. In: Proc. of Conference: The Navier-Stokes Equations II: Theory and Numerical Methods, Oberwolfach 1991, Berlin: Springer, pp. 116.Google Scholar
[3] Bergner, M., Escher, J. & Lippoth, F. (2012) On the blow up scenario for a class of parabolic moving boundary problems. Nonlinear Anal.: T. M&A 75, 39513963.CrossRefGoogle Scholar
[4] Bonaschi, G., Carrillo, J., Di Francesco, M. & Peletier, M. Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D. submitted, arXiv: 1310.411.Google Scholar
[5] Cheng, C. H. A, Coutand, D. & Shkoller, S. (2007) Navier-Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39, 742800.Google Scholar
[6] Escher, J. (2004) Classical solutions for an elliptic parabolic system. Interfaces Free Boundaries 6, 175193.Google Scholar
[7] Escher, J. & Prokert, G. (2006) Analyticity of solutions to nonlinear parabolic equations on manifolds and an application to Stokes flow. J. Math. Fluid Mech. 8, 135.Google Scholar
[8] Escher, J. & Simonett, G. (1997) Classical solutions for Hele-Shaw models with surface tension. Adv. Differ. Equ. 2, 619642.Google Scholar
[9] Frischmuth, K. & Hänler, M. (1999) Numerical analysis of the closed osmometer problem. Z. Angew. Math. Mech. 79, 107116.3.0.CO;2-E>CrossRefGoogle Scholar
[10] Günther, M. & Prokert, G. (1997) Existence results for the quasistationary motion of a capillary liquid drop. Z. Anal. ihre Anwendungen 16, 311348.Google Scholar
[11] Hopper, R.W. (1990) Plane stokes flow driven by capillarity on a free surface. J. Fluid Mech. 213, 349375.Google Scholar
[12] Kneisel, C. (2008) Über das Stefan-Problem mit Oberflächenspannung und thermischer Unterkühlung. PhD Thesis, Universität Hannover 2007; VDM Verlag Dr. Müller.Google Scholar
[13] Lippoth, F. & Prokert, G. (2012) Classical solutions for a one phase osmosis model. J. Evol. Equ. 12 (2), 413434.Google Scholar
[14] Lippoth, F. & Prokert, G. (2014) Stability of equilibria for a two-phase osmosis model. NoDEA Nonlinear Differ. Equ. Appl. 21, 129149.Google Scholar
[15] Lunardi, A. (1989) Maximal space regularity in inhomogeneous initial boundary value parabolic problems. Num. Funct. Anal. Opt. 10 (3 and 4), 323349.Google Scholar
[16] Lunardi, A. (1995) Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, xviii+424 pp.Google Scholar
[17] Meurs, P. J. P. v. (2011) Osmotic Cell Swelling in the Fast Diffusion Limit. MSc Thesis, Eindhoven University of Technology, http://alexandria.tue.nl/extra1/afstversl/wsk-i/meurs2011.pdf Google Scholar
[18] Mielke, A. (2005) Evolution in rate-independent systems. In: Handbook of Differential Equations: Evolutionary Differential Equations, Amsterdam: North-Holland, pp. 461559.Google Scholar
[19] Peletier, M. A. (2014) Variational Modelling: Energies, Gradient Flows, and Large Deviations, arxiv:1402.1990.Google Scholar
[20] Rayleigh, L. (1913) On the motion of a viscous fluid. London, Edinburgh Dublin Phil. Mag. J. Sci. 26, 776786.Google Scholar
[21] Rubinstein, L. & Martuzans, B. (1995) Free Boundary Problems Related to Osmotic Mass Transfer Through Semipermeable Membranes, Gakkotosho, Tokyo, vi+205 pp.Google Scholar
[22] Solonnikov, V. A. (1999) On quasistationary approximation in the problem of motion of a capillary drop. In: Escher, J. & Simonett, G. (editors), Topics in Nonlinear Analysis, Birkhäuser, Basel, Progress in Nonlinear Differential Equations and their Applications 35, pp. 643671.Google Scholar
[23] Vainberg, M. M. & Trenogin, V. A. (1974) Theory of Branching of Solutions of Non-linear Equations, Noordhoff, Leyden, xxvi+485 pp.Google Scholar
[24] Zaal, M. M. (2008) Linear Stability of Osmotic Cell Swelling. MSc Thesis, Vrije Universiteit Amsterdam. http://www.few.vu.nl/~mzl400/bin/scriptie.pdf Google Scholar
[25] Zaal, M. M. (2012) Cell swelling by osmosis: A variational approach. Interfaces Free Boundaries 14, 487520.Google Scholar
[26] Zaal, M. M. (2013) Variational Modeling of Parabolic Free Boundary Problems. PhD Thesis, Vrije Universiteit Amsterdam. http://dare.ubvu.vu.nl/bitstream/1871/40209/1/dissertation.pdf Google Scholar