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Within the framework of variational modelling we derive a one-phase moving boundary

problem describing the motion of a semipermeable membrane enclosing a viscous liquid,

driven by osmotic pressure and surface tension of the membrane. For this problem we prove

the existence of classical solutions for a short-time.
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1 Introduction

It is the aim of the present paper to introduce and discuss a model for the motion of a

closed membrane in a liquid, taking into account simultaneously the following effects:

(1) surface tension forces of the membrane,

(2) diffusion of a solute in the liquid,

(3) (quasistationary) viscous motion of the liquid,

(4) osmotic pressure difference across the membrane,

(5) resistance to liquid motion through the membrane.

To avoid additional difficulties, our attention in this paper is restricted to a one-phase

problem, i.e. we assume that the liquid outside the membrane has negligible viscosity and

does not contain any solute.

We remark that quite a number of well-studied moving boundary problems are

contained as special or limit cases in the above general setting. For example, if (1)

and (3) are the only forces taken into account and the membrane is impermeable,

so-called quasistationary Stokes flow (driven by surface tension) arises. If only (1),

(2), and (4) are considered, an osmosis model without liquid motion occurs. In the
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limit of fast diffusion, this problem (formally) yields a mean curvature flow problem

with a non-local lower order term. For details and references on this, we refer to

Section 2.

It is reasonable to demand that a model for the full problem should recover these

special and limiting cases. The crucial observation here is that both the osmosis problem

and the Stokes flow problem have a variational structure, i.e. they can be interpreted as

gradient flows with respect to certain energies and dissipation functionals. This yields a

straightforward approach to the full problem: We use linear combinations for both energy

and dissipation and assume that the evolution we are interested in is a generalised gradient

flow with respect to these. More precisely, an additional dissipation term is introduced to

model (finite) resistance of the membrane against solute flux.

We will use this approach to formally derive a moving boundary PDE system that

describes our full problem. At the moment it seems quite challenging to use its variational

structure for deriving existence results under weak smoothness assumptions. Therefore, we

do not pursue this approach here. Instead, we show short-time well-posedness of the PDE

system in a classical setting by transformation to a fixed domain and applying maximal-

regularity results and a contraction argument to the resulting non-linear parabolic Cauchy

problem in a product of suitable function spaces, in a fashion oriented at [13].

This paper is organised as follows: In Section 2, we introduce the model and discuss

several limit cases. In Section 3.1, we collect some necessary technical material such as a

regularity result in the scale of little Hölder spaces for the Stokes equations. We define

the notion of a classical solution of the full problem and state our main result (Theorem

3.3). Section 3.2 contains its proof.

2 Modelling and limit cases

2.1 Variational modelling: basic approach and preliminary examples

The modelling philosophy that we use here is a generalisation of a well-known strategy

for stationary problems. When deriving equations for stationary problems, for instance for

elasticity equations, it is common to postulate an energy and assume that the “system”

minimises this energy, possibly under constraints. The stationarity condition that follows

typically has the form of a differential equation.

Generalisations of this principle to non-stationary problems go back at least to

Rayleigh [20]. In such generalisations, both an energy and a dissipation mechanism

are postulated, and the system is assumed to follow the path given by “incremental”

minimisation. We now know that all gradient flows can be obtained in this way, and in

addition, by postulating the driving functional (“energy”) and the dissipation mechanism,

the system is completely characterised.

This implies that it is possible to derive the equations of motion in a given gradient-flow

system by choosing an energy and a dissipation mechanism. The lecture notes [19] give an

extensive introduction to this method of modelling. It is an advantage of this modelling

approach that in many applications it results in modelling choices that are independent

from each other, relatively straightforward, and can be justified from physical principles.

By contrast, the resulting systems of differential equations might be less transparent.
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2.1.1 The general setting

Defining a variational model comprises the following choices:

• a set Z of states with the structure of a differentiable (possibly infinite-dimensional)

manifold (the state manifold);

• a differentiable energy functional E : Z −→ �;

• a process space Pz at all z ∈ Z; (In fact, it makes sense to consider P :=
⋃
z∈Z Pz as a

vector bundle over Z.)

• a dissipation functional Ψz : Pz −→ �,

• a linear (bundle) map Πz : Pz −→ TzZ, where TzZ denotes the tangent space to Z
at z. We will refer to Πz as process map.

(These are formal, i.e. we will assume sufficient smoothness and do not strictly define the

phase manifold, its tangent space, etc.)

With these choices, the model is given as a dynamical system on Z defined by

ż = Πzw
∗, (2.1)

where w∗ is the solution to the minimisation problem

Ψz(w) + E′(z)[Πzw] −→ min, w ∈ Pz . (2.2)

Here, E′(z)[s] is the Fréchet derivative of E at z applied to the tangent vector s. The

minimiser w∗ can be considered as the “actual process chosen by the system in state z”

in the trade-off between diminishing the energy and minimising dissipation at z ∈ Z.

We assume here that the minimisation problem (2.2) is uniquely solvable, a property that

hinges on strict convexity and coercivity in appropriate norms of the potential Ψz . In

various other applications, such as the rate-independent systems that appear in fracture,

plasticity, and hysteresis [18], these properties fail; we refrain from giving details on this

as our interest is restricted to a situation in which the above framework is sufficient.

Observe, furthermore, that the approach described here contains the concept of a

gradient flow as a special case, as mentioned above: If (Z, g) is a Riemannian manifold,

Pz = TzZ, Ψz(w) = 1
2
gz(w,w), and Πz is the identity, then (2.1) defines the gradient flow

on (Z, g) induced by E. On the other hand, if the dissipation functional Ψz is quadratic

(i.e. Ψz(w) = Φz(w,w)) and positive definite, and if the process map is surjective, any

evolution of type (2.1), (2.2) can be considered as a gradient flow with respect to E and

the Riemannian metric gz constructed as follows: let Qz be the Ψz-orthogonal projection

along kerΠz . Observe that Qz is constant along fibres Π−1
z (v), v ∈ TzZ. Using this, it is

straight forward to check that the bilinear map

gz(v1, v2) := Φz(Qzw1, Qzw2), Πzwi = vi (i = 1, 2),

is a well-defined Riemannian metric on TzZ that has the desired property.

Before we describe the model we are interested in, we will informally illustrate

the approach of variational modelling in two related but simpler, paradigmatic and
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well-understood problems. This will also provide a motivation for the choices we are

going to make for the osmosis model.

2.1.2 Diffusion [19, Section 5.5]

To model linear diffusion on �N , the following choices are possible within the above

framework. Z is a suitable set of scalar non-negative functions on �N representing

concentrations. The functional E is given by the entropy

E(c) := γ

∫
�N

c ln c dx, γ > 0 fixed, c ∈ Z.

(We remark that c is understood to be dimensionless, i.e. a ratio with respect to a

fixed reference concentration c0. For simple, approximately spherical particles, we have

γ = RTc0, where R is the universal gas constant, T is absolute temperature, and c0 is

the same normalisation concentration, see e.g. [19, Ch. 4]). The process space consists of

vector fields on �N representing the mass flux, with dissipation functional

Ψc(f) :=
η1

2

∫
�N

|f|2
c
dx, f ∈ Pc.

(This is +∞ whenever c = 0 and f � 0 on a set of non-zero measure, so for the actual

process, f = 0 is enforced where c = 0.) The constant η1 in this expression is an inverse

mobility of the solute. For dilute, approximately spherical solute particles it should be

taken equal to 6πrν, where r is the particle radius, and ν the dynamic viscosity of the

solvent [19, Ch. 5].

Naturally, the tangent space Tc(Z) has to be interpreted as the set of the “local

concentration changes”. Accordingly, to encode mass conservation we choose

Πcf := −div f, f ∈ Pc.

Solving (2.2) with these choices yields η1f
∗ = γ∇c and from (2.1) we get

ct =
γ

η1
Δc on �N.

2.1.3 Free-boundary Stokes flow driven by curvature

To describe the motion of a liquid drop that is deformed by surface tension forces via

“creeping flow”, it is natural to choose Z to be the (infinite-dimensional) manifold of

(simply connected) domains Ω, representing the drop shapes. The energy is the corres-

ponding surface measure:

E(Ω) := α|∂Ω| = α

∫
∂Ω

dσ,

where α > 0 is the surface energy density. The tangent space TΩZ can be represented by

functions Vn : ∂Ω −→ � that play the role of the normal velocities of the boundary of a

moving domain t 	→ Ω(t).
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Again it is straightforward to choose a suitable process space, namely, the space of all

divergencefree vector fields in Ω, with dissipation caused by inner friction of the liquid:

ΨΩ(v) :=
η2

2

∫
Ω

|ε(v)|2 dx, ε(v) = 1
2
(∇v +

(
∇v)T

)
, v ∈ PΩ.

These choices are implied by the assumptions that the liquid is Newtonian and incom-

pressible, and that its mass is preserved. The constant η2 is the shear viscosity. The

mapping ΠΩ is chosen to represent the kinematic boundary condition, i.e. the assumption

that the boundary of the drop moves along with the liquid particles that constitute it:

ΠΩ(v) := v|∂Ω · n,

where n is the exterior unit normal to Ω.

A straightforward calculation shows that (2.1), (2.2) now yield the moving boundary

problem

Vn = u · n on ∂Ω(t),

where u solves the Stokes system

η2

2
Δu− ∇p = 0 in Ω(t), t > 0,

div u = 0 in Ω(t), t > 0,

τ(u, p)n = αHn on ∂Ω(t), t > 0,

where p is the hydrodynamic pressure, occurring here as a Lagrange multiplier corres-

ponding to the incompressibility condition, H is the sum of the principal curvatures of

∂Ω, and

τ(u, p) = η2ε(u) − pI,

is the hydrodynamic stress tensor. We have to remark here that the Stokes system defines

u only up to rigid body velocities since these are in the kernel of ε, see below. This moving

boundary problem (as well as closely related ones) has been discussed extensively in the

literature, see e.g. [2, 7, 10, 11, 22].

In both problems discussed here, the following observations can be made:

• Quadratic dissipation functionals correspond to linear constitutive relations (Fick’s law

and Newtonian stress–strain relation, respectively).

• In these cases and many others, the maps Πz encode balance laws (mass balance in the

first example, “boundary conservation” in the second).

2.2 Variational modelling of the Stokes–Osmosis problem

In the process of variational modelling, the above examples will play a guiding role. We

will need to deal with some additional aspects: mass conservation of the solvent in the

presence of a moving boundary, dissipation by the osmotic process, and diffusion in a

moving solvent.

We start by listing our modelling assumptions.
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• The solvent is incompressible and moves with velocity field u. Mass conservation of the

solvent then implies

div u = 0 in Ω. (2.3)

• The solute moves according to a flux field f so that mass conservation of the solute is

expressed by

ct + div f = 0 in Ω. (2.4)

• The membrane is impermeable to the solute. Together with mass conservation this

implies the boundary condition

f · n = cVn on ∂Ω. (2.5)

• The solvent inside the cell is viscous with a linear dependence of the strain rate on the

stress.

• The solute motion is governed by convection along u and diffusion through the solvent.

The diffusion obeys Fick’s law.

• There is finite resistance by the membrane to solvent moving through it, proportional

to the solvent flux.

These assumptions obviously oversimplify the physics of any “real” membrane enclosing

a liquid in motion. No further mechanical properties except resistance to area growth

from normal displacement are taken into account; in particular, there is no resistance to

tangential stretching (or one has to assume completely frictionless slipping of the liquid

in tangential direction along the membrane). Including these effects, in the vein of e.g. [5]

seems to be interesting but highly non-trivial and has to remain outside the scope of this

paper.

Our model is encoded in the following choices within the variational framework

described above.

2.2.1 State manifold

Since we consider a coupled problem involving diffusion inside a moving domain, we

choose the manifold of pairs (Ω, c) where Ω is a bounded domain in �N and c is a

non-negative solute concentration such that supp c ⊂ Ω̄. Accordingly, its tangent space

consists of pairs (Vn, ct) where Vn is has the same meaning as above and ct is a scalar

function in Ω representing concentration changes.

2.2.2 Energy functional

Keeping in mind the examples above, we define

E(Ω, c) = γ

∫
Ω

c ln c dx+ α|∂Ω|.

with appropriate positive constants α and γ. This includes diffusion and surface tension

as driving mechanisms of the evolution.
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2.2.3 Process space

The processes that cause energy dissipation here are solvent motion, solute flux, and

passage of the solvent through the membrane. As in the examples above, the former two

are described by a velocity field u and a flux field f. Since the solvent flux through the

membrane is given by u|∂Ω · n−Vn and in view of (2.5) it makes sense to consider Vn as a

process component as well. We therefore choose (cf. (2.3), (2.5))

P(Ω,c) = {(u, f, Vn) | div u = 0 in Ω, f · n = cVn on ∂Ω}.

2.2.4 Process map

In view of (2.4) it is now straightforward to define

Π(Ω,c)(u, f, Vn) = (Vn,−div f).

2.2.5 Dissipation

Concerning dissipation by the motion of the solutes, we have to consider now the flux

relative to the flux cu arising from pure transport by the solvent. The dissipation by

inner friction is the same as described in the example above. Additionally, we model the

resistance that solvent particles have to overcome when they cross the membrane. Since

we assume a linear constitutive relation here as well, we find

Ψ(Ω,c)(u, f, Vn) :=
η1

2

∫
Ω

|f − cu|2
c

dx+
η2

2

∫
Ω

|ε(u)|2 dx+
η3

2

∫
∂Ω

(u · n− Vn)
2 dσ.

The constants η1 and η2 have the same meaning as in the introductory examples above,

and η3 can be interpreted as the inverse permeability of the membrane.

These choices complete the modelling of our problem, in the sense that the model is

fully specified by them.

Remark

(1) Observe that for c > 0, the normal velocity Vn is determined by (2.5). This suggests

the alternative (but, in this case, equivalent) choices

P̃(Ω,c) = {(u, f) | div u = 0 in Ω},
Π̃(Ω,c) =

(
1
c
f|∂Ω · n,−div f

)
.

This appears to be more elegant and straightforward because the process space is

smaller and the process map is completely dictated by solute mass conservation.

However, we refrain from this as the restriction to everywhere strictly positive con-

centrations is both unnatural and unnecessary in our analysis of the resulting moving

boundary problem (More generally, there is a freedom of choice of the process space

and map independent of the physics of the problem.)
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(2) If we restrict the manifold of states to any submanifold consisting of pairs (Ω, c) that

satisfy ∫
Ω

c dx = M0,

with M0 being a fixed total solute mass then the process maps Π(Ω,c) are easily seen

to be surjective.

(3) In a more sophisticated version, elasticity and bending stiffness of the membrane

could be included by choosing energy functionals as in [5]. Likewise, it is possible to

include inertia forces which would yield a Navier-Stokes type problem.

We next derive the evolution equations for the state (Ω, c) under our modelling assump-

tions and turn to the minimisation problem (2.2). We first observe that

E′(Ω, c)[Π(Ω,c)(u, f, Vn)] = γ

∫
Ω

∇c
c

· f dx−
∫

∂Ω

(αH + γc)Vn dσ.

As usual, we account for the incompressibility condition (2.3) by introducing a Lagrange

multiplier q, which physically represents the hydrodynamic pressure. Thus the stationarity

conditions are the vanishing of the first variation of

L(u, f, Vn, q) := Ψ (u, f, Vn) + γ

∫
Ω

∇c
c

· f dx−
∫

∂Ω

(αH + γc)Vn dσ −
∫
Ω

q div u dx,

with respect to all variations (ũ, f̃, Ṽn) that satisfy f̃ · n = cṼn on ∂Ω.

Explicitly, this means∫
∂Ω

(−η3(u · n− Vn) − αH − γc)Ṽn dσ = 0,

− η1

∫
Ω

(f − cu) · ũ dx+ η2

∫
Ω

ε(u) : ε(ũ) dx− η3

∫
∂Ω

(Vn − u · n)ũ · n dσ −
∫
Ω

qdiv ũ dx

=

∫
Ω

(
−η2

2
Δu+ ∇q − η1(f − cu)

)
· ũ dx+

∫
∂Ω

(τ(u, q)n− η3(Vn − u · n)n) · ũ dσ = 0,

×
∫
Ω

η1(f − cu) + γ∇c
c

· f̃ dx = 0, (2.6)

where

τ(u, q) = η2ε(u) − qI,

is the (hydrodynamic) stress tensor in the solvent as before.

Gathering all equations and eliminating f by means of (2.6)3 we obtain the moving

boundary problem

− η2

2
Δu+ ∇(q + γc) = 0 in Ω(t), t > 0,

div u = 0 in Ω(t), t > 0,

∂tc− γ
η1
Δc+ ∇c · u = 0 in Ω(t), t > 0,

τ(u, q + γc)n− αHn = 0 on ∂Ω(t), t > 0,

αH + γc+ η3(u · n− Vn) = 0 on ∂Ω(t), t > 0,

− γ
η1

∂nc+ cu · n− cVn = 0 on ∂Ω(t), t > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
. (2.7)
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To enforce uniqueness of the solution, in our one-phase setting one has to exclude rigid

body motions. For this, we shall additionally demand that u is L2(Ω)-orthogonal to the

space of rigid body velocities on �N . Of course, the system has to be complemented by

initial conditions for c and Ω.

The model proposed here contains a number of more or less well-studied moving

boundary problems as (formal) limit cases:

• Osmosis in a resting solvent: When η2 → ∞, the solvent becomes immobile, and (2.7)

reduces to the problem of the motion of a membrane under the influence of osmosis

and surface tension:

∂tc− γ
η1
Δc = 0 in Ω(t), t > 0,

αH + γc− η3Vn = 0 on ∂Ω(t), t > 0,
γ
η1

∂nc+ cVn = 0 on ∂Ω(t), t > 0.

⎫⎪⎬
⎪⎭ . (2.8)

This model has been discussed in one spatial dimension (under the name “closed

osmometer problem”) in [9,21], in a radially symmetric setting in [24–26] and in higher

dimensions in [13,14], with the latter reference discussing the two-phase setting in terms

of stability of equilibria.

• Fast diffusion: When η1 → 0, the concentration is forced on the spatially constant

value c = c(t) = M/|Ω(t)|, where M is the total mass of solute. To our knowledge, the

resulting Stokes problem (2.7)1, (2.7)2,(2.7)4, (2.7)5 has not yet attracted any attention.

Starting from (2.8), however, one obtains the surface motion law (2.8)2, which is just

mean curvature flow with a non-local “braking term” [17].

• Impermeable membrane: When η3 → ∞, the condition Vn = u · n is enforced, i.e. the

membrane simply moves according to the normal component of the velocity field. This

is the standard kinematic boundary condition for moving liquid surfaces, also in cases

without a membrane. So the resulting problem

− η2

2
Δu+ ∇(q + γc) = 0 in Ω(t), t > 0,

div u = 0 in Ω(t), t > 0,

∂tc− γ
η1
Δc+ ∇c · u = 0 in Ω(t), t > 0,

τ(u, q + γc)n− αHn = 0 on ∂Ω(t), t > 0,

u · n− Vn = 0 on ∂Ω(t), t > 0,

∂nc = 0 on ∂Ω(t), t > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
, (2.9)

describes the free motion of a drop of viscous liquid under the influence of its own

surface tension, combined with a convection-diffusion problem of solute inside the drop.

It is interesting to observe that in the impermeable case the presence of a solute does

not influence the evolution of the domain: for any smooth evolution t 	→ (Ω(t), c(t)), the

evolution t 	→ (Ω(t), 0) satisfies (2.9) as well, i.e. t 	→ Ω(t) depends on Ω(0) only. More

precisely, the domain evolution is given by the Stokes flow problem with surface tension

described above. The reason for this can be understood in the following terms: While the

presence of solute appears in the Stokes equations (and dynamic boundary condition)

only via a modified pressure term, it is only the velocity field which determines the

domain evolution.

https://doi.org/10.1017/S0956792515000595 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000595


656 F. Lippoth et al.

To normalise all but one of the occurring constants to one we non-dimensionalise the

equations using the characteristic quantities

L :=
η̃2

η3
, T :=

L2η1

γ
, F :=

LN−1η̃2

T
, M :=

LF

γ
,

(η̃2 := η2/2) for length, time, force, and molarity, respectively. Keeping the same symbols

to denote dimensionless variables, we rewrite (2.7) in the form

−Δu+ ∇(q + c) = 0 in Ω(t), t > 0,

div u = 0 in Ω(t), t > 0,

τ(u, q + c)n = κHn on ∂Ω(t), t > 0,

∂tc− Δc = −∇c · u in Ω(t), t > 0,

∂nc+ c(κH + c) = 0 on ∂Ω(t), t > 0,

Vn − κH = c+ u · n on ∂Ω(t), t > 0,

Ω(0) = Ω0,

c(0) = c0 in Ω0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.10)

where τ denotes now the mapping (u, r) 	→ 2ε(u)− rI = (∇u+(∇u)T )− rI and κ :=
αη1η̃

N−1
2

γηN3
.

3 Short-time well-posedness

3.1 Preliminaries and formulation of the main result

If U ⊂ �l (l ∈ �) is an open set and X is a Banach space, let BUC(U,X) be the Banach

space of all bounded and uniformly continuous X-valued functions on U. The space

BUCk(U,X) contains those elements of BUC(U,X) that possess bounded and uniformly

continuous derivatives up to order k ∈ �. For k ∈ � ∪ {0} and s ∈ (0, 1), BUCk+s(U,X)

denotes the usual X-valued Hölder space. The little Hölder space hk+s(U,X) is defined by

hs(U,X) := {f ∈ BUCs(U,X); limh→0 supx,y∈U; |x−y|<h
‖f(x)−f(y)‖X

|x−y|s = 0},
hk+s(U,X) := {f ∈ BUCk+s(U,X); ∂βf ∈ hs(U,X); |β| = k}.

If U is a domain with sufficiently regular boundary and k < l ∈ �, then hk+s(U,X)

is known to be the closure of BUCl(U,X) in BUCk+s(U,X). Hence, if l + r > k + s,

hl+r(U,X) is dense in hk+s(U,X) in that case. More basic properties of the little Hölder

spaces can be found in [16]. In the case X = �, we write BUC(U) := BUC(U,�),

BUCk(U) := BUCk(U,�) etc.

If X,Y are Banach spaces, L(X,Y ) denotes the Banach space of bounded linear

mappings from X to Y . All spaces are equipped with their natural topologies. As

usual, function spaces over a manifold are defined by means of a sufficiently smooth

atlas.
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First, we consider the Stokes equations on a general domain in the regularity scale of

little Hölder spaces:

Let β ∈ (0, 1) and Ξ be a bounded C3+β domain in �N (that is a bounded open set

whose boundary possesses a C3+β-atlas) with exterior unit normal n = n∂Ξ . Let V0 be the

vector space of rigid body velocities on �N , i.e.

V0 := {v : �N → �N; vi(x) =
∑
j

sijxj + ci; sij , ci ∈ �; sij = −sji}.

Fix a basis {φk} in V0 and define the linear operator � ∈ L(L2(Ξ,�N), V0) by

�(w) = �Ξ (w) =
∑
k

(w,φk)φk, (w,φk) :=

∫
Ξ

w · φk dx.

We introduce the spaces

X(Ξ) := h2+β(Ξ,�N) × h1+β(Ξ), Y(Ξ) := hβ(Ξ,�N) × h1+β(Ξ) × h1+β(∂Ξ,�N). (3.1)

Lemma 3.1

(i) The linear operator

Λ = ΛΞ ∈ L(X(Ξ),Y(Ξ)),

given by

Λ(u, p) := (−Δu+ ∇p+ �(u), div u, τ(u, p)n),

is a topological isomorphism.

(ii) If (u, p) = Λ−1(f, g, h) and (f, g, h) satisfies the solvability conditions∫
Ξ

(f − ∇g) · φdx−
∫

∂Ξ

h · φdS = 0 for all φ ∈ V0,

then �(u) = 0.

Proof This result is essentially stated (in large Hölder spaces and without proof) in [22],

Proposition 2, see also p. 645. A proof of a corresponding result in Sobolev spaces can be

found in [10, Lemma 2]. Basically, the proof is based on the fact that the operator given

by

(u, p) 	→ (−Δu+ ∇p, div u, τ(u, p)n)

describes a Douglis–Nirenberg elliptic boundary system that satisfies the Lopatinskii–

Shapiro condition and is therefore a Fredholm operator from X(Ξ) to Y(Ξ). Its ker-

nel is easily seen to be V0 × {0}, and a discussion of the weak formulation shows

that its index is zero and yields the solvability conditions. Introducing the auxili-

ary term �(u) accomplishes the reduction to the case of an isomorphism, cf. [23],

Lemma 21.1. �
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Fix 0 < β < α < 1. We assume that

(I1) Ω0 ⊂ �N is a domain and Γ0 := ∂Ω0 is a closed compact hypersurface of regularity

class h4+β;

(I2) c0 ∈ h2+α(Ω0) satisfies ∂nc0 + κHΓ0
c0 + c20 = 0 on Γ0.

We use the direct mapping method to transform system (2.10) into a set of equations given

over a fixed and smooth reference domain. The unknown family of surfaces {Γ (t)} :=

{∂Ω(t)} will be described by a signed distance function with respect to that surface. In

order to carry out these transformations, we need some preparation:

Given any closed compact hypersurface Σ of class C2, let Tδ = Tδ(Σ) be an open

tubular neighborhood of Σ, i.e. the diffeomorphic image of the mapping

XΣ : Σ × (−δ, δ) → �N, (x, a) 	→ x+ a nΣ(x),

where nΣ(x) is the outer unit normal vector at x ∈ Σ and δ > 0 is sufficiently small. It

is convenient to decompose the inverse of XΣ into X−1
Σ = (PΣ, ΛΣ), where PΣ(x) is the

metric projection of a point x ∈ Tδ onto Σ and ΛΣ is the signed distance function with

respect to Σ. Let

AdΣ,ε := {σ ∈ C1(Σ); ‖σ‖C(Σ) < ε/5} (ε > 0),

be the set of admissible boundary perturbations. If ε > 0 is small enough, then the

mapping θσ(x) := x+ σ(x) nΣ(x) is for each σ ∈ AdΣ,ε a diffeomorphism mapping Σ onto

Σσ := θσ[Σ].

Due to Theorem 4.2 in [3] we can fix a number δ > 0 and a triple (Ω, Sδ(Γ ), ρ0)

in the following way:

• Ω ⊂ Ω0 is a domain and Γ := ∂Ω is a closed compact real analytic hypersurface;

• S := Sδ(Γ ) is an open tubular neighborhood of Γ , Γ0 ⊂ S;

• ρ0 ∈ h4,β(Γ ) ∩ AdΓ ,δ and the mapping θρ0
: Γ → Γ0 is a h4,β - diffeomorphism. In

particular, Γ0 = Γρ0
= θρ0

[Γ ].

From now on let δ > 0, (Ω, S, ρ0) be chosen as described above and let Ad := AdΓ ,δ .

Observe that θσ[Γ ] ⊂ S for all σ ∈ Ad. Suppose that σ ∈ Ad ∩ hm+γ(Γ ) for

some (m, γ) ∈ � × (0, 1). It is not difficult to see that then θσ ∈ hm+γ(Γ ,�N) and

θ−1
σ ∈ hm+γ(Γσ,�N). Moreover, given σ ∈ Ad ∩ hm+γ(Γ ), the mapping θσ extends to a

diffeomorphism

θσ ∈ Diffm+γ(�N,�N), θσ|Ω ∈ Diffm+γ(Ω,Ωσ) (Ωσ := θσ[Ω]),

such that we have ∂Ωσ = Γσ . The extension (called the Hanzawa-diffeomorphism) is given

by

θσ(y) =

{
PΓ (y) + [ΛΓ (y) + μ(ΛΓ (y))σ(PΓ (y))] · nΓ (PΓ (y)), y ∈ S

y, y � S,
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where μ ∈ D(�) satisfies μ|[−δ/5,δ/5] = 1, supp(μ) ⊂ (−(3δ)/5, (3δ)/5), |μ′| � 5/δ. Note

that, for σ ∈ Ad the surface Γσ is the zero level set of the function ϕσ defined by as

follows:

ϕσ(x) = Λ[Γ ](x) − σ(P[Γ ](x)),

x ∈ S , i.e. Γσ = ϕ−1
σ [{0}]. For later use we set

Lσ(x) := |∇ϕσ|(θσ(x)).

It can be shown that Lσ > 0 on Γ for all σ ∈ Ad. Finally, if ρ : [0, T ] → Ad is time

dependent, we use the notation

Ωρ,T :=
⋃

t∈(0,T )

{t} × Ωρ(t) ⊂ �N+1.

We are now ready to introduce the notion of a classical solution of (2.10):

Definition 3.2 Let c0, Γ0 satisfy (I1) and (I2), and let O := h4,β(Γ ) ∩ Ad inherit the

topology of h4,β(Γ ). A time-dependent family of domains {Ω(t); t ∈ [0, T ]}, functions

c(t), q(t) : Ω̄(t) → � and a vector field u(t) : Ω̄(t) → �N form a classical solution of

(2.10) on [0, T ], if there exists a function ρ ∈ C([0, T ],O) ∩ C1([0, T ], h2,β(Γ )) such that

letting Γ (t) := ∂Ω(t)

(i) Ω(t) = Ωρ(t), t ∈ [0, T ] (thus also Γ (t) = Γρ(t));

(ii) c(·) ◦ θρ(·) ∈ C([0, T ], h2+α(Ω)) ∩ C1([0, T ], hα(Ω));

(iii) (u, q)(t) ∈ h3+β(Ω(t),�N) × h2+β(Ω(t)) for t ∈ [0, T ];

(iv) t 	→ (c(t), u(t), q(t), Ω(t)) satisfies the equations of (2.10) pointwise on [0, T ], and, ad-

ditionally, �Ωρ(t) (u(t)) = 0 for t ∈ [0, T ].

Note that, (ii) in particular implies that c ∈ C1,2(Ωρ,T ,�) ∩ BUC(Ωρ,T ,�) and c(t) ∈
h2+α(Ωρ(t)) for t ∈ [0, T ]. The main theorem of this section reads as follows:

Theorem 3.3 Let c0, Γ0 satisfy (I1) and (I2). Then there exists a positive time T and a

unique classical solution t 	→ (c(t), u(t), q(t), Ω(t)) of (2.10) on [0, T ].

3.2 Transformation to a fixed interface

Given σ ∈ Ad, let θ∗
σ , θ

σ
∗ denote the pull-back and push-forward operators induced by θσ ,

i.e. θ∗
σ f = f ◦ θσ , θσ∗ g = g ◦ θ−1

σ . For functions b = b(t, x), ρ = ρ(t, x) that depend on time

we define [θ∗
ρ b](t, x) := [θ∗

ρ(t) b(t, ·)](x), analogue for θρ∗ .

First, we consider the transformed Stokes equations. For ρ ∈ Ad ∩h3+β(Γ ) observe that

(cf. [10, Lemma 1]) ∫
Γρ

HΓρnΓρ · φdS = 0 for all φ ∈ V0.
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Thus, letting

H(ρ) := θ∗
ρ HΓρ ,

n(ρ) := θ∗
ρ nΓρ ,

in view of Lemma 3.1 it makes sense to define

s(ρ) := θ∗
ρv,

where (v, q) ∈ h2+β(Ωρ,�N) × h1+β(Ωρ) is the unique solution of

−Δv + ∇q = 0 in Ωρ,

div v = 0 in Ωρ,

τ(v, q)nΓρ = κHΓρnΓρ on Γρ,

�Ωρ (v) = 0.

⎫⎪⎪⎬
⎪⎪⎭ . (3.2)

This mapping is smooth:

Lemma 3.4 We have [ρ 	→ s(ρ)] ∈ C∞(
Ad ∩ h3+β(Γ ), h2+β(Ω,�N)

)
.

Proof Recall our notation (3.1). For ρ ∈ Ad ∩ h3+β(Γ ) we have that the pull-back θ∗
ρ

induces isomorphisms from X(Ωρ) to X(Ω) and from Y(Ωρ) to Y(Ω) which we will denote

by the same symbols. The corresponding inverse will be denoted by θρ∗ . Define

Λ(ρ) := θ∗
ρΛΩρθ

ρ
∗ ,

observe that by Lemma 3.1 Λ(ρ) ∈ Lis

(
X(Ω),Y(Ω)

)
and

(s(ρ), θ∗
ρq) = Λ(ρ)−1(0, 0, κH(ρ)n(ρ)),

with q from (3.2). As

[ρ 	→ κH(ρ)n(ρ)] ∈ C∞(
Ad ∩ h3+β(Γ ), h1+β(Ω,�N)

)
,

it remains to show that

[ρ 	→ Λ(ρ)] ∈ C∞(
Ad ∩ h3+β(Γ ),L(X(Ω),Y(Ω)

)
. (3.3)

The result follows then from the fact that taking the inverse of an isomorphism is a

smooth operation. To show (3.3) it is sufficient to explicitly carry out the transformations

of the differential and integral operators involved. For example, for a first-order partial

derivative ∂i we have

θ∗
ρ∂iθ

ρ
∗ = a

j
i ∂j ,

where aji = a
j
i (ρ) ∈ h2+β(Ω̄) is an element of the matrix (Dθρ)

−1 and therefore depends

smoothly on ρ ∈ Ad ∩ h3+β(Γ ). Similarly,

θ∗
ρ(�Ωρ (θ

ρ
∗v)) =

∑
i

∫
Ω

v · (ψi ◦ θρ) detDθρ dx (ψi ◦ θρ),

which is smooth in ρ as well. �

https://doi.org/10.1017/S0956792515000595 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000595


A moving boundary problem for the Stokes equations involving osmosis 661

In order to transform (2.10) to Ω for suitable ρ we introduce the operators A(ρ), B(ρ),

K(ρ) by

A(ρ)ξ := θ∗
ρ(Δ(θρ∗ξ));

B(ρ)ξ := θ∗
ρ(∇(θρ∗ξ)) · n(ρ);

K(ρ)ξ := θ∗
ρ(∇(θρ∗ξ)).

The transformed problem reads then

∂tξ − A(ρ)ξ = R(ξ, ρ) − K(ρ)ξ · s(ρ) in Ω,

B(ρ)ξ = −κξH(ρ) − ξ2 on Γ ,

∂tρ− κLρH(ρ) = Lρ(ξ + s(ρ) · n(ρ)) on Γ ,

ξ(0) = ξ0,

ρ(0) = ρ0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (3.4)

where ξ0 := θ∗
ρ0
c0. The term R arises from the transformation of the time derivative and

is determined by

R(z, σ)(y) = r0(Lσ[κH(σ) + z + s(σ) · n(σ)], Bμ(σ)z)(y), y ∈ Ω,

where z ∈ C1(Ω̄), σ ∈ Ad ∩ C2(Γ ) and

r0(h, k)(y) :=

{
χ(ΛΓ (y)) · h(PΓ (y)) · k(y), if y ∈ Ω ∩ S
0, if y ∈ Ω \ (Ω ∩ S),

(3.5)

Bμ(σ)z(y) = θ∗
σ ∇(θσ∗ z)(y) · (nΓ ◦ PΓ )(y), y ∈ S

(χ being a suitable cut-off function, cf. [6,12]). The derivation of (3.4) is a straightforward

calculation [6, 12].

Note: If (ξ, ρ) is a sufficiently regular solution of (3.4), then (θρ∗ξ, θ
ρ
∗s(ρ), q, Γρ) is

a classical solution of (2.10), where q := θ
ρ
∗ (P2Λ(ρ)−1(0, 0, κH(ρ)n(ρ)) − ξ) (P2 denoting

the projection on the second component).

It turns out that the local well-posedness of system (3.4) can be proved almost in

the same fashion as outlined in Sections 2 and 3 in [13], so we recall the abstract setting

from there: If T > 0 is given and JT := [0, T ], let

E0 := hα(Ω) × h2+β(Γ ),

E1 := h2+α(Ω) × h4+β(Γ ),

�0(JT ) := BUC(JT , E0),

�1(JT ) := BUC1(JT , E0) ∩ BUC(JT , E1),

�(JT ) := BUC(JT , h
1+α(Γ )) ∩ h(1+α)/2(JT , C(Γ )).

To economise notation we drop the T - dependence, i.e. write �1 instead of �1(JT ) etc.

and define the sets

Ãd = {(ν, ψ) ∈ E1 |ψ ∈ Ad}, Âd = {w ∈ �1 |w(t) ∈ Ãd, t ∈ [0, T ]},

which are open subsets of E1 and �1, respectively. Our goal is to write system (3.4) as a
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single operator equation. For this we recall the splitting

H(ρ) = P (ρ)ρ+ Q(ρ),

as described for example in [8]. More precisely, P (ρ) can be chosen to be a second order

uniformly elliptic operator acting as an isomorphism in various scales of function spaces

and depending smoothly on ρ. The mapping Q contains only lower order terms. Precise

mapping properties of P (·) and Q are given for example in [6, 8, 12].

Remark 1 To clarify the structure of the non-linear operator H(ρ) let Δρ be the Laplace-

Beltrami operator of Γρ w.r.t the metric inherited from the ambient space �N . Let further

nρ be the outer unit normal field and Hρ be the mean curvature of Γρ. Recall that

Hρ = (Δρξρ|nρ)�N , (3.6)

where ξρ assigns to each point of Γρ its cartesian coordinates and Δρ acts componentwise

on ξρ. Parameterising Γρ over Γ (i.e. letting ξρ(x) := x+ ρ(x) · nΓ (x), x ∈ Γ ) we obtain in

local coordinates on Γ

Δρξρ =
1√
Gρ

N−1∑
i,j=1

∂i(
√
Gρ g

ij
ρ ∂jξρ), (3.7)

where gρij = (∂iξρ|∂jξρ)�N , (gijρ ) = (gρij)
−1 and Gρ = det(gρij). From equation (3.7) it is clear

that H(ρ) is of second order in ρ and that it has a quasilinear structure.

Let

�(w)(t) =

(
A(ρ(t)) 0

0 κLρ(t)P (ρ(t))

)
,

�̃(ν, ψ)(ζ, χ) = B(ψ)ζ,(
�(w)(v, σ)

)
(t) = �̃(w(t))(v(t), σ(t)),

�(w) = (∂t − �(w),�(w), γt),

where w = (ξ, ρ) ∈ Âd, (v, σ) ∈ �1, (ν, ψ) ∈ Ãd, (ζ, χ) ∈ E1 and γt ∈ L(�1, E1) denotes the

time trace map w 	→ w(0). We have

� ∈ C∞(
Âd,L(�1,�0)

)
,

�̃ ∈ C∞(
Ãd,L(E1, h

1+α(Γ ))
)
,

� ∈ C∞(
Âd,L(�1,�)

)
,

� ∈ C∞(
Âd,L(�1,�0 × � × E1)

)
,

cf. [13]. Let w0 = (ξ0, ρ0). For given, fixed M > ‖w0‖E1
we define the closed set

C = C(M,T ) := {w ∈ �1 |, w(0) = w0, ‖w‖�1
� M},

and introduce the subspace 	 ⊂ �0 × � × E1 by

	 = {(f, g, h) ∈ �0 × � × E1 | γtg = �̃(w0)h}.
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The following lemma collects some facts shown in [13] (Lemmas 3.1–3.5). The symbol

Lis stands for the set of topological isomorphisms.

Lemma 3.5 Let M > ‖w0‖E1
. There is a T ∗ = T ∗(M,w0) and a C = C(w0) such that if

T ∈ (0, T ∗] then C ⊂ Âd, �(C) ⊂ Lis(�1,	) and

‖�(w)−1‖L(	,�1) � C, w ∈ C.

Thus, our problem can be reformulated as

�(w)w = F(w) := (R(w),G(w), w0), w ∈ C, (3.8)

where

R(w)(t) =

(
R(w(t)) − K(ρ(t))ξ(t) · s(ρ(t))

Lρ(t)(κQ(ρ(t)) + ξ(t) + s(ρ(t)) · n(ρ(t)))

)
,

G(w)(t) = −κξ(t)H(ρ(t)) − ξ(t)2,

w = (ξ, ρ). In view of Lemma 3.4 it is easily checked that

F ∈ C∞(Âd,�0 × � × E1),

cf. [13].

Lemma 3.6 (Quasilinear character) Let ε > 0 and M > ‖w0‖E1
be given. There is a T ∗ =

T ∗(ε,M, w0) such that if T ∈ (0, T ∗], w1, w2 ∈ C, then

‖�(w1) − �(w2)‖L(�1 ,	) � ε‖w1 − w2‖�1
; (3.9)

‖F(w1) − F(w2)‖	 � ε‖w1 − w2‖�1
. (3.10)

Proof The estimate (3.9) has been proven in [13]. Using Lemma 3.4 and the facts that

K ∈ C∞(
Ad ∩ h3+β(Γ ),L(h1+α(Ω), hα(Ω,�N))

)
,

R ∈ C∞(
Ad ∩ h3+β(Γ ) × h1+α(Ω), hα(Ω)

)
,

n ∈ C∞(
Ad ∩ h3+β(Γ ), h2+β(Γ ,�N)

)
,

the estimate (3.10) results analogously to A.17 and A.18 in [13]. Observe in this connection

that pointwise scalar multiplication canonically induces a bounded and bilinear mapping

hm+γ(M,�l) × hm̃+γ̃(M,�l) → hm+γ(M,�), M ∈ {Γ ,Ω},

where m, m̃, l ∈ � ∪ {0}, l � 1, γ, γ̃ ∈ (0, 1) and m̃+ γ̃ � m+ γ. �

Theorem 3.7 (Short-time well-posedness) Let w0 = (ξ0, ρ0) ∈ h2+α(Ω̄) × (h4+β(Γ ) ∩ Ad) be

as specified above. Then there are constants M,T ∗ > 0 such that (3.8), or, equivalently, (3.4)

has precisely one solution in C for any T ∈ (0, T ∗].
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Proof Observe that (ξ0, ρ0) satisfy the compatibility condition

B(ρ0)ξ0 = −κξ0H(ρ0) − ξ2
0

because of (I2). Moreover, due to Lemma 3.5 we can rewrite (3.8) as a fixed point equation

w = Φ(w) := �(w)−1F(w), w ∈ C. (3.11)

Thus, the assertion is an immediate consequence of Lemmas 3.5, 3.6 and the obvious

modifications of Lemmas 3.5, 3.6 in [13]. �

The statement of Theorem 3.3 is a direct consequence of Theorem 3.7 and the observa-

tion that for a C4+β domain Ξ we have

ΛΞ ∈ Lis
(
h3+β(Ξ,�N) × h2+β(Ξ), h1+β(Ξ,�N) × h2+β(Ξ) × h2+β(∂Ξ,�N)

)
.

4 Conclusion

Our modelling approach consisted essentially in “adding up building blocks” from prob-

lems with a well-known variational structure, namely, diffusion and Stokes flow with

surface tension, for the free energy functional as well as for the dissipation. Even though

our evolution can be interpreted as a gradient flow, the character and structural properties

of the resulting non-linear problem are (to us) not a priori obvious. In particular, even

with the same state space and dissipation functional, different energy functionals may

lead to both parabolic and hyperbolic evolutions. An example for this is given by the

space of probability measures on the real axis with the Wasserstein metric, where, as is

well-known by now, the (generalised) gradient flow with respect to the entropy functional

is the heat flow, while a certain class of autocorrelation functionals gives rise to a non-

local hyperbolic evolution related to Burger’s equation [4]. In this respect, the challenging

problem arises to find direct connections between structural conditions on the energy and

dissipation functionals on one hand and the type or other properties of the corresponding

evolution on the other. At the moment, we feel unable to even give reasonably general

non-trivial conjectures on this.

It turns out that in our case the resulting evolution is parabolic in the following sense:

The associated linear homogeneous evolution is described by an analytic semigroup of

operators. In turn, the theory of these semigroups provides the means to prove optimal

regularity results for the corresponding linear, non-homogeneous evolution equations that

arise from linearising the original problem. For a more precise discussion of this, we refer

to [1] or [15].

In our problem, we have to consider a coupled evolution for a pair of functions, one of

them given inside the reference domain (with boundary conditions) and the other on its

boundary. The generator of the corresponding semigroups is diagonal in highest order,

so that known results on the “components” can be applied, including a crucial optimal

regularity result (Theorem 1.4) from [15]. Technically, this is the basis for Lemma 3.5 in

the present paper.
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Furthermore, it is important for our analysis that the non-local solution operator of the

Stokes equations only enters in a lower order term (since the pseudodifferential operator

mapping the Neumann normal stress boundary data to the Dirichlet boundary data is

of order −1, cf. Lemma 3.4), and therefore does not occur in the leading linear operator

�(w0) defined in Section 3.2.
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