Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-11T12:17:38.138Z Has data issue: false hasContentIssue false

A model for the evolution of the thermal bar system

Published online by Cambridge University Press:  30 October 2012

DUNCAN E. FARROW*
Affiliation:
Mathematics & Statistics, Murdoch University, Murdoch, Perth WA 6150, Australia email: D.Farrow@murdoch.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new framework for modelling the evolution of the thermal bar system in a lake is presented. The model assumes that the thermal bar is located between two regions: the deeper region, where spring warming leads to overturning of the entire water column, and the near shore shallower region, where a stable surface layer is established. In this model the thermal bar moves out slightly more quickly than predicted by a simple thermal balance. Also, the horizontal extent of the thermal bar region increases as it moves out from the shore.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

References

[1]Chapman, C. J. & Proctor, M. R. E. (1980) Non-linear Rayleigh-Bénard convection between poorly conducting boundaries. J. Fluid Mech. 101, 749782.Google Scholar
[2]Coates, M. J. & Patterson, J. C. (1993) Unsteady natural-convection in a cavity with nonuniform absorption of radiation. J. Fluid Mech. 256, 133161.Google Scholar
[3]Coates, M. J. & Patterson, J. C. (1994) Numerical simulations of the natural-convection in a cavity with nonuniform internal sources. Int. J. Heat Fluid Flow 15 (3), 218225.Google Scholar
[4]Cormack, D. E., Leal, L. G. & Imberger, J. (1974) Natural convection in a shallow cavity with differentially heated end walls. Part 1. asymptotic theory. J. Fluid Mech. 65, 209229.Google Scholar
[5]Csanady, G. T. (1971) On the equilibrium shape of the thermocline in a shore zone. J. Phys. Oceanogr. 1, 263270.2.0.CO;2>CrossRefGoogle Scholar
[6]Demchenko, N., Chubarenko, I. & van Heijst, G. (2012, April) On the fine structure of the thermal bar front. Environ. Fluid Mech. 12 (2), 161183, 10.1007/s10652-011-9223-2.Google Scholar
[7]Drazin, P. G. & Ried, W. H. (2004) Hydrodynamic Stability, 2nd ed., Cambridge Texts in Appied Mathematics, Cambridge University Press, Cambridge, UK.Google Scholar
[8]Elliott, G. H. (1971) A mathematical study of the thermal bar. In: Proceedings of the 14th Conference on Great Lakes Research, University of Toronto, Ontario, Canada, April 19–21, Intl. Assoc. Great Lakes Res., pp. 545554.Google Scholar
[9]Elliott, G. H. & Elliott, J. A. (1970) Laboratory studies on the thermal bar. In: Proceedings of the 13th Conference on Great Lakes Research, Intl. Assoc. Great Lakes Res., pp. 413418.Google Scholar
[10]Farrow, D. E. (1995a) An asymptotic model for the hydrodynamics of the thermal bar. J. Fluid Mech. 289, 129140.Google Scholar
[11]Farrow, D. E. (1995b) A numerical model of the hydrodynamics of the thermal bar. J. Fluid Mech. 303, 279295.Google Scholar
[12]Farrow, D. E. (2002) A model of the thermal bar in the rotating frame including vertically non-uniform heating. Environ. Fluid Mech. 2, 197218.CrossRefGoogle Scholar
[13]Farrow, D. E. & McDonald, N. R. (2002) Coriolis effects and the thermal bar. J. Geophys. Res. (Oceans) 107 (C5) doi:10.1029/2000JC000727.Google Scholar
[14]Farrow, D. E. & Patterson, J. C. (1994) The daytime circulation and temperature structure in a reservoir sidearm. Int. J. Heat Mass Transfer 37 (13), 19571968.Google Scholar
[15]Gresho, P. M. & Sani, R. L. (1971) The stability of a fluid layer subjected to a step change in temperature: Transient vs. frozen time analysis. Int. J. Heat Mass Transfer 14, 207221.CrossRefGoogle Scholar
[16]Huang, J. C. K. (1972) The thermal bar. Geophys. Fluid Dyn. 3, 128.CrossRefGoogle Scholar
[17]Kreyman, K. D. (1989) Thermal bar based on laboratory experiments. Oceanology 29 (6), 695697.Google Scholar
[18]Malm, J. (1995) Spring circulation associated with the thermal bar in large temperate lakes. Nordic Hydrol. 26, 331358.CrossRefGoogle Scholar
[19]Malm, J., Mironov, D., Terzhevik, A. & Jönsson, L. (1994) Investigation of the sprint thermal regime in Lake Ladoga using field and satellite data. Limnol. Oceanogr. 39 (6), 13331348.Google Scholar
[20]Roberts, A. J. (1985) An analysis of near-marginal, mildly penetrative convection with heat flux prescribed on the boundaries. J. Fluid Mech. 158, 7193.Google Scholar
[21]Zilitinkevich, S. S., Kreiman, K. D. & Terzhivik, A. Yu. (1992) The thermal bar. J. Fluid Mech. 236, 2742.Google Scholar
[22]Zilitinkevich, S. S. & Malm, J. (1993) A theoretical model of thermal bar movement in a circular lake. Nordic Hydrol. 24, 1330.CrossRefGoogle Scholar