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A new framework for modelling the evolution of the thermal bar system in a lake is

presented. The model assumes that the thermal bar is located between two regions: the

deeper region, where spring warming leads to overturning of the entire water column, and

the near shore shallower region, where a stable surface layer is established. In this model

the thermal bar moves out slightly more quickly than predicted by a simple thermal balance.

Also, the horizontal extent of the thermal bar region increases as it moves out from the

shore.
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1 Introduction

At the end of winter, the temperature of the water in many temperate lakes is less than

Tm = 4◦C, the temperature at which fresh water achieves its maximum density. As spring

progresses and the water is warmed, the near-shore shallow waters heat more rapidly than

the deeper parts. As a consequence, the 4◦C isotherm propagates out from the shore, and

different conditions prevail to either side of it. In the deeper regions the heating leads to

a destabilising of the water column and active mixing. In the shallows where the water is

warmer than 4◦C, the heating leads to a stable stratification. The boundary between these

two regions is called the thermal bar. In the intermediate depths there is a stably stratified

layer near the surface and active convection at depth where the water is cooler than

4◦C. The general horizontal temperature gradient also induces a double-celled circulation

pattern with downwelling in the vicinity of the thermal bar. A similar phenomenon occurs

at the end of autumn as the lake is cooled towards 4◦C. The shallow waters cool more

rapidly, and because of the symmetry of the density relation about 4◦C, a system similar

to the one that occurs during spring warming develops.

Previous modelling of the thermal bar system has fallen into two broad categories. The

first category has concentrated on the propagation of the thermal bar by considering in

detail the heat transfer in the system. Elliott and Elliott [9] modelled the propagation of

the thermal bar by distributing the surface heat flux over the local depth. For constant

bottom slope case this leads to the thermal bar moving out from the shore at a constant
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speed given by

Propagation speed =
I0

ρ0CpAΔT0
, (1.1)

where I0 is the surface heat flux, ρ0 is the reference density, Cp is the specific heat, A is

the bottom slope and ΔT0 = Tm − T0, where T0 is the initial temperature of the lake.

Using Lake Ladoga as an example [19] gives I0 ∼ 200 Wm−2, A ∼ 10−3, and the usual

values for the other parameters give a propagation speed of the order of 2 km per day.

This means that the thermal bar can persist for several weeks in large lakes such as Lake

Ladoga [19]. Most previous studies of the propagation the thermal bar have investigated

experimentally observed departures [6, 17] from (1.1). Zilitinkevich et al. [21] generalised

the work of [9] to include significant horizontal heat transfer in the vicinity of the thermal

bar. This additional heat transfer leads to the thermal bar propagating more quickly than

(1.1). The analysis in [21] has been generalised to circular lakes in [22].

The second category has focussed on the general circulation associated with the thermal

bar system. These include the quasi-steady state model of Elliott [8], the steady state

models that included Coriolis effects of Csanady [5] and Huang [16] and the asymptotic

unsteady results of Farrow [10, 12]. Unsteady asymptotic results that include Coriolis

effects where found by Farrow and McDonald [13]. Besides elucidating the general

circulation features of the thermal bar system, the models show how inertia and advection

can lead to the thermal bar propagating out from the shore either more slowly or more

quickly than the speed given in (1.1), especially for lakes with bottom slopes greater

than ∼10−2 [11, 18]. These results have gone some way to explaining the ‘two-speed’

propagation of the thermal bar observed experimentally [17].

In this paper a different approach is used to model the evolution of the thermal bar

system. The framework for the model is that the position of the thermal bar is at the

boundary between the stably stratified shallow region and the deeper unstable region.

Thus, the model focuses on the stability of the local water column rather than considering

the lake system as a whole and ignores any horizontal transfer of heat or momentum.

This approach is justified so long as horizontal transport of heat and momentum is

negligible, which is the case for lakes with small bottom slopes and where there are no

other significant drivers of horizontal mixing (such as wind). The results of this work are

less applicable to laboratory experiments which usually have bottom slopes of ∼ 10−1 so

that horizontal transport cannot be ignored, at least for larger times.

In Section 2 a model for the thermal bar system, including the heating mechanism and

some solutions, are found for the small bottom slope limit. In Section 3 the solutions

from Section 2 are subjected to a linear stability analysis. In that analysis it is assumed

that horizontal processes can be ignored. The stability problem is analysed in two ways.

The first is in the zero critical wavenumber limit, and then subsequently numerically for

general critical wavenumber. The results are then discussed in Section 4 in the context of

the propagation of the thermal bar.

2 Model formulation

The thermal bar system is modelled by the natural convection of a fluid contained in the

semi-infinite two-dimensional triangular domain bounded by the lines z̃ = 0 and z̃ = −Ax̃
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Figure 1. Schematic of flow domain showing conceptual flow structure of thermal bar system.

in the (x̃, z̃)-plane where A is the bottom slope. The flow domain and coordinate system

are shown in Figure 1. The flow is driven by a surface heat flux of (constant) magnitude

I0Wm−2. The precise mechanism whereby the heat enters the system is specified below.

An important part of the thermal bar phenomenon is the local density maximum of

fresh water at 4◦C. For temperatures near 4◦C, the density/temperature relationship is

well approximated by

ρ = ρm(1 − β(T̃ − Tm)2), (2.1)

where ρm is the maximum density at the maximum density temperature Tm and β ≈ 6.8 ×
10−6 ◦C−2. This quadratic dependence provides reasonable accuracy over the temperature

range 0◦–8◦C and is used by many workers modelling flows near the density maximum.

Assuming that temperature differences are sufficiently small that the Boussinesq ap-

proximation is appropriate, the equations of motion are

Dũ

Dt̃
= − 1

ρm
p̃x̃ + ν∇2ũ, (2.2a)

Dw̃

Dt̃
= − 1

ρm
p̃z̃ + ν∇2w̃ + gβ(T̃ − Tm)2, (2.2b)

DT̃

Dt̃
= κ∇2T̃ + Q(x̃, z̃, t̃), (2.2c)

ũx̃ + w̃z̃ = 0, (2.2d)

where ũ and w̃ are the horizontal and vertical velocities respectively, T̃ is the temperature,

p̃ is the pressure perturbation, Q is the volumetric heating rate (discussed below), ν is

the kinematic viscosity, κ is the thermal diffusivity, D/Dt̃ = ∂/∂t̃+ ũ∂/∂x̃+ w̃∂/∂z̃ is the

material derivative, ∇2 = ∂2/∂x̃2+∂2/∂z̃2 is the two-dimensional Laplacian and dependent

variable subscripts denote differentiation.
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The system is driven by the internal heating term Q in (2.2c). In both nature and

laboratory models of the thermal bar, the main heating mechanism is via the absorption

of light from either the sun or artificial lamps. As light at a particular wavelength is

absorbed with depth, its intensity drops exponentially with depth according to Beer’s law,

I(z̃) = I0 exp(η̃z̃), (2.3)

where η̃m−1 is the attenuation coefficient. The attenuation coefficient η̃ depends on the

wavelength of the light and the turbidity of the water. In modelling flows driven by the

absorption of light from the sun or lamps, the overall intensity is often distributed between

three or four discrete wavelengths each with their own attenuation coefficient [2, 3]. For

simplicity, it is assumed in the present work that the light incident at the surface can be

characterised by a single attenuation coefficient. Under this assumption, the volumetric

heating term Q in (2.2c) is given by

Q =
I0η̃

ρmCp
exp(η̃z̃), (2.4)

where Cp is the specific heat of water. Note the the thermal bar in natural lakes is a

response to gradual seasonal changes in the thermal forcing. This means that the step

change implicit in (2.4) is an approximation of the thermal forcing. The effect of gradual

heating on the circulation structure of the thermal bar was investigated by Farrow [12].

In the present work where the ‘frozen time’ assumption is made, the temporal evolution

of the thermal forcing has little impact on the results.

To complete the model, boundary and initial conditions need to be specified. For ũ and

w̃, it is assumed that the surface z̃ = 0 is stress-free and remains flat, thus

ũz̃ = 0 and w̃ = 0 on z̃ = 0. (2.5)

The bottom z̃ = −Ax̃ is assumed to be non-slip so

ũ = w̃ = 0 on z̃ = −Ax̃. (2.6)

For the temperature, it is supposed that all the heat input and output is accounted for

by the internal heating term Q in (2.2c). In fact, since the flow domain is of finite depth,

there will be some light that penetrates to the bottom of the flow domain. In the shallows

near the shore x̃ = 0, most of the light will reach the bottom. For the purposes of

the current work, it is assumed that this excess light passes through the bottom of the

flow domain and disappears. In their related work on solar-induced natural convection

near lake boundaries, Farrow and Patterson [14] assumed that the excess radiation was

absorbed by the bottom and then the associated heat was re-emitted as a boundary heat

flux. This introduces another possible source for instability in a region which is not the

focus of the present work, so the excess heat is ignored. Under these assumptions, the top

and bottom boundary conditions on the temperature are

T̃z̃ = 0 on z̃ = 0 and AT̃x̃ + T̃z̃ = 0 on z̃ = −Ax̃. (2.7)
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The initial conditions for this model are ũ = w̃ = 0 and T̃ = T0 < Tm at t̃ = 0, that is the

fluid is at rest and is at a uniform temperature less than the temperature of maximum

density.

The system of equations are non-dimensionalised following the scheme used by Farrow

[10]. There is no length scale associated with the geometry of the flow domain. Suppose

that the surface heat flux I0 is distributed uniformly over the local depth, then balancing

this against the unsteady term in (2.2c) yields a scale for T̃ − T0

T̃ − T0 ∼ I0t/(ρmCpAx̃). (2.8)

The position at which T̃ = Tm, the maximum density temperature, is

x̃m ∼ I0 t̃/(ΔT0ρmCpA) (2.9)

where ΔT0 = Tm −T0 and the local depth will be hm ∼ Ax̃m. This argument is identical to

that in Section 1 which led to (1.1). Viscous effects will be felt over a depth hm in a time

scale of τ = h2
m/ν. Identifying t̃ with τ yields time and length scales for this model,

x̃ ∼ l = νΔT0ρ0Cp/(AI0), (2.10a)

z̃ ∼ h = νΔT0ρ0Cp/I0, (2.10b)

t̃ ∼ τ = ν
(
ΔT0ρ0Cp/I0

)2
. (2.10c)

The temperature scale used here is T̃ −T0 ∼ ΔT0. Balancing the buoyancy and pressure

gradient terms in (2.2b) yields a scale for the pressure perturbation p̃ ∼ Δρ0gh, where

Δρ0 = ρmβΔT
2
0 . Substitution into (2.2a) and assuming a viscous/pressure gradient balance

yields a horizontal velocity scale,

ũ ∼ U =
ARa

σ

h

τ
, (2.11)

where σ = ν/κ is the Prandtl number and Ra is the Rayleigh number given by

Ra =
gΔρ0h

3

ρmνκ
. (2.12)

Finally, the continuity equation yields w̃ ∼ AU.

The system of equations (2.2a)–(2.2d) is non-dimensionalised using

x̃ = lx, z̃ = hz, t̃ = τt, ũ = Uu, w̃ = AUw, p̃ = Δρ0ghp and T̃ = T0 + ΔT0T , (2.13)

where variables without a tilde are dimensionless. The dimensionless equations are

ut + A2Ra(uux + wuz)/σ = −px + A2uxx + uzz, (2.14a)

wt + A2Ra(uwx + wwz)/σ = −pz/A2 + A2wxx + wzz + (1 − T )2/A2, (2.14b)

Tt + A2Ra(uTx + wTz)/σ = (A2Txx + Tzz)/σ + ηeηz, (2.14c)

ux + wz = 0, (2.14d)
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where η = hη̃ is the dimensionless attenuation coefficient and all variables are now non-

dimensional. The domain boundaries are z = 0 and z = −x at which the boundary

conditions are

uz = w = Tz = 0 on z = 0, (2.15a)

u = w = A2Tx + Tz = 0 on z = −x. (2.15b)

The initial conditions are u = w = T = 0 at t = 0.

The system of equations (2.14a)–(2.15b) do not admit a general analytic solution.

However, the parameter A is generally small (typically 10−2 or less in lakes) and this

can be exploited to obtain an asymptotic solution as A → 0 (see, for example [4]

or [10]). Letting A → 0 yields a system of equations for the O(A0) solution (denoted by

superscripts (0)),

u
(0)
t = −p(0)

x + u(0)
zz , (2.16a)

0 = −p(0)
z + (1 − T (0))2, (2.16b)

T
(0)
t = T (0)

zz /σ + ηeηz, (2.16c)

u(0)
x + w(0)

z = 0, (2.16d)

with the boundary conditions

u(0)
z = w(0) = T (0)

z = 0 on z = 0, (2.17a)

u(0) = w(0) = T (0)
z = 0 on z = −x, (2.17b)

and the initial conditions u(0) = w(0) = T (0) = 0 at t = 0.

The zero-order temperature T (0) can be determined independently and is the solution

of a straightforward one-dimensional conduction problem. The solution is

T (0)(x, z, t) =
t

x
(1 − e−ηx) + σ

[
z − eηz/η +

z2

2x
(1 − e−ηx)

+
1

η2x
(1 − e−ηx) +

x

6
(2 + e−ηx)

]

− 2σ

x

∞∑
n=1

( x

nπ

)2

η2 1 − (−1)ne−ηx

η2 + (nπ/x)2
exp

(
−

(nπ

x

)2 t

σ

)
cos

(nπz

x

)
. (2.18)

Figure 2 shows a few profiles of T (0) at x = 3 for various times as well as the corresponding

density profile. As time progresses, there is a change from a monotonic and unstable density

profile to a two-layer profile with a stable layer near the surface. This transition occurs as

the surface temperature T (0)(0) becomes larger than one. As time progresses, the depth of

the stable layer increases until the temperature at the base of the water column reaches

one (not shown in the figure), at which time the density profile will become stable over

the entire depth.
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Figure 2. Vertical profiles of (a) T (0), and (b) density at x = 3 for various times showing

transition from single layer to two-layer density structure.

The boundary value problem for u(0) is , despite being linear, difficult to solve as it

involves the forcing term (1 − T (0))2, where T (0) is an infinite series. Fortunately, the

stability problem discussed in the next section is independent of u(0), so no attempt is

made to find u(0).

3 The stability problem

3.1 Formulation

The A → 0 solution described in the previous section includes regions where there is less

dense fluid overlying more dense fluid. This section investigates the stability of the A → 0

solution using a linear stability analysis.
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The A → 0 solution is perturbed in the following way:

u = u(0) +
ε

A
U(ξ, z, t), (3.1a)

w = w(0) +
ε

A2
W (ξ, z, t), (3.1b)

p = p(0) + εP (ξ, z, t), (3.1c)

T = T (0) + εΘ(ξ, z, t), (3.1d)

where ε 	 1 is the perturbation parameter and ξ = x/A is a rescaled horizontal

coordinate. The perturbation quantities are taken to scale independent of A. In the non-

dimensionalisation outlined in Section 2, A appears explicitly in the scales for x, u and

w. Thus, for the perturbation velocities U and W to be O(1) with respect to A, A−1

and A−2 must appear in the factors multiplying the perturbation velocities. Similarly,

the horizontal scale of the perturbations need not scale with A−1, thus the horizontal

coordinate is rescaled.

Substitution of the perturbed quantities into (2.14a)–(2.14d), linearising with respect to

A and ε and making use of (2.16a)–(2.16d) yield evolution equations for the perturbation

quantities,

Ut = −Pξ +Uξξ +Uzz, (3.2a)

Wt = −Pz +Wξξ +Wzz − 2Θ(1 − T (0)), (3.2b)

σΘt + RaWT (0)
z = (Θξξ +Θzz), (3.2c)

Uξ +Wz = 0. (3.2d)

Note that u(0) does not appear in the evolution equations. This is not surprising, as it was

shown in Section 2 that the dimensional velocity u for the base flow scaled with the A.

Thus, for u(0) to appear in the stability problem, A must also appear as a parameter. The

A → 0 asymptotics have explicitly excluded A as a parameter, thus u(0) does not appear

in the stability problem. The boundary conditions on the perturbation quantities are

Uz = W = Θz = 0 on z = 0 and U = W = Θz = 0 on z = −x. (3.3)

Introducing a streamfunction Ψ with U = −Ψz and W = Ψξ and eliminating P from

(3.2a)–(3.2d) yields

(∂2/∂ξ2 + ∂2/∂z2)Ψt = (∂2/∂ξ2 + ∂2/∂z2)2Ψ − 2Θξ(1 − T (0)), (3.4a)

σΘt + RaΨξT
(0)
z = (∂2/∂ξ2 + ∂2/∂z2)Θ. (3.4b)

The remainder of the stability analysis makes the ‘frozen time’ assumption with respect

to the background temperature structure. It is assumed that the background temperature

is steady with respect to the evolution of the perturbation quantities. The validity of

this assumption was examined by Gresho and Sani [15], who found that the frozen time

assumption is justified for a linear stability analysis so long as the background temperature

structure is free of step changes, which is the case here.
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The perturbation quantities are now assumed to take the particular form

Ψ = IR{ikψ(z)est+ikξ}, (3.5a)

Θ = IR{θ(z)est+ikξ}, (3.5b)

where s is the instantaneous growth rate, k is the wavenumber of the disturbance and i is

the imaginary unit. Substitution into (3.4a) and (3.4b) yields

(D2 − k2 − s)(D2 − k2)ψ = 2θ(1 − T (0)), (3.6a)

(D2 − k2 − σs)θ = −Rac(x, t)k2ψDT (0), (3.6b)

where the short-hand D ≡ d/dz has been introduced. The boundary conditions on ψ and

θ are

Dθ = ψ = D2ψ = 0 on z = 0, (3.7a)

Dθ = ψ = Dψ = 0 on z = −x. (3.7b)

Specifying particular values for k and s, (3.6a) and (3.6b) along with the associated

boundary conditions constitute an eigenvalue problem for Rac(x, t), where, as implied by

the notation, the value will depend on x and t which serve to specify the local conditions.

The focus in this paper is on the boundary between the stable (s < 0) and unstable (s > 0)

regions. Thus, the growth rate s is set to zero and the remainder of the stability analysis

concentrates on the marginally stable case. The problem is now one of finding the smallest

positive eigenvalue Rac over all possible wavenumbers. This eigenvalue (called Rac) is the

critical Rayleigh number below which localised disturbances are damped.

3.2 Solution for k → 0

Unfortunately, terms appear in (3.6a) and (3.6b), where the unknown eigenfunctions ψ

and θ are multiplied by T (0) and DT (0) which are complicated functions of z. This

makes a general solution of the eigenvalue problem difficult. However, Chapman and

Proctor [1] have shown that for the case where the background vertical density gradient

is constant and with insulated boundary conditions like those that apply here, the critical

wave-number kc at which Rac occurs is kc = 0. Even though in the current case where the

density gradient is not linear, this property can be exploited to find an expression for Rac
analytically, at least for part of the domain.

Following Roberts [20], ψ, θ and Rac are expanded according to

ψ = ψ0 + k2ψ2 + · · · , (3.8a)

θ = θ0 + k2θ2 + · · · , (3.8b)

Rac = Rac0 + k2Rac2 + · · · , (3.8c)
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where the symmetry of the problem has been used to eliminate odd powers of k. Substi-

tution into (3.6a) and (3.6b) and taking the lowest order in k yields

D4ψ0 = 2θ0(1 − T (0)), (3.9a)

D2θ0 = 0, (3.9b)

for which the solution is θ0 = 1 and

u0 = −Dψ0 =

[
t

x

(
1 − e−ηx) − 1 + σ

[
1

η2x

(
1 − e−ηx) +

x

6

(
2 + e−ηx)]]

×
(

−z3

3
− 3z2x

8
+
x3

24

)
− σ

(
z4

12
− z2x2

10
+
x4

60

)

− σ

2x

(
1 − e−ηx) (

z5

30
+
z2x3

24
− x5

120

)

− 2σ

[
z

η3
− 1

η4
eηz +

3z2

4η5x3

[
2ηxe−ηx − 2

(
1 − e−ηx) + η2x2

]

− 1

4η5x

[
2ηxe−ηx − 6

(
1 − e−ηx) − η2x2

]]

− 4ση2

x

∞∑
n=1

( x

nπ

)2 1 − (−1)ne−ηx

η2 + (nπ/x)2
exp

(
−

(nπ

x

)2 t

σ

)

×
[( x

nπ

)3

sin
(nπ

x
z
)

− z
( x

nπ

)2

− 1

4

( x

nπ

)4
[(

3z2

x3
+

1

x

)
n2π2 +

(
6z2

x3
− 6

x

)
(1 − (−1)n)

]]
. (3.10)

A solvability condition at the next order in k yields Rac0,

Rac0 =

(
1

x

∫ 0

−x
u0T

(0)dz

)−1

. (3.11)

The above expression is apparently difficult to calculate as it involves integrating the

product of two infinite series. However, by using (3.9a) and θ0 = 1, it can be shown that

∫ 0

−x
u0T

(0)dz =

∫ 0

−x
u0

(
1 +

1

2
D3u0

)
dz. (3.12)

There is no contribution to the integral from the first term by virtue of conservation of

mass. The contribution from the second term is readily calculated since it is in the form

of an exact differential. Thus, when the boundary conditions (3.7a) and (3.7b) have been

used, Rac0 can be written as

Rac0 =

[
1

2x

(
u0D

2u0|z=0 − 1

2
(Du0)

2|z=−x

)]−1

. (3.13)

As will be seen later, the results of this section are relevant in the deeper parts of the

flow domain where the stable surface later is shallow compared with the local depth. In the
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thermal bar region the stable surface layer is deeper leading to the unstable region being

physically isolated from the heat flux surface boundary condition. Under these conditions

the kc = 0 assumption is no longer valid. Investigating the stability characteristics of the

thermal bar region requires solving (3.6a)–(3.7b) for kc > 0 which motivates the numerical

approach of the next section.

3.3 Numerical solution

The stability problem (3.6a)–(3.7b) is solved numerically using a shooting method similar to

that described in [7]. First, a vector function Y = (ψ,Dψ,D2ψ,D3ψ, θ, Dθ)T is introduced

so that equations (3.6a) and (3.6b) can be written in matrix form as

DY = KY (3.14)

where

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

−k4 0 2k2 0 2(1 − T (0)) 0

0 0 0 0 0 1

−Rack2DT (0) 0 0 0 k2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.15)

For fixed x and t, (3.14) is integrated from z = −x to z = 0 using the MATLAB

routine ode45 for three different initial conditions Y(−x) = (0, 0, 1, 0, 0, 0)T , Y(−x) =

(0, 0, 0, 1, 0, 0)T and Y(−x) = (0, 0, 0, 0, 1, 0)T . These three different solutions are labelled

as Y1, Y2 and Y3 respectively and these all satisfy the boundary conditions at z = −x.
The general solution for Y that satisfies all the boundary conditions at z = 0 will then be

a linear combination of Y1, Y2 and Y3: Y = α1Y1 + α2Y2 + α3Y3 for constants α1, α2 and

α3. The solution Y must satisfy the boundary conditions at z = 0, which can be written as

⎛
⎝ ψ1(0) ψ2(0) ψ3(0)

D2ψ1(0) D2ψ2(0) D2ψ3(0)

Dθ1(0) Dθ2(0) Dθ3(0)

⎞
⎠

⎛
⎝α1

α2

α3

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠ . (3.16)

The only solution will be α1 = α2 = α3 = 0 unless the coefficient matrix in (3.16) is

singular. This forms the basis of the method: searching for combinations of Rac and k so

that the determinant of this coefficient matrix is zero.

For a fixed temperature profile T0(z, t) the aim is to find the lowest critical Rayleigh

number Rac and corresponding critical wavenumber kc that makes the determinant of

the coefficient matrix in (3.16) zero. The numerical procedure uses the MATLAB function

fminbnd to minimise over k a function that finds Rac so that the determinant of the

coefficient matrix in (3.16) is zero for fixed k. This function first steps up from Rac = 0

until a zero is bracketed. The function then uses the MATLAB routine fzero to locate

Rac for a particular k. A side product of the procedure is the eigenfunction associated

with each Rac and kc pair. This can be used to characterise the secondary motion as

single- or double-celled convection.
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Figure 3. Numerical and asymptotic results for (a) Rac, and (b) kc at x = 3. In (a) the dashed line

is the asymptotic result (3.13).

4 Results and discussion

4.1 Introductory remarks

The results of this paper are divided into two sections. The first looks at the details of

the stability problem, including how the stability of the water column evolves with time

and the structure of the secondary circulation. The second considers the implications for

the evolution of the thermal bar system.

4.2 The stability problem

Figure 3 shows typical results for the evolution of the critical Rayleigh number Rac and

the critical wavenumber kc at x = 3. Initially Rac is infinite as no heat has been added

to the water column and hence there is no unstable density structure. As heat is added

to the system, the water column becomes increasingly unstable, which is shown via the

initially decreasing Rac in Figure 3(a). This decrease in Rac continues until the surface

temperature reaches 1 (at t ≈ 1.2) after which adding heat leads to a stable and thickening

surface layer. As the thickness of this layer increases, Rac also increases. The transition

from decreasing to increasing Rac occurs within the kc = 0 regime, which means the

asymptotic results of Section 3.2 capture this transition.

Some time later, once the stable layer has grown to encompass a significant fraction of

the local depth, the k → 0 results are no longer valid. The growth of the stable surface

layer can be seen in Figure 2. For x = 3 this happens at t ≈ 2.7 (see Figure 3(b)). This

time also corresponds to the numerical and asymptotic calculations of Rac diverging in
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Figure 4. Two profiles of u0 at x = 3 from the numerical calculations showing the transition from

single cell (t = 2, dashed line) to double cell (t = 3.5, solid line).

Figure 3(a). For t slightly larger than this value, the asymptotic results have Rac < 0,

which means that the water column is stable to perturbations with k = 0. Physically, the

stable surface layer has isolated the unstable deeper layer from the insulated boundary

condition at z = 0. Since it is the insulated boundary condition that leads to kc = 0, the

asymptotic results break down.

There is another significant transition that occurs in the stability problem. Figure 4

shows two profiles of u0, the eigenfunction associated with the secondary motion. Note

that at t = 2 the numerical profile shown in Figure 4 is indistinguishable (to graphical

accuracy) from the asymptotic result given in (3.10). However, the profile at t = 3.5 is in

a region where the k → 0 results are not valid and the asymptotic result is not shown.

The profile for t = 2 (dashed line) shows that the secondary motion consists of a single

cell that encompasses the entire depth. The profile at t = 3.5 (solid line) has a double cell

structure with a smaller and weaker cell sitting at the surface. This two-cell circulation

structure was also seen in [20] where there was also a stable layer overlying an unstable

layer. The interpretation in [20] was that the weaker upper cell was being driven by the

viscous transfer of momentum from the deeper and stronger cell that was in turn driven

by the unstable density structure. The transition from single to double cell circulation can

be characterised by the surface velocity u0|z=0 being zero. This transition happens just

before kc becomes non-zero, so it is accurately captured by the asymptotic results.

Eventually, the water column will have a temperature greater than 1 over its entire

depth (not shown in Figure 3). After this time the water column is stably stratified and

adding more heat strengthens the stratification. Since the background temperature (2.18)

attains its minimum at z = −x, the moment that T (0)|z=−x = 1 corresponds to Rac = ∞
and after this time the water column is stably stratified.

The above discussion has used the water column at x = 3 as an example. Other values of

x have qualitatively similar behaviour. The main difference is the timing of the transitions

from one regime to another. However, the transitions happen in the same order for all

values of x.
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Figure 5. Contours of the numerically calculated Rac in the (t, x)-plane for η = 1 and σ = 10. The

Rac = ∞ contour is determined by points where T (0)|z=−x = 1. Also shown is the location where

the surface temperature T (0)|z=0 = 1 (dotted line), the location where u0|z=0 = 0 (solid line) and the

location where the vertically averaged temperature is 1 (dashed line).

4.3 The thermal bar system

Figure 5 summarises the results of this paper. It shows contours in the (t, x)-plane of the

numerically calculated Rac. It also includes the Rac = ∞ contour which corresponds to

the points where T (0)|z=−x = 1. For points in the (t, x)-plane below this contour the water

column is stably stratified over the entire depth. For points above this contour secondary

motion can be expected if Ra exceeds the critical value associated with that point. Note

that the numerically calculated contours become inaccurate near the Rac = ∞ contour

(indicated by the dotted contours in Figure 5). This is because the numerical procedure

is unable to accurately solve the stability problem when the thickness of the unstable

layer at the base of the water column becomes very thin compared with the stable layer

above it.

As noted above, the water column is initially stable and for small times Rac decreases

as t increases. Deeper regions are less stable than the shallow regions where viscous effects

are relatively greater. After some time (which is depth-dependent) Rac starts to increase

indicating that the water column is becoming more stable. In the deeper parts of the

domain this time corresponds closely to the time at which the surface temperature reaches

1 (indicated by the dotted line in Figure 5) and a stable surface layer starts to form. In

the shallows where vertical diffusion of heat becomes important it happens sooner.

As time progresses the water column becomes more stable and the thickness of the

stable surface layer increases. At some point (again, depth dependent) there is a transition
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from single-celled to double-celled secondary motion. After this time the turnover due to

the instability does not occur over the entire depth. There is mixing at depth below the

stably stratified surface layer within which there is a relatively weak circulation. For the

thermal bar system this transition (indicated by the u0(0) = 0 contour in Figure 5) marks

the leading edge of the stably stratified surface layer. Note that in Figure 5 this transition

happens before the vertically averaged temperature has reached 1 (shown as a dashed

line in Figure 5). The dashed line is the analogue of (1.1) for the model of this paper.

That is, the head of the stably stratified surface layer is further out from the shore than

(1.1) would predict. This apparent greater than (1.1) propagation speed occurs despite

there being no horizontal transport of heat in this model – it is entirely due to stability

characteristics of the local water column.

Eventually the entire water column is stably stratified which marks the passing of the

thermal bar and the establishment of summer conditions. In the model of this paper

this corresponds to the temperature at the base of the water column reaching 1 which

corresponds to the Rac = ∞ contour.

To summarise: For a fixed distance from the shore the passage of the thermal bar

system is marked by a number of transitions. First the surface temperature reaches 1

which marks the establishment of a stable surface layer. This happens at more or less

the same time for all depths with the exception being in the shallows where the water is

shallower than the attenuation depth of the heating. Despite there being a stable surface

layer, the water column is still unstable over its entire depth with the secondary motion

consisting of a single cell encompassing the entire depth of the water column. The next

transition is from single- to double-celled secondary motion. Here the water column does

not turn over its entire depth. This means that the stable surface layer is not mixed with

the deeper parts of the water column and in a lake this marks the establishment of a

permanent surface layer. This happens before the vertically averaged temperature has

reached 1, the traditional marker for the arrival of the thermal bar. The final transition to

summer conditions is when the temperature of the entire water column becomes greater

than 1 after which the present model predicts no secondary motion. The timings of these

transitions depend on the local depth with the time between each transition increasing

with depth. This latter point means that the horizontal extent of the thermal bar region

increases as it moves away from the shore.

5 Concluding remarks

This paper has presented a framework for the evolution of the thermal bar system that

is based on the instantaneous stability of the local water column. This framework leads

to the thermal bar apparently moving out from the shore at a slightly greater speed than

the vertically mixed model of Elliott and Elliott [9] despite there being no horizontal heat

transfer in the model. The establishment of summer conditions is marked by a number

of transitions as the stability characteristics of the warming water column evolve.

There are a number of obvious shortcomings with this model. Firstly, horizontal

transport has been ignored which is unreasonable for lakes with bottom slopes larger

than ∼10−2. All laboratory experiments of the thermal bar system have bottom slopes

∼10−1 so the present results are not applicable to experimental results at least for later
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times when significant horizontal currents have become established. Secondly, the stability

problem is formulated using a pure conduction solution of the temperature structure which

takes no account of any vertical mixing that might have previously occurred. Presumably

any vertical mixing will tend to stabilise the water column which might lead to the thermal

bar moving out more quickly than predicted by the model in this paper. Less significant

shortcomings include the simplicity of the thermal forcing model.

Acknowledgements

The author would like to thank S. Brown and the anonymous reviewers for useful

comments on earlier drafts of this paper.

References

[1] Chapman, C. J. & Proctor, M. R. E. (1980) Non-linear Rayleigh-Bénard convection between

poorly conducting boundaries. J. Fluid Mech. 101, 749–782.

[2] Coates, M. J. & Patterson, J. C. (1993) Unsteady natural-convection in a cavity with nonuni-

form absorption of radiation. J. Fluid Mech. 256, 133–161.

[3] Coates, M. J. & Patterson, J. C. (1994) Numerical simulations of the natural-convection in a

cavity with nonuniform internal sources. Int. J. Heat Fluid Flow 15(3), 218–225.

[4] Cormack, D. E., Leal, L. G., & Imberger, J. (1974) Natural convection in a shallow cavity

with differentially heated end walls. Part 1. asymptotic theory. J. Fluid Mech. 65, 209–229.

[5] Csanady, G. T. (1971) On the equilibrium shape of the thermocline in a shore zone. J. Phys.

Oceanogr. 1, 263–270.

[6] Demchenko, N., Chubarenko, I. & van Heijst, G. (2012, April) On the fine structure of the

thermal bar front. Environ. Fluid Mech. 12(2), 161–183, 10.1007/s10652-011-9223-2.

[7] Drazin, P. G. & Ried, W. H. (2004) Hydrodynamic Stability, 2nd ed., Cambridge Texts in

Appied Mathematics, Cambridge University Press, Cambridge, UK.

[8] Elliott, G. H. (1971) A mathematical study of the thermal bar. In: Proceedings of the 14th

Conference on Great Lakes Research, University of Toronto, Ontario, Canada, April 19–21,

Intl. Assoc. Great Lakes Res., pp. 545–554.

[9] Elliott, G. H. & Elliott, J. A. (1970) Laboratory studies on the thermal bar. In: Proceedings

of the 13th Conference on Great Lakes Research, Intl. Assoc. Great Lakes Res., pp. 413–418.

[10] Farrow, D. E. (1995a) An asymptotic model for the hydrodynamics of the thermal bar. J.

Fluid Mech. 289, 129–140.

[11] Farrow, D. E. (1995b) A numerical model of the hydrodynamics of the thermal bar. J. Fluid

Mech. 303, 279–295.

[12] Farrow, D. E. (2002) A model of the thermal bar in the rotating frame including vertically

non-uniform heating. Environ. Fluid Mech. 2, 197–218.

[13] Farrow, D. E. & McDonald, N. R. (2002) Coriolis effects and the thermal bar. J. Geophys.

Res. (Oceans) 107 (C5) doi:10.1029/2000JC000727.

[14] Farrow, D. E. & Patterson, J. C. (1994) The daytime circulation and temperature structure

in a reservoir sidearm. Int. J. Heat Mass Transfer 37(13), 1957–1968.

[15] Gresho, P. M. & Sani, R. L. (1971) The stability of a fluid layer subjected to a step change in

temperature: Transient vs. frozen time analysis. Int. J. Heat Mass Transfer 14, 207–221.

[16] Huang, J. C. K. (1972) The thermal bar. Geophys. Fluid Dyn. 3, 1–28.

[17] Kreyman, K. D. (1989) Thermal bar based on laboratory experiments. Oceanology 29(6),

695–697.

[18] Malm, J. (1995) Spring circulation associated with the thermal bar in large temperate lakes.

Nordic Hydrol. 26, 331–358.

https://doi.org/10.1017/S0956792512000344 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000344


A model for the evolution of the thermal bar system 177

[19] Malm, J., Mironov, D., Terzhevik, A. & Jönsson, L. (1994) Investigation of the sprint thermal

regime in Lake Ladoga using field and satellite data. Limnol. Oceanogr. 39(6), 1333–1348.

[20] Roberts, A. J. (1985) An analysis of near-marginal, mildly penetrative convection with heat

flux prescribed on the boundaries. J. Fluid Mech. 158, 71–93.

[21] Zilitinkevich, S. S., Kreiman, K. D. & Terzhivik, A. Yu. (1992) The thermal bar. J. Fluid

Mech. 236, 27–42.

[22] Zilitinkevich, S. S. & Malm, J. (1993) A theoretical model of thermal bar movement in a

circular lake. Nordic Hydrol. 24, 13–30.

https://doi.org/10.1017/S0956792512000344 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000344

