Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-06T07:15:34.986Z Has data issue: false hasContentIssue false

The mathematics of varistors

Published online by Cambridge University Press:  19 May 2016

GIOVANNI CIMATTI*
Affiliation:
Department of Mathematics, University of Pisa, 56127, Pisa, Largo Bruno Pontecorvo 5, Italy email: cimatti@dm.unipi.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A three-dimensional model of the varistor device is proposed. The thermal and electric conductivity of the material are taken to depend, in addition to the electric potential, on the temperature. Two theorems of existence and uniqueness of solutions for the boundary-value problem which determine the potential and the temperature inside the device are proposed. Levy–Caccioppoli global inversion theorem is used for the proof.

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

References

[1] Ambrosetti, A. & Arcoya, D. (2011) An Introduction to Functional Analysis and Elliptic Problems, Birkhäuser, Boston.CrossRefGoogle Scholar
[2] Ambrosetti, A. & Prodi, G. (1973) Analisi Non Lineare, Quaderni S.N.S, Pisa.Google Scholar
[3] Caccioppoli, R. (1932) Sugli elementi uniti delle trasformazioni funzionali: Un teorema di esistenza e unicità e alcune sue applicazioni. Rend. Sem. Mat. Univ. Padova 3, 123137.Google Scholar
[4] Chow, S. & Hale, J. K. (1982) Methods of Bifurcation Theory, Springer-Verlag, New York.CrossRefGoogle Scholar
[5] Cimatti, G. (2011) Remarks on the existence, uniqueness and semi-explicit solvability of systems of autonomous partial differential equations in divergence form with constant boundary conditions. Proc. R. Soc. Edim. 141, 481495.CrossRefGoogle Scholar
[6] Data Sheets (1978) Nonlinear resistors, Philips. Amsterdam.Google Scholar
[7] Grondahl, L. O. & Geiger, P. H. (1927) A new electronic rectifier. Trans. AIEE 46, 357366.Google Scholar
[8] Levy, P. (1920) Sur les fonctions de lignes implicites. Bull. Soc. Math. de France 48, 5679.Google Scholar