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A three-dimensional model of the varistor device is proposed. The thermal and electric

conductivity of the material are taken to depend, in addition to the electric potential, on the

temperature. Two theorems of existence and uniqueness of solutions for the boundary-value

problem which determine the potential and the temperature inside the device are proposed.

Levy–Caccioppoli global inversion theorem is used for the proof.
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1 Introduction

Voltage dependent resistors, also called varistors, are electronic components with an

electrical resistivity that varies with the applied voltage [6, 7]. This highly nonlinear

voltage–current characteristic is similar to that of a diode with the basic difference of

being the same for both directions of transverse current. The traditional schematic symbol

of the varistor, see Figure 1, reflects well the diode-like behaviour in both directions of

the current flow. Varistors are made of a ceramic mass consisting of an enormous number

of randomly oriented zinc oxide grains. Electrically, this is equivalent to a network of

a huge number of back-to-back diode pairs. This explains the empirical current–voltage

characteristic of Figure 2, which is well described by the empirical law

I = CVα, (1.1)

where α is an odd positive integer typically greater that 31 and C a positive constant. The

high value of the exponent α explains the flat region in the voltage–current characteristic

which is essential for the use of varistors as circuit protectors. In this paper, we model

a varistor as a three-dimensional body represented by an open and bounded subset Ω

of R3 homeomorphic to a sphere and with a boundary Γ consisting of three regular,

e.g. C2, surfaces Γ1, Γ2 and Γ3 such that Γ1 ∩ Γ2 = ∅ and Γ = Γ1 ∪ Γ2 ∪ Γ3 as shown

in Figure 3. The surfaces Γ1 and Γ2 represent the electrodes of the varistor to which a

potential difference is applied, whereas Γ3 is the electrically insulated part of the device.

We can easily prove that if we assume a local Ohm’s law of the form

J = −γϕβ∇ϕ, (1.2)
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Figure 1. Schematic diagram of varistor.

V

I

Figure 2. Current-Voltage characteristic of varistor.
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Figure 3. The subset Ω.

where β is an even positive integer, γ a positive constant and ϕ(x) the potential inside Ω,

we obtain, if a difference of potential V is applied between Γ1 and Γ2, the global relation

(1.1). For, if n is the unit vector normal to Γ2 pointing outward with respect to Ω, we

have, for the total current crossing Ω,

I = −
∫
Γ2

J · n dΓ .
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Since ∇ · J = 0, the problem which determines ϕ(x) in Ω is, under stationary conditions,

∇ · (ϕβ∇ϕ) = 0 in Ω, ϕ = 0 on Γ1, ϕ = V on Γ2,
∂ϕ

∂n
= 0 on Γ3. (1.3)

If we define ψ = 1
1+β

ϕ1+β , we have J = −γ∇ψ. Thus, problem (1.3) becomes

Δψ = 0 in Ω, ψ = 0 on Γ1, ψ =
1

1 + β
V 1+β on Γ2,

∂ψ

∂n
= 0 on Γ3.

If we define the purely geometric quantity

a =

∫
Γ2

∂ξ

∂n
dΓ ,

where ξ(x) is the solution of the problem

Δξ = 0 in Ω, ξ = 0 on Γ1, ξ = 1 on Γ2,
∂ξ

∂n
= 0 on Γ3,

we obtain, for the total current crossing Ω,

I =
γa

1 + β
V 1+β. (1.4)

Thus, we obtain (1.1) from (1.4) if we choose α = β + 1 and C = γa
1+β

. In varistors, as in

all semiconductors, there is a quite appreciable dependence on temperature [6]. Thus, in

Section 2 we assume, instead of (1.2), the more general constitutive equation

J = −S(u, ϕ)∇ϕ, (1.5)

where u denotes the temperature. We shall make assumptions on S(u, ϕ) which make

(1.5) a generalisation of (1.2). We prove, using the Levy–Caccioppoli global inversion

theorem [2,3,8] and [1], that the boundary problem which determines ϕ(x) and u(x), and

therefore also the global current I , has at least one solution. In Section 3, we present a

result of existence and uniqueness of solution which holds if we assume the special case

of (1.5) given by J = −ϕβσ(u)∇ϕ.

2 A theorem of existence of solutions

Together with (1.5), we assume for the density of heat flow

q = −κ(u, ϕ)∇u,

where κ is the thermal conductivity. For the density of Joule heating, we have

E · J = S(u, ϕ)|∇ϕ|2.

Therefore, the energy equation reads

−∇ · (κ(u, ϕ)∇u) = S(u, ϕ)|∇ϕ|2. (2.1)
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On the other hand, we have ∇ · (S(u, ϕ)∇ϕ) = 0 since ∇ · J = 0. Hence, we can restate

(2.1) in full divergence form as follows:

∇ · (κ(u, ϕ)∇u+ ϕS(u, ϕ)∇ϕ) = ∇ · (κ(u, ϕ)∇u) + S(u, ϕ)|∇ϕ|2.

We assume that the electrically insulated part of the device, i.e. Γ3, is also thermally

insulated1. Thus, for the determination of u(x) and ϕ(x), we have the following boundary

value problem:

∇ · (S(u, ϕ)∇ϕ) = 0 in Ω, (2.2)

ϕ = 0 on Γ1, ϕ = V on Γ2,
∂ϕ

∂n
= 0 on Γ3, (2.3)

∇ · (κ(u, ϕ)∇u+ ϕS(u, ϕ)∇ϕ) = 0 in Ω, (2.4)

u = 0 on Γ1, u = U on Γ2,
∂u

∂n
= 0 on Γ3, (2.5)

where V > 0 and U > 02 are given constants. We assume

S(u, 0) = 0 (2.6)

for compatibility with (1.2). We wish to prove that problems (2.2)–(2.5) have at least

one solution under suitable assumptions. To this end, we consider the following ancillary

two-point problem: to find (U(ϕ), γ) ∈ C1([0, ϕ]) × R1 such that

κ(U , ϕ)
dU
dϕ

+ ϕS(U , ϕ) = γS(U , ϕ), (2.7)

U(0) = 0, (2.8)

U(V ) = U. (2.9)

The next lemma will be used to prove that the problems (2.7)–(2.9) have one and only

one solution.

Lemma 2.1 If P (ϕ), Q(ϕ) and G(ϕ) ∈ C0([0, V ]) and

∫ V

0

Q(τ)e
∫
τ
0
P (t)dtdτ �= 0, (2.10)

the linear two-point problem

dH

dϕ
+ P (ϕ)H = ΓQ(ϕ) + G(ϕ), (2.11)

H(0) = 0, (2.12)

H(V ) = 0, (2.13)

1 This assumption is essential for the present theory.
2 The case U < 0 can be treated in a similar way. If U = 0, however, the theory below does not

apply.
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has one and only one solution.

Proof The solution of the problem (2.11), (2.12) is given by

H(ϕ) = e−
∫
ϕ
0
P (t)dt

∫ ϕ

0

(ΓQ(τ) + G(τ))e
∫
τ
0
P (t)dtdτ.

Therefore, the condition (2.13) becomes

e−
∫
V
0
P (t)dt

∫ V

0

(ΓQ(τ) + G(τ))e
∫
τ
0
P (t)dtdτ = 0. (2.14)

By (2.10), the equation (2.14) in the unknown Γ has one and only one solution and

correspondingly this is the case for problems (2.11)–(2.13). �

We use the Levy–Caccioppoli global inversion theorem [2] and Lemma 2.1 to prove

Lemma 2.2 If in addition to (2.6), we assume

a1ϕ
β1σ(U) + b � S(U , ϕ) � a0ϕ

β0σ(U), (2.15)

where b > 0, a1 > a0 > 0, β1, β0 are positive even integers with β1 > β0 and

σ1 � σ(U) � σ0 > 0, (2.16)

κ1 � κ(U , ϕ) � κ0 > 0, (2.17)

the function A(U , ϕ) =
S(U , ϕ)

κ(U , ϕ)
is globally Lipschitz (2.18)

then the problems (2.7)–(2.9) have one and only one solution.

Proof Setting W(ϕ) = U(ϕ) − U
V
ϕ, we can rewrite the problems (2.7)–(2.9) with homo-

geneous boundary conditions. We obtain

κ

(
W +

U

V
ϕ,ϕ

)
dW
dϕ

+ ϕS

(
W +

U

V
ϕ,ϕ

)
+
U

V
κ

(
W +

U

V
ϕ,ϕ

)
= γS

(
W +

U

V
ϕ,ϕ

)
,

(2.19)

W(0) = 0, W(V ) = 0. (2.20)

Let X = {W(ϕ) ∈ C1([0, V ]), W(0) = 0, W(V ) = 0}×R1 be the Banach space with norm

‖(W , γ)‖X = ‖W‖C1 + |γ|. Define the operator F : X → C0([0, V ]) as follows:

F((W , γ)) = κ
(
W +

U

V
ϕ,ϕ

)dW
dϕ

+ ϕS
(
W +

U

V
ϕ,ϕ

)
(2.21)

+
U

V
κ
(
W +

U

V
ϕ,ϕ

)
−γS

(
W +

U

V
ϕ,ϕ

)
.
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The map F((W , γ)) is differentiable and it is easily seen that its differential is given by

dF((W , γ))(W,Γ ) = κ
(
W +

U

V
ϕ,ϕ

)dW
dϕ

+ κ′
(
W +

U

V
ϕ,ϕ

)
W
dW
dϕ

+
U

V
κ′

(
W +

U

V
ϕ,ϕ

)
W + ϕS ′

(
W +

U

V
ϕ,ϕ

)
W − ΓS

(
W +

U

V
ϕ,ϕ

)

− γS ′
(
W +

U

V
ϕ,ϕ

)
W.

We claim that dF , as a linear map from X to C0([0, V ]), is invertible for every (W , γ) ∈ X.

Let G(ϕ) ∈ C0([0, V ]). The problem

dF((W , γ))(W,Γ ) = G, W (0) = 0, W (V ) = 0,

can be written as

dW

dϕ
+ PW = ΓQ+ G̃, W (0) = 0, W (V ) = 0, (2.22)

where

P (ϕ) =
κ′

(
W + U

V
ϕ, ϕ

)
dW
dϕ

+ U
V
κ′

(
W + U

V
ϕ, ϕ

)
+ϕS ′

(
W + U

V
ϕ, ϕ

)
−γS ′

(
W + U

V
ϕ, ϕ

)
κ
(
W + U

V
ϕ, ϕ

) ,

Q(ϕ) =
S
(
W + U

V
ϕ, ϕ

)
κ
(
W + U

V
ϕ, ϕ

) , G̃(ϕ) =
G

κ
(
W + U

V
ϕ, ϕ

) .

We can apply Lemma 2.1 to problem (2.22) since the condition (2.10) is satisfied by

(2.15)–(2.17). We conclude that dF is invertible. To apply the Levy–Caccioppoli global

inversion theorem it remains to prove that F is proper3. Let K be a compact subset

of C0([0, V ]). By the theorem of Arzelá the functions in K are equicontinuous and

equibounded. We need to prove that

F−1(K) = {(W(ϕ), γ) ∈ X; F((W , γ)) = g, g ∈ K},

is a compact subset of X. Define

C1 = {W(ϕ) ∈ C1([0, V ]),W(0) = 0, W(V ) = 0, ∃γ ∈ R1, (W , γ) ∈ F−1(K)},

C2 = {γ ∈ R1, ∃W ∈ C1 with (W , γ) ∈ F−1(K)}.
Let g ∈ K and F((W , γ)) = g. We have, by (2.21),

dW
dϕ

+ ϕ
S(W + U

V
ϕ, ϕ)

κ(W + U
V
ϕ, ϕ)

+
U

V
− γ

S(W + U
V
ϕ, ϕ)

κ(W + U
V
ϕ, ϕ)

=
g(ϕ)

κ(W + U
V
ϕ, ϕ)

, (2.23)

3 We recall that F : � → � is proper if F−1(�) is compact in � when � is compact in �.
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W(0) = 0, W(V ) = 0. (2.24)

If (W , γ) is a solution of (2.23), (2.24) there exists a constant C1 depending only on K

such that

|γ| � C1. (2.25)

For, integrating (2.23) from 0 to V , we have

|γ| =

∣∣∣∣
∫ V

0

S(W(t) + U
V
t, t)

κ(W(t) + U
V
t, t)

dt

∣∣∣∣
−1∣∣∣∣

∫ V

0

g(t)

κ(W(t) + U
V
t, t)

dt−U −
∫ V

0

tS(W(t) + U
V
t, t)

κ(W(t) + U
V
t, t)

dt

∣∣∣∣.

By (2.17), we have ∣∣∣∣
∫ V

0

g(t)

κ(W(t) + U
V
t, t)

dt

∣∣∣∣� M1,

where M1 depends only on K. On the other hand, by (2.15),

∫ V

0

S(W(t) + U
V
t, t)

κ(W(t) + U
V
t, t)

dt �
1

κ1

∫ V

0

S
(
W(t) +

U

V
t, t

)
dt �

1

κ1

∫ V

0

tβ0σ
(
W(t) +

U

V
t, t

)
dt

�
σ0V

β0+1

κ1(β0 + 1)
,

and similarly ∫ V

0

tS(W(t) + U
V
t, t)

κ(W(t) + U
V
t, t)

dt �
σ1V

β1+2

κ0(β1 + 2)
.

Thus, we obtain (2.25). From (2.23), recalling (2.25), (2.15)–(2.17), we obtain

∣∣∣dW
dϕ

∣∣∣� M2, (2.26)

where M2 depends only on K. The functions W(ϕ) are therefore equicontinuous and

equibounded. We claim that also the functions dW
dϕ

are equicontinuous. If ϕ2, ϕ1 ∈ [0, V ]

we have from (2.23) and (2.25), by (2.16)–(2.18),

|W ′(ϕ2) −W ′(ϕ1)| � |g(ϕ2) − g(ϕ1)|

+

∣∣∣∣ϕ2A

(
W(ϕ2) +

U

V
ϕ2, ϕ2

)
− ϕ1A

(
W(ϕ1) +

U

V
ϕ1, ϕ1

)∣∣∣∣

+|γ|
∣∣∣∣A

(
W(ϕ2) +

U

V
ϕ2, ϕ2

)
− A

(
W(ϕ1) +

U

V
ϕ1, ϕ1

)∣∣∣∣
� |g(ϕ2) − g(ϕ1)| +M3|W(ϕ2) −W(ϕ1)| +M4|ϕ2 − ϕ1|.

Hence, C1 is a compact subset of C1([0, V ]). It remains to prove that C2 is closed. Let

{γk} ⊂ C2, γk → γ∗ and {gk} ⊂ K, gk → g∗ as k → ∞. We claim that there exist W∗ ∈ C1
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and g∗ ∈ K such that F(W∗, γ∗) = g∗. We have F(Wk, γk) = gk , i.e.

dWk

dϕ
+ ϕA

(
Wk +

U

V
ϕ,ϕ

)
+
U

V
− γkA

(
Wk +

U

V
ϕ,ϕ

)
= gk, (2.27)

Wk(0) = 0, Wk(V ) = 0. (2.28)

Since C1 and K are compact sets we can extract a subsequence from {Wk}, not relabelled,

such that Wk → W∗ in C1([0, V ]). By continuous dependence on the data, we obtain from

(2.27) and (2.28) that

dW∗

dϕ
+ ϕA

(
W∗ +

U

V
ϕ,ϕ

)
+

1

V
− γ∗A

(
W∗ +

U

V
ϕ,ϕ

)
= g∗

W∗(0) = 0, W∗(V ) = 0.

Thus, C2 is closed since (W∗, γ∗) ∈ F−1(K). �

With a solution of problems (2.7)–(2.9) at our disposal, we can construct a solution of

problems (2.2)–(2.5). More precisely, we have:

Theorem 2.3 Let Q = {(u, ϕ); u � 0, V � ϕ � 0}. Assume

a1ϕ
β1σ(u) + b � S(u, ϕ) � a0ϕ

β0σ(u), (2.29)

where a1 > a0 > 0, whereas β1 > β0 are positive even integers and

σ1 � σ(u) � σ0 > 0, (2.30)

κ1 � κ(u, ϕ) � κ0 > 0. (2.31)

Suppose that the function A(u, ϕ) = S (u,ϕ)
κ(u,ϕ)

satisfies a Lipschitz condition in Q. Then the

problem for (u, ϕ)

∇ · (S(u, ϕ)∇ϕ) = 0 in Ω, (2.32)

ϕ = 0 on Γ1, ϕ = V on Γ2,
∂ϕ

∂n
= 0 on Γ3, (2.33)

∇ · (κ(u, ϕ)∇u+ ϕS(u, ϕ)∇ϕ) = 0 in Ω, (2.34)

u = 0 on Γ1, u = U on Γ2,
∂u

∂n
= 0 on Γ3, (2.35)

has at least one solution.

Proof An equivalent formulation of problems (2.32)–(2.35) is obtained, in view of (2.32),

if instead of (2.34) we take as energy equation

−∇ · (κ(u, ϕ)∇u) = S(u, ϕ)|∇ϕ|2 in Ω. (2.36)
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Applying the maximum principle to (2.36) and to (2.32) and taking into account the

boundary conditions (2.33) and (2.35), we have

u � 0, V � ϕ � 0 in Ω. (2.37)

Hence (u, ϕ) ∈ Q. Let (U(ϕ), γ) be the (unique) solution of (2.7)–(2.9). As a first step, we

solve the problem

∇ · (S(U(ϕ), ϕ)∇ϕ) = 0 in Ω, (2.38)

ϕ = 0 on Γ1, ϕ = V on Γ2,
∂ϕ

∂n
= 0 on Γ3. (2.39)

To this end, we define

φ = G(ϕ) =

∫ ϕ

0

S(U(t), t)dt.

From (2.29) and (2.30), we have

G′(ϕ) = S(U(ϕ), ϕ) � a0ϕ
β0σ0 > 0 if ϕ > 0.

Hence, G(ϕ) maps [0,∞) one-to-one onto [0,∞). In terms of φ the problem (2.38), (2.39)

becomes

Δφ = 0 in Ω, φ = 0 on Γ1, φ = G(V ) on Γ2,
∂φ

∂n
= 0 on Γ3. (2.40)

If φ(x) is the solution of (2.40), we obtain as solution of (2.38), (2.39)

ϕ̃(x) = G−1(φ(x)). (2.41)

Moreover, if z(x) is the solution of the problem

Δz = 0 in Ω, z = 0 on Γ1, z = 1 on Γ2,
∂z

∂n
= 0 on Γ3, (2.42)

(2.41) can be written

ϕ̃(x) = G−1(G(V )z(x)).

Define ũ(x) = U(ϕ̃(x)). We have by (2.38)

∇ · (S(ũ, ϕ̃)∇ϕ̃) = 0 in Ω. (2.43)

Moreover, since ∇U(ϕ̃) = dU
dϕ
∇ϕ̃, we have, by (2.7) and (2.43),

∇ · (κ(ũ, ϕ̃)∇ũ+ ϕ̃S(ũ, ϕ̃)∇ϕ̃) = ∇ ·
(
(κ(U(ϕ̃), ϕ̃)

dU
dϕ̃

+ ϕ̃S(U(ϕ̃), ϕ̃))∇ϕ̃
)

= γ∇ · (S(U(ϕ̃), ϕ̃)∇ϕ̃) = 0.

Since ∂φ
∂n

= G′(ϕ̃) ∂ϕ̃
∂n

and ∂ũ
∂n

= U ′(ϕ) ∂ϕ̃
∂n

on Γ3, we conclude that (ũ(x), ϕ̃(x)) satisfy the

boundary conditions (2.33)–(2.35) by (2.40). Hence (ũ(x), ϕ̃(x)) is a solution of (2.32)–

(2.35). �
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3 Uniqueness of the solution

Theorem 2.3 gives only an existence result. However, for the physically relevant case in

which the current density and the density of heat flow are given by

J = −ϕβσ(u)∇ϕ, q = −κ(u)∇u, (3.1)

where β a positive even integer, σ(u) ∈ C0(R1) and κ(u) ∈ C0(R1) satisfy

σ1 � σ(u) � σ0 > 0, (3.2)

and

κ1 � κ(u) � κ0 > 0, (3.3)

an existence and uniqueness result for the corresponding problem

∇ · (σ(u)ϕβ∇ϕ) = 0 in Ω, (3.4)

ϕ = 0 on Γ1, ϕ = V on Γ2,
∂ϕ

∂n
= 0 on Γ3, (3.5)

∇ · (κ(u)∇u+ σ(u)ϕβ+1∇ϕ) = 0 in Ω, (3.6)

u = 0 on Γ1, u = U on Γ2,
∂u

∂n
= 0 on Γ3, (3.7)

can be proved. As a first step, we define

ψ = F(ϕ) =
ϕβ+1

β + 1
. (3.8)

In term of ψ, the first equation of (3.1) can be rewritten as

J = −σ(u)∇ψ. (3.9)

Moreover, if we express the energy equation (3.6) in terms of ψ, redefine the thermal

conductivity as

κ̃(u) = (β + 1)−
1

β+1 κ(u),

and then write κ(u) instead of κ̃(u), we can restate the problems (3.4)–(3.7) in the following

form,

∇ · (σ(u)∇ψ) = 0 in Ω, (3.10)

ψ = 0 on Γ1, ψ =
Vβ+1

β + 1
on Γ2,

∂ψ

∂n
= 0 on Γ3, (3.11)

∇ · (κ(u)∇u+ σ(u)ψ
1

β+1 ∇ψ) = 0 in Ω, (3.12)

u = 0 on Γ1, u = U on Γ2,
∂u

∂n
= 0 on Γ3. (3.13)
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We note that the differential form κ(u)du + ψ
1

β+1 σ(u)dψ has the integrating factor 1
σ(u)

.

Since the primitive of κ(u)
σ(u)

du+ ψ
1

β+1 dψ is

∫ u

0

κ(t)

σ(t)
dt+

1 + β

2 + β
ψ

2+β
1+β ,

we are led to consider the transformation

θ = F(u) +
1 + β

2 + β
ψ

2+β
1+β where F(u) =

∫ u

0

κ(t)

σ(t)
dt. (3.14)

By (3.2) and (3.3), F(u) maps [0,∞) one-to-one onto [0,∞). Hence, (3.14) can be solved

with respect to u, i.e.

u = F−1
(
θ − 1 + β

2 + β
ψ

2+β
1+β

)
.

On the other hand,

∇θ =
κ(u)

σ(u)
∇u+ ψ

1
1+β∇ψ. (3.15)

Therefore, the problems (3.10)–(3.13) can be written in terms of θ and ψ as follows:

∇ ·
(
σ

(
F−1

(
θ − 1 + β

2 + β
ψ

2+β
1+β

))
∇θ

)
= 0 in Ω, (3.16)

θ = 0 on Γ1, θ = F(U) +
(1 + β)−

1
1+β

2 + β
V 2+β on Γ2,

∂θ

∂n
= 0 on Γ3, (3.17)

∇ ·
(
σ

(
F−1

(
θ − 1 + β

2 + β
ψ

2+β
1+β

))
∇ψ

)
= 0 in Ω, (3.18)

ψ = 0 on Γ1, ψ =
V 1+β

1 + β
on Γ2,

∂ψ

∂n
= 0 on Γ3. (3.19)

To the problems (3.16)–(3.19), we can apply the following:

Lemma 3.1 If a(θ, ψ) ∈ C0(R2) satisfies

a1 � a(θ, ψ) � a2 > 0,

then the problem for

∇ · (a(θ, ψ)∇θ) = 0 in Ω, θ = θ1 on Γ1, θ = θ2 on Γ2,
∂θ

∂n
= 0 on Γ3,

∇ · (a(θ, ψ)∇ψ) = 0 in Ω, ψ = ψ1 on Γ1, ψ = ψ2 on Γ2,
∂ψ

∂n
= 0 on Γ3,

where θ1, θ2, ψ1, ψ2 are given constants, has one and only one solution.
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We refer for the proof to [5]. We may conclude with the following,

Theorem 3.2 If (3.1)–(3.3) hold the problems (3.4)–(3.7) have one and only one solution.

It is interesting to note that a semi-explicit solution to problems (3.4)–(3.7) can be obtained.

We make the following “Ansatz” on the solution suggested by the special structure of the

system (3.16)–(3.19):

θ = aψ + b. (3.20)

The constants a and b are immediately computed recalling (3.17) and (3.19). Thus, we

find

b = 0, a = (1 + β)V−(1+β)F(U) + (1 + β)
β

1+β V . (3.21)

Hence, we arrive at the problem

∇ ·
(
H(ψ)∇ψ

)
= 0 in Ω, (3.22)

ψ = 0 on Γ1, ψ =
V 1+β

1 + β
on Γ2,

∂ψ

∂n
= 0 on Γ3, (3.23)

substituting in (3.20) the value of a and b given by (3.21), in (3.18) where

H(ψ) = σ
(
F−1

(
(1 + β)V−(1+β)F(U) + (1 + β)

β
1+β V

)
ψ − 1 + β

2 + β
ψ

2+β
1+β

)
. (3.24)

The problems (3.22)–(3.24) can be solved with the transformation, invertible by (3.2),

η = H(ψ) =

∫ ψ

0

σ
(
F−1

(
(1 + β)V−(1+β)F(U) + (1 + β)

β
1+β V t− 1 + β

2 + β
t

2+β
1+β

))
dt. (3.25)

In terms of η, the problems (3.22)–(3.24) becomes

Δη = 0 in Ω, η = 0 on Γ1, η = H
( V 1+β

1 + β

)
on Γ2,

∂η

∂n
= 0 on Γ3. (3.26)

If η(x) is the solution of (3.26), we obtain the solution of the earlier problems (3.10)–(3.13)

in the form

(ψ(x), u(x)) =
(
H−1(η(x)), F−1

(
θ(x) − 1 + β

2 + β
(H−1(η(x)))

2+β
1+β

))
, (3.27)

where

θ(x) =
(
(1 + β)V−(1+β)F(U) + (1 + β)

β
1+β V

)
H−1(η(x)). (3.28)

4 Conclusion

Certain mathematical aspects of the theory of varistors are discussed. This device has

a nonlinear nonohmic current–voltage characteristic. Varistors are used as control or
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compensation elements in circuits to protect against excessive transient voltages. Their

dependence on temperature is important in certain applications.
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