Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-02-22T11:59:34.313Z Has data issue: false hasContentIssue false

Large deviation theory for stochastic difference equations

Published online by Cambridge University Press:  01 December 1997

R. KUSKE
Affiliation:
School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St SE, Minneapolis, MN 55455, USA
Supported in part by a NSF Mathematical Sciences Postdoctoral Fellowship.
J. B. KELLER
Affiliation:
Departments of Mathematics and Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The probability density for the solution yn of a stochastic difference equation is considered. Following Knessl et al. [1], it is shown to satisfy a master equation, which is solved asymptotically for large values of the index n. The method is illustrated by deriving the large deviation results for a sum of independent identically distributed random variables and for the joint density of two dependent sums. Then it is applied to a difference approximation to the Helmholtz equation in a random medium. A large deviation result is obtained for the probability density of the decay rate of a solution of this equation. Both the exponent and the pre-exponential factor are determined.

Type
Research Article
Copyright
1997 Cambridge University Press