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The probability density for the solution yn of a stochastic difference equation is considered.

Following Knessl et al. [1], it is shown to satisfy a master equation, which is solved

asymptotically for large values of the index n. The method is illustrated by deriving the large

deviation results for a sum of independent identically distributed random variables and for

the joint density of two dependent sums. Then it is applied to a difference approximation to

the Helmholtz equation in a random medium. A large deviation result is obtained for the

probability density of the decay rate of a solution of this equation. Both the exponent and

the pre-exponential factor are determined.

1 Introduction

A stochastic difference equation is a difference equation involving random coefficients or

random functions. One goal of the theory of such equations is to determine the probability

distribution of a solution that satisfies specified initial and/or boundary conditions. One

may seek the mean value of the solution, the probability distribution for values near the

mean, or the probability distribution for values far from the mean. In the case of sums

of random variables, these quantities are given by the law of large numbers, the central

limit theorem, and large deviation theory, respectively.

Our goal is to obtain large deviation results for solutions of stochastic difference

equations. We shall use the method of Knessl et al. [1]. This involves deriving a master

equation for the desired probability density, and then solving it asymptotically for large

values of the index n in the difference equation. In §2 we illustrate the method by deriving

the large deviation results for the sum yn of n independent identically distributed random

variables. We show that yn satisfies a difference equation, and we use it to obtain the

master equation for the density of yn. Then we solve that equation asymptotically for

large n. The result agrees with those of Cramer [2] for the exponent and Bahadur &

Ranga Rao [3] for the pre-exponential factor, obtained by the method of characteristic

functions, as we show in Appendix A.

In §3 we apply the method to the determination of the joint probability density of

two dependent sums of random variables. We then specialize to the case of Gaussian
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568 R. Kuske and J. B. Keller

summands, and obtain an explicit result. It agrees with the asymptotic expansion of the

exact density, which we can find in this case.

In §4 we consider the Helmholtz equation in a random medium, and we discretize it to

obtain a stochastic difference equation. We apply the method of the preceding sections

to obtain the large deviation results for the probability density of the decay rate of a

solution. In §5 we compare this result with the corresponding result of the central limit

type, obtained by Kuske [4] using Hashminskii’s [5] theorem for differential equations.

The usual analysis of large deviations deals with the exponent of the probability density

for general situations. In the special case of linear stochastic difference equations, the

present method determines not only the exponent but also the pre-exponential factor.

The method should be applicable also to other physical phenomena governed by such

equations, as described in Knessl et al. [1].

2 Sums of independent random variables

Let yn be the sum of n independent identically distributed random variables xi with

density p(x),

yn =
1

n

n∑
i=1

xi. (2.1)

We seek the probability density of yn, which we denote by q(y, n). To find q we use (2.1)

to derive the following recurrence equation for yn:

yn+1 =
n

n+ 1
yn +

xn+1

n+ 1
. (2.2)

By using (2.2) we can express q(y, n+ 1) in terms of q(y, n) in the form

q(y, n+ 1) =
n+ 1

n

∫
q

(
n+ 1

n
y − x

n
, n

)
p(x)dx. (2.3)

Knessl et al. [1] showed how to solve master equations, such as (2.3), asymptotically for

large values of n to obtain q(y, n) for both large and small deviations. To obtain their

result for (2.3), we use a modified version of the approach of Knessl et al. [1] in which

we introduce a small positive parameter ε. (For more details, see Knessl et al. [1].) Then

we extend it to more difficult equations.

We begin by introducing ε and defining t = εn. Then for large n we can treat t as of

order unity. Next we write q(y, n) in the form

q(y, n) = εαK̂(y, t, ε)e−tψ(y)/ε. (2.4)

Such a representation is possible for any q and, with it, (2.3) becomes

K̂(y, t+ ε, ε)e−(t+ε)ψ(y)/ε =
t+ ε

t

∫
K̂(y +

ε(y − x)

t
, t, ε)e−(t/ε)ψ[y+ε(y−x)/t]p(x)dx. (2.5)

Now we make the assumption that K̂(y, t, ε) = K(y, t) +O(ε). Then we expand both sides

of (2.5) in powers of ε and equate the coefficients of ε0 and of ε. This leads to the two

equations

e−ψ(y) =

∫
e−(y−x)ψ′(y)p(x)dx, (2.6)

Kte
−ψ(y) =

∫
e−(y−x)ψ′(y)

[
y − x
t

Ky +
K

t
− (y − x)2ψ

′′(y)

2t
K

]
p(x)dx. (2.7)
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Equation (2.6) is a first-order differential equation of Colairant form for ψ(y) and one

of its solutions is

ψ(y) = sup
z

[zy − lnM(z)]. (2.8)

Here M(z) is the moment generating function of x, defined by

M(z) ≡
∫
ezxp(x)dx. (2.9)

Now (2.7) is an equation for K which can be rewritten as

tKt = G0K −
ψ′′(y)

2
G2K + G1Ky. (2.10)

The three coefficients G0, G1 and G2 are defined by

Gn = eψ(y)

∫
(y − x)ne−(y−x)ψ′(y)p(x)dx for n = 0, 1, 2. (2.11)

Upon twice differentiating (2.6) with respect to y we find that the Gn satisfy the relation

G2 =
ψ′′′(y)G1 + ψ′′(y)G0

(ψ′′(y))2
. (2.12)

To solve (2.10) we assume that K(y, t) =
√
tf(y). Then by using this in (2.10), together

with (2.12) for G2 and (2.11) which yields G0 = 1, we obtain

G1
f′(y)

f(y)
= G1

ψ′′′(y)

2ψ′′(y)
. (2.13)

The solution of this ordinary differential equation is f(y) = c|ψ′′(y)|1/2 where c is an

arbitrary constant. Thus K = ct1/2|ψ′′(y)|1/2 = cε1/2|nψ′′(y)|1/2, and then (2.4) yields

q(y, n) ∼ εα+1/2c
√
n|ψ′′(y)|e−nψ(y). (2.14)

Since q is independent of ε, (2.14) shows that α = −1/2. The constant c must be chosen

to make the integral of q equal to one. Asymptotic evaluation of this integral by Laplace’s

method shows that this is the case if 1/c =
√

2π. Thus, finally,

q(y, n) ∼
√
n|ψ′′(y)|

2π
e−nψ(y). (2.15)

In Appendix A we derive the asymptotic form of q by the usual method of characteristic

functions, which was used by Cramer [2] to determine the exponent and by Bahadur &

Ranga Rao [3] to obtain the pre-exponential factor. We then show that (2.15) agrees with

their results. The form (2.15) follows from equations (7.8) and (7.13) of Knessl et al. [1]

by setting their parameter b = 1.

3 Joint density of two sums

Next we shall show how the preceding method can be used to determine the joint density

of two sums of random variables yn and xn. Again yn is defined by (2.1) and xn is given by

xn =
1

n

n∑
i=1

ξi. (3.1)

https://doi.org/10.1017/S095679259700332X Published online by Cambridge University Press

https://doi.org/10.1017/S095679259700332X


570 R. Kuske and J. B. Keller

Then yn is a mean of sample means, in which each sample is the previous sample plus

one additional observation. Thus in each yn the earlier samples are given more weight

than later ones. The ξi are i.i.d. random variables with common density ρ(ξ). One could

combine (2.1) and (3.1) into an equation for a one-dimensional Markov chain with a more

complicated coefficient of the noise, and then use the method of Knessl et al. [1]. Instead,

we seek q(y, x, n), the probability density that yn = y and xn = x. This serves to illustrate

the method for determining the joint probability density, which is also used in the next

section.

For clarity, we write the recursion equation satisfied by q(yn, xn, n), keeping the subscripts

on the arguments,

q(yn+1, xn+1, n+ 1) =

∫ ∫ ∫
Pr(yn+1, xn+1, n+ 1|yn, xn, ξn+1)

×q(yn, xn, n)ρ(ξn+1)dyndxndξn+1. (3.2)

From (2.1) we get (2.2), and from (3.1) we have

xn+1 =
n

n+ 1
xn +

ξn+1

n+ 1
. (3.3)

Thus

Pr(yn+1, xn+1|yn, xn, ξn+1) = δ

(
yn+1 −

n

n+ 1
yn −

xn+1

n+ 1

)
×δ
(
xn+1 −

n

n+ 1
xn −

ξn+1

n+ 1

)
. (3.4)

We use (3.4) in (3.2) and drop the subscripts n+ 1 from the arguments of q to obtain the

master equation for q(y, x, n):

q(y, x, n+ 1) =

(
n+ 1

n

)2 ∫
q(y +

y − x
n

, x+
x− ξ
n

, n)ρ(ξ)dξ. (3.5)

To solve (3.5) for n large, we write

q(y, x, n) = (K(y, x, n) +K1(y, x, n) + . . .)e−nψ(y,x). (3.6)

We assume that the leading term in the pre-exponential factor is K , and that the other

terms are smaller for large values of n. We substitute (3.6) into (3.5) and expand various

terms in powers of n−1 to get

K(y, x, n+ 1)e−(n+1)ψ(y,x) =

(
n+ 1

n

)2 ∫
e−n(ψ(y,x)+n−1ψy(y−x)+n−1ψx(x−ξ))

×
[
1− 1

n
ψyx(y − x)(x− ξ)− 1

2n
ψyy(y − x)2 − 1

2n
ψxx(x− ξ)2 + . . .

]
×
[
K(y, x, n) +

1

n
Ky(y − x) +

1

n
Kx(x− ξ)

]
+K1 + . . .]ρ(ξ)dξ. (3.7)

Now we equate coefficients of n0 and n−1. This yields equations for ψ and K:

e−ψ = e−(y−x)ψy−xψx
∫
eξψxρ(ξ)dξ, (3.8)
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Kn(y, x, n)e
−ψ =

1

n
e−ψy(y−x)

∫
e−ψx(x−ξ)

{[
2K(y, x, n) +Ky(y, x, n)(y − x)

+Kx(y, x, n)(x− ξ)]−K
[
ψyx(y − x)(x− ξ)

+ψyy
(y − x)2

2
+ ψxx

(x− ξ)2

2

]}
ρ(ξ)dξ. (3.9)

Here subscripts indicate differentiation with respect to the subscript variable. The equation

(3.9) is obtained by using (3.8) and neglecting the terms involving K1 and those with

coefficients n−2, which are assumed to be of higher order in n−1. In (3.9) the term Kn is

included with the O(n−1) terms. It is shown below that K is proportional to a power of

n, so that this ordering is consistent.

Equation (3.8) is a nonlinear first-order partial differential equation for ψ(y, x) and

(3.9) is a similar linear equation for K(y, x, n). Therefore both of them can be solved by

the method of characteristics. But first we can simplify (3.9) by differentiating (3.8) with

respect to y and x and using the resulting expressions to eliminate the integrals in (3.9).

We get

nKn = Ky(y − x)−Kx

ψyy

ψxy
(y − x) +

ψyy

2
K(y − x)2 + 2K

−K ψxx

2ψ2
xy

[
−(y − x)ψyyy − ψyy + ψxyy

ψyy(y − x)

ψxy
− (ψyy)

2(y − x)2

]
. (3.10)

Let h(x, y) = ψyy/ψxy and let g be the coefficient of K in (3.10). Then (3.10) becomes

nKn = (y − x)Ky − (y − x)h(x, y)Kx + g(x, y)K. (3.11)

The form of (3.11), or a consideration of its characteristics, indicates that it has solutions

of the form

K(x, y, n) = C(x, y)nα(y,x). (3.12)

Substitution of (3.12) into (3.11) yields equations for α and C:

αy = h(x, y)αx, (3.13)

(y − x)(Cy − h(x, y)Cx) = −g(x, y) + α(x, y). (3.14)

By using (3.12) in (3.6) we can write q in the form

q(y, x, n) ∼ C(x, y)nα(x,y)e−nψ(x,y). (3.15)

Here ψ is a solution of (3.8), α is a solution of (3.13), and C is a solution of (3.14).

In general one must solve (3.8) using its characteristic curves and appropriate initial

data on them. To demonstrate the type of result obtained from (3.8) and (3.9), we shall

solve these equations for the specific case of ξ a Gaussian random variable with zero

mean and variance unity. Evaluating the integrals in (3.8) and then taking logarithms

yields

ψ = ψy(y − x) + xψx −
(ψx)

2

2
. (3.16)
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The appropriate solution of (3.16) is

ψ(y, x) =
1

2
y2 − xy + x2. (3.17)

Then, substituting (3.17) into (3.10) yields (3.11) with h(x, y) = −1 and g(x, y) = 1− (y −
x)2/2. The equation in (3.13) yields α = α(y − x), and the equation (3.14) is satisfied by

α = g(x, y) and C =constant. We use these values of α and C , with (3.17) for ψ, in (3.15).

Then we choose C to normalize q, which yields C = 1/2π, and we can write (3.15) as

q(y, x, n) ∼ n1−(y−x)2/2

2π
e−n((y−x)2/2+x2/2). (3.18)

For this example one can compute q exactly by using properties of sums of Gaussian

random variables. Both yn and xn are sums of Gaussian random variables, whose joint

density is given by

q(y, x, n) =
1

2π(detV )1/2
exp

(
−1

2
(x, y)V−1

(
x

y

))
, V =

1

n

(
1 1

1 2− Hn

n

)
. (3.19)

Hn =

n∑
j=1

1

j
(3.20)

For n� 1, the result (3.18) gives the correct asymptotic form of (3.19).

4 Density of decay rate

Let u(x) satisfy the dimensionless one dimensional Helmholtz equation in the interval

0 < x < 1, with the random refractive index (1 + εξ(x))1/2:

d2u

dx2
+ k2(1 + εξ(x))u = 0, 0 < x < 1, (4.1)

with u(0) = 1, and u(1) bounded. Following Rytov et al. [6], we assume that the moments

of ξ are

〈ξ(x)〉 = 0〈
|
∫ 1

0

ξ(x)dx|2
〉

= 1. (4.2)

We discretize by introducing mesh points xn = n/N and writing un = u(xn) and ξn = ξ(xn).

Then, upon using the centred second difference to approximate d2u/dx2, we get the

difference equation

un+1 − 2un + un−1 = − k
2

N2
(1 + εξn)un, n = 0, . . . , N. (4.3)

From (4.2) the moments of ξn are

〈ξn〉 = 0

〈ξ2
n〉 = N. (4.4)

Now we divide (4.3) by un and define Xn+1 = un+1/un. Then (4.3) becomes

Xn+1 = 2− k2

N2
(1 + εξn)−

1

Xn

, n = 1, . . . , N − 1. (4.5)
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In terms of Xn we have, with u0 = 1

un =
un

un−1

un−1

un−2
. . .
u1

u0
u0 = XnXn−1 . . . X1. (4.6)

Thus we can write

|un| = exp

(
n∑
i=1

ln |Xi|
)

= enγn . (4.7)

Here we have introduced γn, defined by

γn =
1

n

n∑
i=1

ln |Xi|. (4.8)

We shall calculate the density of γn. To accomplish this we consider the random variable

Yn which has mean zero:

Yn ≡ γn − γ =
1

n

n∑
i=1

(ln |Xi| − γ). (4.9)

Here γ = E[ln |Xi|] is the Lyapunov exponent describing the decay rate of un in the

limit as n → ∞. It is independent of i, and it has been calculated using the stationary

probability density of Xi obtained in Kuske [4]. From the definitions above we see that

γn tends to γ as n tends to infinity. We shall seek the joint probability density q(y, x, n) of

Yn and Xn, from which we can obtain the density of n−1 ln |un| by using (4.7).

By proceeding as in §§2 and 3 we find that the master equation for q(y, x, n) is

q(y, x, n+ 1) =
n+ 1

n

∫
q

(
n+ 1

n
y − ln |x| − γ

n
,

1

2− k2

N2 − x− ε k
2

N2 ξ
, n

)

× ρ(ξ)

(2− k2

N2 − x− ε k
2

N2 ξ)2
dξ. (4.10)

In Kuske [4] it was shown that for N � 1 the values of Xn cluster around the value 1.

Therefore we introduce the scaled variable

z = N(x− 1). (4.11)

It also simplifies the analysis considerably to introduce another variable

η = y − ln(|1 + z/N|+ γ (4.12)

and to consider the case n = N. That is, we consider the decay rate of an outgoing

wave at the end of a slab with (non-dimensionalized) length 1. Accordingly, we write the

density as H(η, z, N) = q(y, x,N). Using the definitions (4.11) and (4.12) in (4.10) yields

H(η, z, N + 1) =
N + 1

N

∫
H

(
η +

η

N
,

z + k2/N + εk2ξ/N

1− k2/N2 − z/N − εk2ξ/N2
, N

)
·

× ρ(ξ)

(1− k2/N2 − z/N − εk2ξ/N2)2
dξ. (4.13)

We write H in the form

H(η, z, N) = [K(η, z, N) +K1(η, z, N)/N + . . .]e−N
2ψ(η). (4.14)
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Substituting a general form for the exponent, such as Nµψ(η, z), into (4.13) yields a more

complicated equation for ψ. From this we have concluded that the correct form is given

by (4.14). It is not surprising that we must write N2 in the exponent, rather than N as in

the previous sections, since Var(log |Xi|) = O(N2), as discussed below. Then we substitute

(4.14) into (4.13) and expand for 1/N small. This corresponds to expanding H in the

integrand about H(η, z, N). This yields, to leading order, the following equation for ψ:

e−(N+1)2ψ(η) = e
−N2(ψ(η)+ψ′(η)η/N+ ψ′′ (η)η2

2N2 )
. (4.15)

Here the ξ integration has been performed, yielding a factor of 1 since the coefficient of

ρ(ξ) is, to leading order, independent of ξ. Terms of order N−1 have been included in

the equation below for K . We equate the exponents in (4.15) and obtain a second-order

differential equation for ψ(η). The solution regular at η = 0 is

ψ = Cη2. (4.16)

The terms of order 1/N in (4.13) yield the equation for K .

NKN = K − η3ψηηη

6
K + 2zK + ηKη + (z2 + k2)Kz +

ε2k4

2
Kzz. (4.17)

The term Kzz comes in at this order since 〈ξ2〉 = N. From (4.16) it follows that ψηηη = 0.

Therefore we seek a solution of (4.17) proportional to N with Kη = 0. Then K can be

written as

K = ND(z). (4.18)

The density q must vanish as |x| → ∞, and therefore D(z)→ 0 as |z| → ∞. The function

D(z) with D(z)→ 0 as |z| → ∞ is found to be

D(z) = K0e
−2(z3/3+k2z)/(ε2k4)

∫ z

−∞
e2(z′3/3+k2z′)/(ε2k4)dz′. (4.19)

For ε2k4 � 1 one can write the solution of (4.17) as

D(z) ∼ K0

(
1

z2 + k2
+ ε2k4 z

2(z2 + k2)3

)
for ε2k4 � 1. (4.20)

In (4.19) K0 is a constant to be determined by normalization. Substituting (4.16) and

(4.18) into (4.14) yields the leading-order form for H(η, z, N). By replacing z and η by

their definitions we get

q(y, x,N) ∼ ND[N(x− 1)]e−CN
2(y−ln |x|+γ)2

. (4.21)

To determine the constant C in (4.16) and (4.21) we consider the second moment∫ ∞
−∞

y2q(y, x,N)dy ∼ 1

2CN2
+ E[(ln |Xi| − γ)2] = E[Y 2

N]. (4.22)

The quantity E[NY 2
N] has been calculated in Kuske [4] by using the definition (4.9), with

the result

E[Y 2
N] ∼ 2ε2k2

N2
, ε� 1. (4.23)
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Figure 1. The density p(y,N) of YN = γN − γ for N = 10 as obtained using (1) the large deviation
result (4.25) of this paper, and (2) the central limit type results of Kuske [4].

For ε2 � 1 the quantity E[(ln |Xi| − γ)2] can be calculated analytically using (4.20), which

yields

E[(ln |Xi| − γ)2] ∼ ε4k4

8N2
+ O(ε2k4N−3), ε� 1. (4.24)

Upon using (4.23) and (4.24) in (4.22) we find that for ε� 1 (4.22) yields C ∼ 4ε−2k−2.

By integrating (4.21) over all values of x, we obtain the density p(y,N) for YN = γN− γ:

p(y,N) ∼ NK0

∫ ∞
−∞

D[N(x− 1)]e−CN
2(y−ln |x|+γ)2

dx. (4.25)

In Fig. 1 we compare this result with the density for γN − γ obtained in Kuske [4] using

Hasminskii’s theorem [5], which is a theorem of central limit type for dependent random

variables. We note that the width of the peak of the density is significantly larger for the

present large deviations result and N = 10 and N = 20. This is not unexpected, since

the central limit theorem is not a good approximation in the tails. As N → ∞ the large

deviations result approaches the central limit theorem result. In Fig. 2 these two results

are compared with a numerical simulation of the density of γN − γ, where the random

variables Xi in (4.9) are obtained from (4.5). The large deviation result (4.21) captures the

behavior of the density of γN − γ in the tails, and thus is a better approximation than the

central limit theorem result.
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Figure 2. The density p(y,N) of YN = γN − γ for N = 20, compared with a numerical simulation
of (4.5). (1) is the simulation result, (2) is the result of (4.25), and (3) is the result using the central
limit type theorem. Note that (2) is close to (1) even though N is only 20.

5 Comparisons and conclusions

Now we shall compare the procedure and the results of the previous sections with certain

related results. First we consider the result (2.15) for the probability density q(y, n) of a

sum yn of i.i.d. random variables xi. This result, like that in Knessl et al. [1], is based on

the assumption that p(x) > 0 for all x. We contrast the different behaviours of the result

(A 4), the density of a sum of n i.i.d. random variables xi, for discrete and continuous

random variables for which this assumption does not hold. For a continuous random

variable whose density is nonzero on a finite interval [a, b] the density of the sum yn is

given in (2.15) or (A 4). Near the boundary y = b this density has the behaviour as in

(B 4)

q(y, n) ∼
√
n

ε
√

2π
en((b−y)/ε+ln p(b)+ln ε) =

enεnpn(b)
√
n

ε
√

2π
, (5.1)

where b − y ≡ ε. The behaviour near the boundary y = a can be obtained in a similar

manner.

For a sum of discrete Bernoulli random variables the result (2.15) becomes singular at

the endpoints y = ±1 of the support of q. This can be seen by evaluating (2.15), which

yields

q(y, n) ∼
√

n

2π

(y + 1)−(y+1)n/2(1− y)(y−1)n/2√
1− y2

. (5.2)
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Instead of using (2.15) or (5.2) near y = ±1, we introduce a boundary layer expansion

(B.9) near y = 1 and a similar expansion near y = −1. Then we can form a uniform

composite expansion, in the manner described in Appendix B.

If one integrates out the dependence on y of the density q(y, x,N) in (4.21), the marginal

density for x which remains is (4.18) with D given by (4.19) or (4.20). This should be

the density for Schrödinger’s equation on a lattice with weak disorder. This equation was

studied by Kuske et al. [8] using an equation similar to (4.5) above. For certain values

of the parameters corresponding to those used in the discretized wave equation (4.3),

the density for x was found to be exactly that given in (4.19) and (4.20), appropriately

normalized.

The average Lyapunov exponent γ for the random oscillator problem, of which (4.1) is

a special case, was considered in Arnold et al. [9]. For u = reiφ, an asymptotic expansion

for the joint probability density of φ and the noise ξ was used to determine γ. The density

for r was not needed to calculate γ. However, a system of stochastic differential equations

was obtained for r and φ, from which one could write down the generator for the process.

A consideration of this generator could lead to a density for r. The density of ln r could

be compared to the density for γn obtained in the previous section. The main difference

is that the approach of Arnold et al. [9] does not use discretized equations, while in the

previous section we consider the continuous limit of the discretized Helmholtz equation.

The discretization has the advantage that one can avoid an analysis of the (possibly)

complicated generator for r and φ.

The method of §§2 and 3 can be applied to the sum yn of random variables having

Markovian dependence with the conditional probability density p(xn|xn−1, . . . , xn−k). It

leads to an eigenvalue problem for an integral equation involving a k-dimensional integral.

For the case k = 1, the joint probability density p(yn, xn, n) of the sum yn and the random

variable xn was considered by Lerman & Schuss [10]. The joint probability density is

written as

p(yn, xn, n) = K(xn, yn, n)e
−nψ(yn) (5.3)

Following a procedure similar to that of Knessl et al. [1] and of the previous sections of

this paper, the following equation is obtained:

K(xn, yn, n) = eψ(y)−yψ′(y)

∫
exn−1ψ

′(y)K(xn−1, yn, n)p(xn|xn−1)dxn−1 (5.4)

Here eψ(y)−yψ′(y) is the eigenvalue of (5.4) and K(xn, yn, n) is the eigenfunction. The solution

to this equation has been discussed in Lerman & Schuss [10].

While (5.4) looks very similar to (3.8)–(3.9) and (4.13) with H = Ke−N
2ψ , there are

significant differences. In §§3 and 4, we considered sums of random variables which are

related by the stochastic difference equations (3.3) and (4.5), driven by the iid random

variables ξn. In these cases both the exponent ψ and the prefactor K in the joint

probability densities were functions of x and y, in contrast to (5.3). Since the xi are

related by a stochastic difference equation, we could obtain partial differential equations

for ψ and K . In general, this is not possible when only the conditional probability density

p(xn|xn−1) is known.
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Appendix A Usual derivation of asymptotic form of q(y, n)

The usual method of obtaining the probability density q(y, n) is to introduce the charac-

teristic function S(k) of xi

S(k) =

∫ ∞
−∞

eikxp(x)dx. (A 1)

Then the probability density function q(y, n) = Pr(yn = y) is determined from the charac-

teristic function Sn(k) of yn:

q(y, n) =
1

2π

∫ ∞
−∞

e−inkySn(k)dk =
1

2π

∫ ∞
−∞

e−inky+n ln S(k)dk

=
1

2π

∫ ∞
−∞

enΦ(k)dk. (A 2)

Here Φ(k) = −iky + ln S(k). We evaluate this integral asymptotically for large n by the

saddle point method. The equation for the saddle point is

iy =
S ′(k)

S(k)
. (A 3)

This equation has a pure imaginary root ik0 with the sign of k0 opposite to that of y. The

steepest descent path through this point, defined by ImΦ(k) = ImΦ(ik0), is normal to the

imaginary k axis at the saddle point k = ik0. Consequently, the asymptotic behaviour of

the integral in (A 2) is

q(y, n) ∼
√
n√

2π|Φ′′(ik0)|
en(k0y+ln S(ik0)). (A 4)

To compare our result (2.15) with (A 4), we note from (2.8) that

ψ(y) = z0y − lnM(z0), (A 5)

where z0 satisfies M ′(z0)/M(z0) = y. Comparison of this equation with (A 3) shows that

z0 = −k0 since M(z) = S(−iz). Thus the exponent in (2.15) is equal to that in (A 4). To

show that the pre-exponential factors are equal, we differentiate twice the equation (A 5)

and use the equation satisfied by z0 to obtain

ψ′′(y) =
dz0

dy
. (A 6)

Upon taking the y derivative of the equation for z0 we get

1 =
d

dz0

(
M ′(z0)

M(z0)

)
dz0

dy
. (A 7)

From the last two equations we see that

(ψ′′(y))−1 =
d

dz0

(
M ′(z0)

M(z0)

)
. (A 8)

From the definition Φ = −iky + ln S(k) and the relation between M and S , it follows

that the right side of (A.8) is just Φ′′(ik0), so (A.8) yields [ψ′′(y)]−1 = Φ′′(ik0). Therefore,

the pre-exponential factors in (2.15) and (A 4) are equal, which shows that both methods

yield the same asymptotic form for q(y, n).
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Appendix B Behaviour of q near endpoints of its support

Suppose that xi is a continuous random variable whose density is positive over a finite

interval (a, b) and zero outside it:

p(x) > 0, a 6 x 6 b,
p(x) = 0, otherwise.

(B 1)

Then q(y, n) = 0 outside (a, b). We shall now determine the asymptotic behaviour of

q(y, n) within the interval but near the boundaries y = b and y = a. We consider first the

case of b− y ≡ ε� 1. Since k0 → −∞ as y → b, we must evaluate S(k) and S ′(k) in (A 3)

for |k0| � 1. Integration by parts in (A 1) yields

S(k) = eikb
[
p(b)

ik
− p(a)

ik
eika−ikb − e−ikb 1

ik

∫ b

a

eikxp′(x)dx

]
. (B 2)

We use (B 2) and a similar expression for S ′(k) in the equation (A.3) for k0. Since |k0| is

large for ε� 1, we neglect the terms with eika−ikb p(a)
ik

and 1
(ik)2 , and we obtain

b− ε ∼ b− 1

|k0|
. (B 3)

This implies that k0 ∼ −1/ε. Evaluating Φ and Φ′′ at k0 = −1/ε, and using them in (A.4)

yields

q(y, n) ∼
√
n

ε
√

2π
en((b−y)/ε+ln p(b)+lnε) =

enεnpn(b)
√
n

ε
√

2π
. (B 4)

Similarly, for y near a we obtain (B 4) with p(b) replaced by p(a) and ε = y − a.
Next we consider the case of xi a discrete random variable. For definiteness we take

p(x) =
1

2
[δ(x− 1) + δ(x+ 1)] . (B 5)

In this case S(k) = cos k, and (A 3) becomes

y = − tanh k0 (B 6)

for k = ik0. Then (A 4) yields

q(y, n) ∼
√

n

2πΦ′′(ik0)
en(yk0−ln

√
1−y2) =

√
n

2π

(y + 1)−(y+1)n/2(1− y)(y−1)n/2√
1− y2

. (B 7)

Since this expression becomes infinite as y → ±1, it is not valid near these points.

This difficulty does not arise for xi a continuous random variable, because |Φ(ik0)| and

|1/Φ′′(ik0)| both approach infinity as y approaches the boundary of its domain, in such a

way that the result for q(y, n) remains finite. In the discrete case, Φ(ik0) is bounded while

1/Φ′′(ik0) is infinite for y = ±1. Thus there are boundary layers at y = ±1.

To give a uniform expansion of q(y, n), we consider the exact result for the probability

of j ‘successes’ in n ‘trials’ based on (B.5):

p(j, n) =

(
n

j

)(
1

2

)j (
1

2

)n−j
. (B 8)

If success is ‘1’ and failure ‘-1’, then y = (2j − n)/n. Since the density q(y, n) is symmetric
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about y = 0 we consider the boundary layer near y = 1 only. For y near 1, that is, for j

near n, with n� 1, (B 8) behaves as

p(j, n) ∼
√
n

j

nne−n+j

jj(n− j)!

(
1

2

)j (
1

2

)n−j
. (B 9)

Now q(y, n) given by (B.7) should match with p(j, n) given by (B.9) in the intermediate

region where y → 1 with j � 1, but j < n, so that n � n − j � 1. Writing 1 − y = ε =

2(n− j)/n in (B.7) and expanding yields

q(y, n) ∼
√

n

2π

(2− ε)−(2−ε)n/2ε−εn/2√
(2− ε)ε

. (B 10)

We see that (B.10) agrees with (B.9) in the intermediate region so (B.7) matches with (B 8).

Therefore, the composite expansion for q(y, n) on y ∈ [0, 1] is given by (B 7) + (B 9) −
(B 10). The density q(y, n) on y ∈ [−1, 0] is obtained by the symmetry of q(y, n).
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