Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-06T08:59:21.079Z Has data issue: false hasContentIssue false

Homogenisation of a locally periodic medium with areas of low and high diffusivity

Published online by Cambridge University Press:  17 May 2011

T. L. VAN NOORDEN
Affiliation:
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands email: t.l.v.noorden@tue.nl
A. MUNTEAN
Affiliation:
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands email: t.l.v.noorden@tue.nl Institute of Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We aim at understanding transport in porous materials consisting of regions with both high and low diffusivities. We apply a formal homogenisation procedure to the case where the heterogeneities are not arranged in a strictly periodic manner. The result is a two-scale model formulated in x-dependent Bochner spaces. We prove the weak solvability of the limit two-scale model for a prototypical advection–diffusion system of minimal size. A special feature of our analysis is that most of the basic estimates (positivity, L-bounds, uniqueness, energy inequality) are obtained in the x-dependent Bochner spaces.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

References

[1]Allaire, G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 14821518.Google Scholar
[2]Arbogast, T., Douglas, J. Jr., & Hornung, U. (1990) Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823836.CrossRefGoogle Scholar
[3]Auriault, J. L. (1991) Heterogeneous medium. Is an equivalent macroscopic description possible? Int. J. Eng. Sci. 29, 785795.CrossRefGoogle Scholar
[4]Babych, N. O., Kamotski, I. V. & Smyshlaev, V. P. (2008) Homogenization of spectral problems in bounded domains with doubly high contrasts. Netw. Heterogeneous Media 8, 413436.CrossRefGoogle Scholar
[5]Bensoussan, A., Lions, J. L. & Papanicolau, G. (1978) Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam.Google Scholar
[6]Bourgeat, A., Luckhaus, S. & Mikelic, A. (1996) Convergence of the homogenization process for a double porosity model of immiscible two-phase flow. SIAM J. Math. Anal. 27, 15201543.Google Scholar
[7]Bourgeat, A., Mikelic, A. & Piatnitski, A. (1994) Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456, 1951.Google Scholar
[8]Bourgeat, A. & Panfilov, M. (1998) Effective two-phase flow through highly heterogeneous porous media: Capillary nonequilibrium effects. Comput. Geosci. 2, 191215.CrossRefGoogle Scholar
[9]Chechkin, G. & Piatnitski, A. L. (1999) Homogenization of boundary-value problem in a locally-periodic domain. Appl. Anal. 71, 215235.Google Scholar
[10]Dixmier, J. (1981) Von Neumann Algebras, North-Holland, Amsterdam.Google Scholar
[11]Eck, C. (2004) A two-scale phase field model for liquid-solid phase transitions of binary mixtures with dendritic microstructure. In: Habilitationsschrift, Universität Erlangen, Germany.Google Scholar
[12]Evans, L. C. (1998) Partial Differential Equations, Vol. 19 of Graduate Studies in Mathematics, AMS, Providence, Rhode Island.Google Scholar
[13]Fatima, T., Arab, N., Zemskov, E. P. & Muntean, A. (2011) Homogenization of a reaction-diffusion system modeling sulfate corrosion in locally-periodic perforated domains. J. Eng. Math., doi:10.1007/s10665-010-9396-6.Google Scholar
[14]Hornung, U., ed. (1997) Homogenization and Porous Media, Vol. 6 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York.CrossRefGoogle Scholar
[15]Hornung, U. & Jäger, W. (1991) Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differ. Equ. 92, 199225.CrossRefGoogle Scholar
[16]Hornung, U., Jäger, W. & Mikelić, A. (1994) Reactive transport through an array of cells with semi-permeable membranes. RAIRO Modél. Math. Anal. Numér. 28, 5994.Google Scholar
[17]Ladyzenskaja, O. A., Solonnikov, V. A. & Uralce'va, N. N. (1968) Linear and Quasi-linear Equations of Parabolic Type, Vol. 23 of Translations of Mathematical Monographs, AMS, Providence, Rhode Island.Google Scholar
[18]Lions, J. L. (1963) Quelques Méthodes de Resolution des Problèmes Aux Limite Non-Linéaires, Dunod, Gauthier-Villars, Paris.Google Scholar
[19]Meier, S. A. (2008) Two-Scale Models for Reactive Transport and Evolving Microstructure, PhD Thesis, University of Bremen, Germany.Google Scholar
[20]Meier, S. A. & Böhm, M. (2005) On a micro-macro system arising in diffusion–reaction problems in porous media. In: Fila, M. et al. (editors), Proceedings of the Equadiff 11, Bratislava, pp. 259263.Google Scholar
[21]Meier, S. A. & Böhm, M. (2008) A note on the construction of function spaces for distributed-microstructure models with spatially varying cell geometry. Int. J. Numer. Anal. Modeling 1, 118.Google Scholar
[22]Meier, S. A. & Muntean, A. (2008) A two-scale reaction-diffusion system with micro-cell reaction concentrated on a free boundary. Comptes Rendus Mecanique 336, 481486.Google Scholar
[23]Meier, S. A. & Muntean, A. (2010) A two-scale reaction-diffusion system: Homogenization and fast reaction limits. Gakuto Int. Ser. Math. Sci. Appl. 32, 441459.Google Scholar
[24]Ptashnyk, M., Roose, T. & Kirk, G. J. D. (2010) Diffusion of strongly sorbed solutes in soil: A dual-porosity model allowing for slow access to sorption sites and time-dependent sorption reactions. Eur. J. Soil Sci. 61, 108119.Google Scholar
[25]Showalter, R. E. & Walkington, J. (1991) Micro-structure models of diffusion in fissured media. J. Math. Anal. Appl. 155, 120.Google Scholar
[26]van Noorden, T. L. (2009) Crystal precipitation and dissolution in a porous medium: Effective equations and numerical experiments. Multiscale Model. Simul. 7, 12201236.Google Scholar
[27]van Noorden, T. L. (2009) Crystal precipitation and dissolution in a thin strip. Eur. J. Appl. Math. 20, 6991.CrossRefGoogle Scholar
[28]Zhikov, V. V. (2000) On an extension of the method of two-scale convergence and its applications. Sb. Math. 191, 9731014.Google Scholar