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We aim at understanding transport in porous materials consisting of regions with both high

and low diffusivities. We apply a formal homogenisation procedure to the case where the

heterogeneities are not arranged in a strictly periodic manner. The result is a two-scale model

formulated in x-dependent Bochner spaces. We prove the weak solvability of the limit two-

scale model for a prototypical advection–diffusion system of minimal size. A special feature

of our analysis is that most of the basic estimates (positivity, L∞-bounds, uniqueness, energy

inequality) are obtained in the x-dependent Bochner spaces.
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1 Introduction

We consider transport in heterogeneous media presenting regions with high and low

diffusivities. Examples of such media are concrete and scavenger packaging materials.

For the scenario we have in mind, the old classical idea to replace the heterogeneous

medium by a homogeneous equivalent representation (see [2–4, 8, 24] and references

therein) that gives the average behaviour of the medium submitted to a macroscopic

boundary condition is not working anymore. Specifically, now the transport becomes

structured (here: micro–macro1) [6, 16].

The homogenisation of these ‘high-contrast’ media is well developed (see, e.g. [4, 6]

and the references therein), but in this paper we relax the strictly periodic setting that is

considered in the cited papers. We value this an important issue since a real heterogeneous

medium is almost never periodic. The geometric arrangement of the heterogeneities that

we allow in this paper is such that the spacing of the low diffusive areas is still periodic,

but their shape and size need not be identical. We call this a locally periodic2 medium

and we refer the reader to Section 2 (in particular to Figure 1), where we explain our

1 ‘Micro’ refers here to a continuum description of a porous sub-domain at a separated (lower)

spatial scale compared to the ‘macro’ one.
2 The terminology ‘local periodicity’ is taken form [9].
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Figure 1. Schematic representation of a locally periodic heterogeneous medium. For a given ε > 0,

the low-diffusivity areas might look like the grey areas in the figure. The centres of the grey areas

are on a grid with width ε, but their shape and size may vary.

concept of local periodicity. To avoid confusion, we find it important to mention, already

at this early stage, that here we tackle locally periodic arrays of micro-structures, which

is much more challenging than simply considering locally periodic coefficients in PDEs

posed in fixed or eventually periodically perforated domains (see, e.g. [5]).

The two-scale convergence concept (see, e.g. [1, 28]) fails to be directly applicable to

the locally periodic setting in this paper. When periodicity is lacking, the typical strategy

would be to tackle the matter from the percolation theory perspective (see, e.g. chapter

2 in [14] and references cited therein3) or to reformulate the oscillating problem in terms

of stochastic homogenisation/random fields (see, e.g. [7]). In this paper, we wish to stay

within a deterministic framework by deviating in a controlled manner (made precise

in Section 2) from the purely periodic homogenisation. On this way, we prepare the

justification of the formal asymptotic homogenisation performed in [13] for a reaction–

diffusion scenario modelling the slow chemical corrosion of concrete materials.

The results of our paper are twofold:

(i) We adapt existing strategies to deal (formally) with the asymptotics ε → 0 for a locally

periodic medium (where ε > 0 is the micro-structure width) and derive a macroscopic

equation and x-dependent effective transport coefficients (porosity, permeability, tor-

tuosity) for the species undergoing fast transport (i.e. one living in highly diffusive

areas), while we preserve the precise (x-dependent) geometry of the micro-structure

3 Figure 2.3(a) in [14], p. 39 illustrates a computer simulation of the consolidation of spherical

grains showing regions with high and low porosities corresponding to high- and low-diffusivity

areas.
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and corresponding balance equation. The result of this homogenisation procedure is

a distributed-micro-structure model in the terminology of R. E. Showalter, which we

refer here as two-scale model.

(ii) We analyse the solvability of the resulting two-scale model with perfectly matched

micro–macro boundary condition. As a consequence of the presence of x-dependent

micro-structures, the (weak) solutions of the two-scale model are elements of x-

dependent Bochner spaces. Our approach benefits from previous works on two-scale

models by, e.g. Showalter and Walkington [25], Eck [11] and Meier and Böhm [19,20].

A special feature of our analysis is that most of the basic estimates (positivity,

L∞-bounds, uniqueness, energy inequality) are obtained in the x-dependent Bochner

spaces. Our existence proof is constructed using a Schauder fixed-point argument and is

an alternative to [25], where the situation is formulated as a Cauchy problem in Hilbert

spaces and then resolved by holomorphic semigroups, or to [19], where a Banach fixed-

point argument for the problem stated in transformed domains (i.e. x-independent) is

employed. Our construction of the fixed point operator seems to be new.

We illustrate here our working methodology for a prototypical diffusion system of min-

imal size. Having this tool now available allows us to address elsewhere the practical situ-

ation described in [13]. To keep presentation simple, our scenario does not include chem-

istry. With minimal effort, both our asymptotic technique and analysis can be extended to

account for volume and surface reaction production terms and other linear micro–macro

transmission conditions (see Remark 5.12). We only emphasise the fact that if chemical

reactions take place, then most likely they will be hosted by the micro-structures of the

low-diffusivity regions. In particular, as far as the formal homogenisation approach is con-

cerned, we can treat in a quite similar way situations where free-interfaces travel the micro-

structure; we refer the reader to [26] for a dissolution/precipitation free-boundary problem

and [22] for a fast-reaction–slow-diffusion scenario where we addressed the matter.

The formal asymptotics approach we choose here builds upon the one used in [26, 27]

and is conceptually related to the (locally periodic) formal asymptotics and corresponding

rigorous justifications as performed by Belyaev, Chechkin, Piatnitskii, Friedman and co-

workers during the last 10–15 years (see, for instance the corresponding papers cited

in [9, 13]).

The paper is organised in the following fashion: Section 2 contains the description

of the model equations at the micro-scale together with the precise geometry of our

x-dependent micro-structure. The homogenisation procedure is detailed in Section 3. The

main result of this part of the paper is the two-scale model equations as well as a couple

of effective coefficients reported in Section 4. The second part of the paper focusses on

the analysis of the two-scale model (see Section 5). The main result, i.e. Theorem 5.11,

ensures the global-in-time existence of weak solutions to our two-scale model and appears

at the end of Section 5.3. A brief conclusions section concludes the paper.

2 Model equations

We consider a heterogenous medium consisting of areas of high and low diffusivity. The

medium is in the present paper represented by a two-dimensional domain. We denote the
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two-dimensional bounded domain by Ω ⊂ �2, with boundary Γ . A convenient way to

parameterise the interface Γε between the high- and low-diffusivity areas is to use a level

set function, which we denote by Sε(x):

x ∈ Γε ⇔ Sε(x) = 0.

Since we allow the size and shape of the perforations to vary with the macroscopic

variable x, we use the following characterisation of Sε:

Sε(x) = S0(x, x/ε) + εS1(x, x/ε+ ε2S2(x, x/ε) + . . . , (2.1)

where Si : Ω × U → �, for i = 0, 1, 2, . . . , are 1-periodic in their second variable, with U

the unit square defined by

U := {y ∈ �2 | − 1/2 � yi � 1/2 for i = 1, 2}), (2.2)

and where S is independent of ε.

We call a medium of which the geometry is specified with a level set function of the

type that is given in (2.1) a locally periodic medium [9]. In Figure 1, a schematic picture

is given of how such a medium might look like for a given ε > 0.

We define the area of low diffusivity Ωε
l by

Ωε
h := {x ∈ Ω | Sε(x) > 0},

and we define the area of high diffusivity Ωε
h by

Ωε
h := {x ∈ Ω | Sε(x) > 0}.

The boundary between high- and low-diffusivity areas Γε is now given by

Γε := {x ∈ Ω | Sε(x) = 0}.

We assume that S0(x, 0) < const. < 0 and S0(x, y)|y∈∂U > const. > 0 for all x ∈ Ω and that

the Si, for i = 0, 1, 2, . . . , are bounded so that in the limit ε → 0 the areas of low diffusivity

in each unit cell do not touch each other.

We denote the tracer concentration in the high-diffusivity area by uε, the concentration

in the low-diffusivity area by vε, the velocity of the fluid phase by qε and the pressure

by pε. All these unknowns are dimensionless. In the high-diffusivity area, we assume for

the fluid flow a Darcy-like law and incompressibility, while we neglect fluid flow in the

low-diffusivity area. The diffusion coefficient in the low-diffusivity area is assumed to be

of the order of O(ε2), while all the remaining coefficients are of the order of O(1) in ε.

We assume continuity of concentration and fluxes across the boundary between the high-

and low-diffusivity areas.
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The model is now given by⎧⎪⎪⎨
⎪⎪⎩
uεt = ∇ · (Dh∇uε − qεuε)

qε = −κ∇pε

∇ · qε = 0

in Ωε
h, (2.3)

{
vεt = ε2∇ · (Dl∇vε) in Ωε

l , (2.4)⎧⎪⎪⎨
⎪⎪⎩
νε · (Dh∇uε) = ε2νε · (Dl∇vε)
uε = vε

qε = 0

on Γε, (2.5)

{
uε(x, t) = ub(x, t)

qε(x, t) = qb(x, t)
on Γ , (2.6)

{
uε(x, 0) = uεI (x) in Ωε

h,

vε(x, 0) = vεI (x) in Ωε
l ,

(2.7)

where Dh denotes the diffusion coefficient in the high-diffusivity region, Dl denotes the

diffusion coefficient in the low-diffusivity regions, κ denotes the permeability in the Darcy

law for the flow in the high-diffusivity region, νε denotes the unit normal to the boundary

Γε(t), where qb and ub denote the Dirichlet boundary data for the concentration uε and

Darcy velocity qε and where uεI and vεI denote initial value data for the concentration uε

and vε.

3 Formal homogenisation

For the formal homogenisation, we assume the following formal asymptotic expansions

for uε, vε, qε and pε:

uε(x, t) = u0(x, x/ε, t) + εu1(x, x/ε, t) + ε2u2(x, x/ε, t) + . . . ,

vε(x, t) = v0(x, x/ε, t) + εv1(x, x/ε, t) + ε2v2(x, x/ε, t) + . . . ,

qε(x, t) = q0(x, x/ε, t) + εq1(x, x/ε, t) + ε2q2(x, x/ε, t) + . . . ,

pε(x, t) = p0(x, x/ε, t) + εp1(x, x/ε, t) + ε2p2(x, x/ε, t) + . . . ,

where uk(·, y, ·), vk(·, y, ·), qk(·, y, ·) and pk(·, y, ·) are 1-periodic in y = x
ε
. The gradient of a

function f(x, x
ε
) depending on x and y = x

ε
is given by

∇f = ∇xf +
1

ε
∇yf|y= x

ε
, (3.1)

where ∇x and ∇y denote the gradients with respect to the first and second variables of f.

3.1 Interface conditions

In (2.51), we have used the superscript ε for the normal vector νε in the interface

conditions for vε and uε. The reason is that the normal vector depends on the geometry
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of the different regions, and this, in turn, depends on ε. In order to perform the steps of

formal homogenisation, we have to expand νε in a power series in ε. This can be done in

terms of the level set function Sε:

νε =
∇Sε(x, x/ε)

|∇Sε(x, x/ε)| at x ∈ Γε. (3.2)

First, we expand |∇Sε|. Using the chain rule (3.1) (see also [14]), the expansion (2.1) of Sε

and the Taylor series of the square-root function, we obtain

|∇Sε| = 1

ε
|∇yS0| + O(ε0). (3.3)

In the same fashion, we get

νε = ν0 + εν1 + O(ε2),

where

ν0 :=
∇yS0

|∇yS0|

and

ν1 :=
∇xS0 + ∇yS1

|∇yS0| − (∇xS0 · ∇yS0 + ∇yS0 · ∇yS1)

|∇yS0|2
∇yS0

|∇yS0| .

If we introduce the normalised tangential vector τ0, with τ0 ⊥ ν0, we can rewrite ν1 as

ν1 = τ0
τ0 · (∇xS0 + ∇yS1)

|∇yS0| . (3.4)

Now, we focus on the interface conditions posed at Γε. In order to obtain interface

conditions in the auxiliary problems, we substitute the expansions of uε, qε and νε into

(2.5). This is not so straightforward as it may seem, since the interface conditions (2.5) are

enforced at the oscillating interface Γε, i.e. at every x, where Sε(x) = 0. For formulating

the upscaled model, it would be convenient to have boundary conditions enforced at

Γ0(x) := {y | S0(x, y) = 0}. (3.5)

To obtain them, we suppose that we can parameterise the part of the boundary Γε
ij that

surrounds the sphere Bij with kε(s) so that holds

Sε(kε(s)) = 0,

and we assume that we can expand kε(s) using the formal asymptotic expansion

kε(s) = xij + εk0(s) + ε2k1(s) + O(ε3). (3.6)
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Using the expansion for Sε, the periodicity of Si in y, and the Taylor series of S0 and S1

around (x, k0), we obtain

S0(x, k0) + ε(S1(x, k0) + k0 · ∇xS0(x, k0) + k1 · ∇yS0(x, k0)) + O(ε2) = 0.

Collecting terms with the same order of ε, we see that k0(s) parameterises locally the zero

level set of S0:

S0(x, k0) = 0.

For k1, we have equation

S1(x, k0) + k0 · ∇xS0(x, k0) + k1 · ∇yS0(x, k0) = 0. (3.7)

It suffices to seek for k1 that is aligned with ν0 so that we write

k1(s) = λ(s))ν0(s) = λ
∇yS0

|∇yS0| , (3.8)

where, using (3.7), λ is given by

λ := − S1

|∇yS0| − k0 · ∇xS0

|∇yS0| . (3.9)

Each of the boundary conditions in (2.5) admits the structural form

K(x, x/ε) = 0 for all x ∈ Γε,

where K is a suitable linear combination of uε, ∇uε, qε, pε, vε and ∇vε. Using (3.6) and

the Taylor series of K around (x, k0), we obtain

K(x, k0) + ε(k0 · ∇xK(x, k0) + k1 · ∇yK(x, k0)) +
ε2

2
(k0, k1) · (D2K(x, k0))(k0, k1) + ε3(. . .)

= 0, (3.10)

where D2K denotes the Hessian of K with respect to x and y. Substituting (3.8) into

(3.10), we can re-state (3.10) in the following way:

K(x, y) + ε(y · ∇xK(x, y) + λν0 · ∇yK(x, y)) +
ε2

2
(y, λν0) · (D2K(x, y))(y, λν0) + O(ε3)

= 0 for all y ∈ Γ0(x). (3.11)

In order to proceed further, we make use of the following technical lemmas. Their proofs

can be found in [26].

Lemma 3.1 Let g(x, y) be a scalar function such that g(x, y) = 0 for all y ∈ Γ0(x), x ∈ Ω

and t � 0. Then, it holds that

∇xg =
ν0 · ∇yg

|∇yS0| ∇xS0, for x ∈ Ω, y ∈ Γ0(x, t).
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Lemma 3.2 Let F(x, y) be a vector valued function such that ∇y · F(x, y) = 0 on Y0(x) :=

{y | S0(x, y) > 0} and ν0 · F(x, y) = 0 on Γ0(x) for all x ∈ Ω. Then, it holds that∫
Γ 0(x)

τ0 · ∇yS1

|∇yS0| τ0 · F − S1

|∇yS0|ν0 · ∇y(ν
0 · F) dσ = 0, for x ∈ Ω.

3.2 Flow equations

Substituting the asymptotic expansions of qε and pε into (2.32,3), we obtain

q0 = −κ1

ε
∇yp0 − κ∇yp1 − κ∇xp0 + O(ε), (3.12)

1

ε
∇y · q0 + ∇x · q0 + ∇y · q1 + O(ε) = 0. (3.13)

Substituting the asymptotic expansion of qε into the boundary condition (2.53), and using

(3.11), gives

q0 + ε
(
q1 + (∇xq0)

Ty + λ(∇yq0)
T ν0

)
+ O(ε2) = 0, for all y ∈ Γ0(x). (3.14)

The ε−1-term in (3.12) indicates that ∇yp0 = 0 so that we conclude that p0 is independent

of y. Furthermore, we obtain, after collecting ε0-terms from (3.12) and (3.14) and ε−1-terms

from (3.13), equations for q0 and p1 as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q0 = −κ∇yp1 − κ∇xp0 in Y0(x),

∇y · q0 = 0 in Y0(x),

q0 = 0 on Γ0(x),

q0 and p0 y-periodic,

(3.15)

where

Y0(x) := {y | S0(x, y) > 0}. (3.16)

These equations (together with boundary conditions on the outer boundary ∂Ω) determine

the averaged velocity field given by

q̄(x) =

∫
Y0(x)

q0(x, y) dy.

Now, we compute the divergence of q̄ (where we use the ε0-terms from (3.13))

∇x · q̄ = ∇x ·
∫
Y0(x)

q0 dy =

∫
Y0(x)

∇x · q0 dy −
∫
Γ0(x)

∇xS0

|∇yS0| · q0 dσ

= −
∫
Y (x)

∇y · q1 dy = −
∫
Γ0(x)

ν0 · q1 dσ

=

∫
Γ0(x)

−ν0 · ((∇xq0)
Ty + λ(∇yq0)

T ν0) dσ

= −I1 − I2,
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with

I1 :=

∫
Γ0(x)

ν0 ·
(
(∇xq0)

Ty − y · ∇xS0

|∇yS0| (∇yq0)
T ν0

)
dσ,

I2 := −
∫
Γ0(x)

ν0 ·
( S1

|∇yS0| (∇yq0)
T ν0

)
dσ.

We apply Lemma 3.1 with g = ν0 · q0 and obtain

∇x(ν0 · q0) =
ν0 · ∇y(ν0 · q0)

|∇yS0| ∇xS0, on Γ0(x, t).

Since q0 = 0 on Γ0(x), it follows that (∇xq0)
T ν0 =

ν0·(∇yq0)
T ν0

|∇yS0| ∇xS0 so that I1 = 0. Next, we

apply Lemma 3.2 with F = q0 and get consequently∫
Γ 0(x)

τ0 · ∇yS1

|∇yS0| τ0 · q0 − S1

|∇yS0|ν0 · ∇y(ν
0 · q0) dσ = 0.

Again using q0 = 0 on Γ0(x), it follows that I2 = 0 so that we have

∇x · q̄ = 0. (3.17)

3.3 Diffusion equation in the low-diffusivity areas

Substituting the asymptotic expansion of vε into (2.4), we obtain

∂tv0 = Dl∇yv0 + O(ε). (3.18)

Similarly expanding the boundary condition (2.52), we get

0 = u0 − v0 + O(ε) on Γε,

which, after substitution into (3.11), becomes

0 = u0 − v0 + O(ε) on Γ0(x).

Collecting the lowest order terms, and using that u0 does not depend on y, we obtain the

boundary condition

v0(x, y, t) = u0(x, t) for all y ∈ Γ0(x), x ∈ Ω. (3.19)

3.4 Convection–diffusion equation in the high-diffusivity area

Substituting the asymptotic expansion of uε into (2.31), we obtain

∂tu0 =
1

ε2
Dh∆yu0 +

1

ε
(∇y · Fh + ∇x · (Dh∇yu0)) + ∇y · (Dh(∇yu2 + ∇xu1) − q1u0 − q0u1)

+ ∇x · Fh + O(ε), (3.20)
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where

Fh := Dh(∇xu0 + ∇yu1) − q0u0. (3.21)

Using the expansions for uε, vε and νε, we first expand (2.51):

0 = νε · (Dh∇uε) − ε2νε · (Dl∇vε)

=
1

ε
ν0 · (Dh∇yu0) + ν0 · (Dh(∇xu0 + ∇yu1)) + ν1 · (Dh∇yu0)

+ ε
(
ν0 · (Dh(∇xu1 + ∇yu2)) + ν1 · (Dh(∇xu0 + ∇yu1)) + ν2 · (Dh∇yu0) − ν0 · (Dl∇yv0)

)
+O(ε2), for all x ∈ Γε and y =

x

ε
.

Next, we substitute this expansion into (3.11) and thus obtain

0 =
1

ε
ν0 · (Dh∇yu0)

+ ν0 · (Dh(∇xu0 + ∇yu1)) + ν1 · (Dh∇yu0) + y · ∇x(ν0 · (Dh∇yu0)) + λν0 · ∇y(ν0 · (Dh∇yu0))

+ ε
(
ν0 · (Dh(∇xu1 + ∇yu2)) + ν1 · Dh(∇xu0 + ∇yu1) + ν2 · (Dh∇yu0)

− ν0 · (Dl∇yv0) + y · ∇x(ν0 · (Dh(∇xu0 + ∇yu1)) + ν1 · (Dh∇yu0))

+ λν0 · ∇y(ν0 · (Dh(∇xu0 + ∇yu1)) + ν1 · (Dh∇yu0))

+
1

2
(y, λν0) · (D2(ν0 · (Dh∇yu0)))(y, λν0)

)
+ O(ε2), for y ∈ Γ0(x). (3.22)

Now, we collect the ε−2-term from (3.20) and the ε−1-term from (3.22). Hence, we obtain

for u0 the equations ⎧⎪⎪⎨
⎪⎪⎩
∆yu0 = 0 in Y0(x),

ν0 · ∇yu0 = 0 on Γ0(x),

u0 y-periodic,

(3.23)

where Y0(x) is given by (3.16). This means that u0 is determined up to a constant and

does not depend on y so that ∇yu0 = 0. Collecting the ε−1 terms from (3.20), the ε0-terms

from (3.22), and using that ∇yu0 = 0, we get for u1 the equations⎧⎪⎪⎨
⎪⎪⎩

∇y · (Dh∇yu1 − q0u0) = 0 in Y0(x),

ν0 · (Dh(∇xu0 + ∇yu1)) = 0 on Γ0(x),

u1 y-periodic.

(3.24)

Collecting the ε0-terms from (3.20) and the ε1-terms from (3.22), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tu0 = ∇y · (Dh(∇yu2 + ∇xu1) − q1u0 − q0u1) + ∇x · Fh in Y0(x),

ν0 · (Dh(∇xu1 + ∇yu2)) = −ν1 · (Dh(∇xu0 + ∇yu1))

+ν0 · (Dl∇yv0) − y · ∇x(ν0 · (Dh(∇xu0 + ∇yu1)))

−λν0 · ∇y(ν0 · (Dh(∇xu0 + ∇yu1))) on Γ0(x),

u2 y-periodic.

(3.25)
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Integrating (3.251) over Y0(x) and using the boundary conditions (3.153) and (3.252)

yields

|Y0(x)|∂tu0 =

∫
Y0(x)

∇y · (Dh(∇xu1 + ∇yu2) − q1u0 − q0u1) dy +

∫
Y0(x)

∇x · Fh dy

=

∫
Γ0(x)

−ν1 · Fh + ν0 · (Dl∇yv0) − y · ∇x(ν0 · Fh) − λν0 · ∇y(ν0 · Fh) dσ

+ ∇x ·
∫
Y0(x)

Fh dy +

∫
Γ0(x)

∇xS0

|∇yS0| · Fh dσ.

Using (3.4), (3.9) and the boundary conditions (3.153) and (3.242), this can be re-written

as

|Y0(x)|∂tu0 = ∇x ·
∫
Y0(x)

(Dh(∇yu1 + ∇xu0) − q0u0) dy

+

∫
Γ0(x)

ν0 · (Dl∇yv0) dy − I1 − I2,

where

I1 :=

∫
Γ0(x)

y · ∇xg − y · ∇xS0

|∇yS0| ν0 · ∇yg dσ,

I2 :=

∫
Γ0(x)

τ0 · ∇yS1

|∇yS0| τ0 · Fh − S1

|∇yS0|ν0 · ∇y(ν
0 · Fh) dσ,

with g := ν0 · Fh. The boundary conditions (3.153) and (3.242) give us g(x, y, t) = 0 for

y ∈ Γ0(x, t). Now, invoking Lemma 3.1 leads to ∇xg =
ν0·∇yg

|∇yS0| ∇xS0. So I1 = 0. For the

integral I2, we invoke Lemma 3.2 to obtain I2 = 0. As a last step, we use the divergence

theorem and interface condition (3.19) to obtain

∂t

(
|Y0(x)|u0 +

∫
Y C

0 (x)

v0 dy

)
= ∇x ·

∫
Y0(x)

(Dh(∇yu1 + ∇xu0) − q0u0) dy, (3.26)

where Y C
0 (x) is the complement of Y0(x) in U given by Y C

0 (x) := U\Y0(x) = {S0(x) < 0}.

Remark 3.3 Note that in this section we have not used any assumptions of the shape of

the perforations. They may have any shape as long as their limiting shape is described by

the level set function S0.

4 Upscaled equations

Equations for lowest order terms of qε and pε, (3.15) and (3.17), vε, (3.18), uε, (3.26),

and the coupling conditions (3.19) together constitute the upscaled model. In this section,

we collect these equations. We write the solutions of (3.24) and (3.15) in terms of the
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solutions of the following two cell problems (see, e.g. [14])

⎧⎪⎪⎨
⎪⎪⎩
∆yvj(x, y) = 0 for all x ∈ Ω, y ∈ Y0(x),

ν0 · ∇yvj(x, y) = −ν0 · ej for all x ∈ Ω, y ∈ Γ0(x),

vj(x, y) y-periodic,

(4.1)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wj(x, y) = ∇yπj(x, y) + ej for all x ∈ Ω, y ∈ Y0(x),

∇y · wj(x, y) = 0 for all x ∈ Ω, y ∈ Y0(x),

wj = 0 for all x ∈ Ω, y ∈ Γ0(x),

wj(x, y) and πj(x, y) y-periodic,

(4.2)

for j = 1, 2. The use of these cell problems allows us to write the results of the formal

homogenisation procedure in the form of the following distributed-micro-structure model:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tv0(x, y, t) = Dl∆yv0(x, y, t) for x ∈ Ω, y ∈ Y C
0 (x),

∂t

(
θ(x)u0 +

∫
|y|<r(x) v0 dy

)
= ∇x · (DhA(x)∇xu0 − q̄u0) for x ∈ Ω,

q̄ = −κK(x)∇xp0 for x ∈ Ω,

∇x · q̄ = 0 for x ∈ Ω,

(4.3)

⎧⎪⎪⎨
⎪⎪⎩
v0(x, y, t) = u0(x, t) for x ∈ Ω, y ∈ Γ0(x),

u0(x, t) = ub(x, t) for x ∈ Γ ,

q̄(x, t) = qb(x, t) for x ∈ Γ ,

(4.4)

{
u0(x, 0) = uI (x) for x ∈ Ω,

v0(x, y, 0) = vI (x, y) for x ∈ Ω, y ∈ Y C
0 (x).

(4.5)

where the porosity θ(x) of the medium is given by

θ(x) := |Y0(x)|,

while the effective diffusivity A(x) := (aij(x))i,j and the effective permeability K(x) :=

(kij(x))i,j are defined by

aij(x) :=

∫
{y∈U | |y|>r(x)}

δij + ∂yi vj(x, y, t) dy,

and

kij(x) :=

∫
{y∈U | |y|>r(x)}

wji(x, y, t) dy.

https://doi.org/10.1017/S0956792511000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000209


Homogenisation of a locally periodic medium 505

5 Analysis of upscaled equations

In this section, we investigate the solvability of the upscaled equations (4.3)–(4.5). Note

that (4.33,4) for q̄ and p0, together with the boundary condition (4.43) are decoupled from

the other equations. We may assume that we can solve these equations for q̄ and p0

such that q ∈ L∞(Ω; �2) (see Assumption 2 below). Standard arguments form the theory

of partial differential equations justify this assumption if the data qb and r are suitable

(see [15] for a closely related scenario). With this assumption, (4.3)–(4.5) reduce to the

following problem:

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(x)∂tu− ∇x · (D(x)∇xu− qu) = −
∫

∂B(x)
νy · (Dl∇yv) dσ in Ω,

∂tv − Dl∆yv = 0 in B(x),

u(x, t) = v(x, y, t) at (x, y) ∈ Ω × ∂B(x),

u(x, t) = ub(x, t) at x ∈ ∂Ω,

u(x, 0) = uI (x) in Ω,

v(x, y, 0) = vI (x, y) at (x, y) ∈ Ω × B(x),

where B(x) := Y0(x), where Y0 is defined in (3.16). In the following sections, we discuss

the existence and uniqueness of weak solutions to problem (P ).

5.1 Functional setting and weak formulation

For notational convenience, we define the following spaces:

V1 := H1
0 (Ω), (5.1)

V2 := L2(Ω;H2(B(x))), (5.2)

H1 := L2
θ(Ω), (5.3)

H2 := L2(Ω;L2(B(x))). (5.4)

The x-dependent Bochner spaces H2 and V2 make sense , for instance we assume (like

in [20]) the following.

Assumption 1 The function S0 : Ω × U → �, which defines B(x) := Y0(x) in (3.16), and

which also defines the one-dimensional boundary Ω × ∂B(x) of Ω × B(x) as

(x, y) ∈ Ω × ∂B(x) if and only if S0(x, y) = 0,

is an element of C2(Ω ×U). Assume additionally that the Clarke gradient ∂yS0(x, y) is

regular for all choices of (x, y) ∈ Ω ×U.

Following the lines of [20] and [25], Assumption 1 implies in particular that the

measures |∂B(x)| and |B(x)| are bounded away from zero (uniformly in x). Consequently,
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the following direct Hilbert integrals (cf. [10] (part II, chapter 2))

L2(Ω;H1(B(x))) := {u ∈ L2(Ω;L2(B(x))) : ∇yu ∈ L2(Ω;L2(B(x)))}

L2(Ω;H1(∂B(x))) :=

{
u : Ω × ∂B(x) → � measurable such that

∫
Ω

||u(x)||2L2(∂B(x)) < ∞
}

are well-defined separable Hilbert spaces and, additionally, the distributed trace

γ : L2(Ω;H1(B(x))) → L2(Ω,L2(∂B(x)))

given by

γu(x, s) := (γxU(x))(s), x ∈ Ω, s ∈ ∂B(x), u ∈ L2(Ω;H1(B(x))) (5.5)

is a bounded linear operator. For each fixed x ∈ Ω, the map γx, which is arising in (5.5),

is the standard trace operator from H1(B(x)) to L2(∂B(x)). We refer the reader to [19]

for more details on the construction of these spaces and to [21] for the definitions of

their duals as well as for a less regular condition (compared to Assumption 1) allowing

to define these spaces in the context of a certain class of anisotropic Sobolev spaces.

Furthermore, we assume

Assumption 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ, D ∈ L∞
+(Ω),

q ∈ L∞(Ω; �d) with ∇ · q = 0,

ub ∈ L∞
+(Ω × S) ∩H1(S;L2(Ω)),

∂tub � 0 a.e. (x, t) ∈ Ω × S,

uI ∈ L∞
+(Ω) ∩H1,

vI (x, ·) ∈ L∞
+(B(x)) ∩H2 for a.e. x ∈ Ω,

where S = (0, T ].

We also define the following constants for later use:

M1 := max{‖uI‖L∞(Ω), ‖ub‖L∞(Ω)}, (5.6)

M2 := max{‖vI‖L∞(Ω),M1}. (5.7)

Note that M1 and M2 depend on the initial and boundary data, but not on the final time

T . Let us introduce the evolution triple (�,�,�∗), where

� := {(φ,ψ) ∈ V1 × V2 |φ(x) = ψ(x, y) for x ∈ Ω, y ∈ ∂B(x)}, (5.8)

� := H1 ×H2, (5.9)

Denote U := u− ub and notice that U = 0 at ∂Ω.
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Definition 5.1 Assume Assumptions 1 and 2. The pair (u, v), with u = U + ub and where

(U, v) ∈ �, is a weak solution of the problem (P ) if the following identities hold:∫
Ω

θ∂t(U + ub)φdx+

∫
Ω

(D∇x(U + ub) − q(U + ub)) · ∇xφ dx

= −
∫
Ω

∫
∂B(x)

νy · (Dl∇yv)φdσdx,

(5.10)∫
Ω

∫
B(x)

∂tvψ dydx+

∫
Ω

∫
B(x)

Dl∇y · ∇yψ dydx =

∫
Ω

∫
∂B(x)

νy · (Dl∇yv)φdσdx, (5.11)

for all (φ,ψ) ∈ � and t ∈ S .

As a last item in this section on the functional framework, we mention for reader’s

convenience the following lemma by Lions and Aubin [18], which we will need later on.

Lemma 5.2 (Lions–Aubin) Let B0 ↪→ B ↪→ B1 be Banach spaces such that B0 and B1 are

reflexive and the embedding B0 ↪→ B is compact. Fix p, q > 0 and let

W =

{
z ∈ Lp(S;B0) :

dz

dt
∈ Lq(S;B1)

}

with

||z||W := ||z||Lp(S ;B0) + ||∂tz||Lq(S ;B1).

Then, W ↪→↪→ Lp(S;B).

5.2 Estimates and uniqueness

In this section, we establish the positivity and boundedness of the concentrations. Fur-

thermore, we prove an energy inequality and ensure the uniqueness of weak solutions to

problem (P).

Lemma 5.3 Let Assumptions 1 and 2 be satisfied. Then, any weak solution (u, v) of problem

(P ) has the following properties:

(i) u � 0 for a.e. x ∈ Ω and for all t ∈ S;

(ii) v � 0 for a.e. (x, y) ∈ Ω × B(x) and for all t ∈ S;

(iii) u � M1 for a.e. x ∈ Ω and for all t ∈ S;

(iv) v � M2 for a.e. (x, y) ∈ Ω × B(x) and for all t ∈ S;

(v) The following energy inequality holds:

‖u‖2
L2(S ;V1)∩L∞(S ;H1)

+ ‖v‖2
L2(S ;L2(Ω,V2))∩L∞(S ;H2)

+ ‖∇xu‖2
L2(S ;H1)

+ ‖∇yv‖2
L2(S×Ω×B(x)) � c1, (5.12)
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where M1 and M2 are given in (5.6) and (5.7), and where c1 is a constant independent of u

and v.

Proof We prove (i) and (ii) simultaneously. Similar arguments combined with corres-

ponding suitable choices of test functions lead in a straightforward manner to (iii), (iv)

and (v). We omit the proof details. Choosing in the weak formulation as test functions

(ϕ,ψ) := (−U−,−v−) ∈ �, we obtain

1

2

∫
Ω

φ(∂tU
−)2 +

1

2

∫
Ω

∫
B(x)

∂t(v
−)2 +

∫
Ω

D|∇U−|2 +

∫
Ω

∫
B(x)

D�|∇yv
−|2

=

∫
Ω

φ∂tubU
− +

∫
Ω

D∇ub∇U− −
∫
Ω

∇ · (q(U + ub)) ∇U−

�

∫
Ω

D∇ub∇U− −
∫
Ω

q(∇U + ∇ub)∇U− −
∫
Ω

(U + ub)divq∇U−

= min
Ω
q

∫
Ω

|∇U−|2 +

∫
Ω

U−divq∇U−

−
∫
Ω

U+divq∇U− +

∫
Ω

(D∇ub − ubdivq)∇U−. (5.13)

Note that, excepting the last two terms, the right-hand side of (5.13) has the right sign.

Assuming, additionally, a compatibility relation between the data q, ub, for instance of the

type D∇ub = ubdivq a.e. in Ω × S , makes the last term of the right-hand side of (5.13)

vanish. The key observation in estimating the last by one term is the fact that the sets

{x ∈ Ω : U(x) � 0} and {x ∈ Ω : U(x) � 0} are Lebesque measurable. This allow to

proceed as follows:

∫
Ω

U+divq∇U− =

∫
{x∈Ω:U(x)�0}

U+divq∇U− +

∫
{x∈Ω:U(x)�0}

U+divq∇U− = 0. (5.14)

After applying the inequality between the arithmetic and geometric means applied to the

second term for the right-hand side of (5.13), the conclusion of both (i) and (ii) follows

via the Gronwall’s inequality. �

Proposition 5.4 (Uniqueness) Problem (P) admits at most one weak solution.

Proof Let (ui, vi), with i ∈ {1, 2}, be two distinct arbitrarily chosen weak solutions. Then,

for the pair (ρ, θ) := (u2 − u1, v2 − v1), we have

∫
Ω

φ∂tρϕ+

∫
Ω

D∇ρ∇ϕ−
∫
Ω

qρ∇ϕ+

∫
Ω

∫
B(x)

∂tθψ +

∫
Ω

∫
B(x)

D�∇yθ∇yψ = 0 (5.15)

for all (ϕ,ψ) ∈ �.
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Choosing now as test functions (ϕ,ψ) := (ρ, θ) ∈ �, we re-formulate the latter identity

as ∫
Ω

φ

2
(∂tρ)

2 +

∫
Ω

∫
B(x)

1

2
(∂tθ)

2 +

∫
Ω

D|∇ρ|2 +

∫
Ω

∫
B(x)

D�|∇yθ|2 =

∫
Ω

qρ∇ρ. (5.16)

Noticing that for any ε > 0, we can find a constant cε ∈]0,∞[ such that∫
Ω

qρ∇ρ � ε

∫
Ω

|∇ρ|2 + cε||q||2∞
∫
Ω

|ρ|2,

then (5.16) yields

1

2

d

dt

∫
Ω

φ|ρ|2 +
1

2

d

dt

∫
Ω

∫
B(x)

|θ|2 +

∫
Ω

(D − ε)|∇ρ|2

+

∫
Ω

∫
B(x)

D�|∇yθ|2 � cε||q||2∞
∫
Ω

|ρ|2. (5.17)

Choose

ε ∈
]
0, min
Ω×B(x)

D

]
. (5.18)

Since for all x ∈ Ω and y ∈ B(x), we have θ(x, y, 0) = ρ(x, 0) = 0, (5.17) together with

(5.18) allow for the direct application of Gronwall’s inequality. Consequently, the solutions

(ui, vi) with i ∈ {1, 2} must coincide a.e. in space and for all t ∈ S . �

Remark 5.5 At the technical level, the merit of the basic estimates enumerated in this

section is that they are derived in the x-dependent framework and not in a fixed-domain

formulation. Note also that the proof of uniqueness does not rely on the use of L∞- and

positivity estimates on concentrations.

5.3 Existence of weak solutions

In this section, we prove existence of weak solutions of problem (P ). We will do this using

the Schauder fixed-point argument. The operator, for which we seek a fixed point, maps

the space L2(S;L2(Ω)) into itself and consists of a composition of three other operators.

In order to define these operators, we need the following functional framework:

X1 := L2(S;L2(Ω)), (5.19)

X2 := L2(S;H1
0 (Ω)) ∩H1(S;L2(Ω)), (5.20)

X3 := L2(S;V2) ∩H1(S;L2(Ω;L2(B(x)))). (5.21)

The first operator T1 maps a f ∈ X1 to the solution w ∈ X2 of∫
Ω

θ∂t(U + ub)φdx+

∫
Ω

(D∇x(U + ub) − q(U + ub)) · ∇xφ dx = −
∫
Ω

fφ dx, (5.22)

for all φ ∈ H1
0 (Ω).
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The second operator T2 maps a w ∈ X2 to a solution v ∈ X3 of∫
Ω

∫
B(x)

∂t(V + w)ψ dydx+

∫
Ω

∫
B(x)

Dl∇y(V + w) · ∇yψ dydx

=

∫
Ω

∫
∂B(x)

νy · (Dl∇y(V + w))ψ dσdx, (5.23)

for all ψ ∈ V2 and t ∈ S .

The third operator T3 maps a v ∈ X3 to f ∈ X1 by

f =

∫
∂B(x)

νy · ∇yv dσ. (5.24)

The operator T : X1 → X1 of which a fixed point corresponds to a weak solution op

problem (P ) is now given by

T := T3 ◦ T2 ◦ T1. (5.25)

Lemma 5.6 The operator T is well defined and continuous.

Proof Since the auxiliary problem (obtained by fixing f) is well posed (see, e.g. chapter

3 in [17]), we easily see that T1 is well defined. Furthermore, by standard arguments, we

can ensure the stability of the weak solution to the latter problem with respect to initial

and boundary data and especially with respect to the choice of the right-hand side f, that

is T1 maps continuously X1 into X2.

Analogously, same arguments lead to the well definedness of T2 and to its continuity

from X2 to X̂2 ⊂ X3. The fact that the linear PDE (5.23) and its weak solution depend

(continuously) on the fixed parameter x ∈ Ω is not ‘disturbing’ at this point4.

Since for any v ∈ X3, the gradient ∇yv has a trace on ∂B(x), the well definedness and

continuity of T3 are ensured. �

Furthermore, we need for the fixed-point argument that the operator T is compact. It

is enough that one of the operators T1, T2 and T3 is compact. Here, we will show that T2

maps X2 compactly into X3.

Lemma 5.7 (Compactness) The operator T3 ◦ T2 is compact.

Proof We will first re-formulate (5.23) by mapping the x-dependent domains for the

y-coordinate to the referential domain B(0) so that the transformed solution v̂ is in

L2(S;L2(Ω;L2(B(0)))) ∩H1(S;L2(Ω;L2(B(0)))).

This transformation is a mapping Ψ : Ω × B(0) → Ω × B(x). We call Ψ a regular

C2-motion if Ψ ∈ C2(Ω × B(0)) with the property that for each x ∈ Ω

Ψ (x, ·) : B(0) → B(x) := Ψ (x, B(0)) (5.26)

4 However, note that this x-dependence will play a crucial role in getting (at a later stage) the

compactness of T2.
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is bijective, and if there exist constants c, C > 0 such that

c � det ∇yΨ (x, y) � C, (5.27)

for all (x, y) ∈ Ω × B(0). The existence of such a mapping is ensured by the fact that

S0 ∈ C2(Ω ×U), by Assumption 1.

If Ψ is a regular C2-motion, then the quantities

F := ∇yΨ and J := detF (5.28)

are continuous functions of x and y. Furthermore, we have the following calculation rules:

∇yv = F−T∇ŷ v̂,

∂tv = ∂tv̂,∫
∂B(x)

νy · j dσ =

∫
Γ0

JF−T ν̂ŷ · ĵ dσ.

The transformed version of (5.23) is now written as follows: let w ∈ X2 be given, find

V̂ ∈ L2(S;L2(Ω;H1
0 (B(0)))) ∩H1(S;L2(Ω;L2(B(0)))) ∗ ∗∗

∫
Ω

∫
B(0)

∂t(V̂ + w)ψJ dydx+

∫
Ω

∫
B(0)

JF−1DlF
−T∇y(V̂ + w) · ∇yψ dydx

=

∫
Ω

∫
Γ0

ν̂y · (JF−1DlF
−T∇y(V̂ + w))ψ dσdx, (5.29)

for all ψ ∈ L2(Ω;H1
0 (B(0))) and t ∈ S .

Denote by Γ0 the boundary of B(0).

Claim 5.8 Γ0 is C2.

Proof of claim The conclusion of the Lemma is a straightforward consequence of the

regularity of S0, by Assumption 1. �

Claim 5.9 (Interior and boundary H2-regularity) Assume Assumptions 1 and 2 and take

V̂I ∈ L2(Ω,H1(B(0))). Then,

V̂ ∈ L2(S;L2(Ω;H2
loc(B(0)) ∩H1

0 (B(0)))). (5.30)

Since Γ0 is C2, we have

V̂ ∈ L2(S;L2(Ω;H2(B(0)) ∩H1
0 (B(0)))). (5.31)

Proof of claim The proof idea follows closely the lines of Theorems 1 and 4 (cf. [12],

Section 6.3) �
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Claim 5.10 (Additional two-scale regularity) Assume that the hypotheses of Lemma 5.9 to

be satisfied. Then,

V̂ ∈ L2(S;H1(Ω;H2(B(0)) ∩H1
0 (B(0)))). (5.32)

Proof of claim Let us take ∅ �Ω′ ⊂ Ω arbitrary such that h := dist(Ω′, ∂Ω) > 0. At this

point, we wish to show that

V̂ ∈ L2(S;H1(Ω′;H2(B(0)) ∩H1
0 (B(0)))). (5.33)

The extension to L2(S;H1(Ω;H2(B(0)) ∩ H1
0 (B(0)))) can be done with help of a cutoff

function as in [12] (see, e.g. Theorem 1 in Section 6.3). We omit this step here and refer the

reader to loc. cit. for more details on the way the cutoff enters the estimates. To simplify

the writing of this proof, instead of V̂ (and other functions derived from V̂ ) we write V

(without the hat). Furthermore, since here we focus on the regularity with respect to x of

the involved functions, we omit to indicate the dependence of U on t and V on y and

t. For all t ∈ S , x ∈ Ω′ and Y ∈ Y0, we denote by Ui
h and V i

h the following difference

quotients with respect to the variable x:

Ui
h(x, t) :=

U(x+ hei, t) −U(x, t)

h
,

V i
h(x, y, t) :=

V (x+ hei, y, t) − V (x, y, t)

h
.

We have for all ψ ∈ L2(Ω′, H1
0 (B(0))) the following identities:

∫
Ω′×B(0)

J(x+ hei)∂t(V (x+ hei) +U(x+ hei))ψ +

∫
Ω′×B(0)

S(x+ hei)∇yV (x+ hei)∇yψ

−
∫
Ω′×Γ0

νy · (S(x+ hei)D�∇yV (x+ hei))ψdσ = 0 (5.34)

and

∫
Ω′×B(0)

J(x)∂t(V (x) +U(x))ψ +

∫
Ω′×B(0)

S(x)∇yV (x)∇yψ

−
∫
Ω′×Γ0

νy · (S(x)D�∇yV (x))ψdσ = 0. (5.35)

Subtracting the latter two equations, dividing the result by h > 0 and choosing then as

test function ψ := V i
h yields the expression

A1 + A2 + A3 = 0,
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where

A1 :=

∫
Ω′×B(0)

V i
h [J(x+ hei)∂t(V (x+ hei) +U(x+ hei)) − J(x)∂t(V (x) +U(x))]

1

h

=

∫
Ω′×B(0)

V i
h(∂tV

i
h + ∂tU

i
h)J(x) +

∫
Ω′×B(0)

(∂tV (x+ hei) + ∂tU(x+ hei))J
i
h(x)V

i
h

A2 :=

∫
Ω′×B(0)

1

h

[
S(x+ hei)∇yV (x+ hei) − S(x)∇yV (x)

]
∇yV

i
h

=

∫
Ω′×B(0)

S∇yV
i
h∇yV

i
h +

∫
Ω′×B(0)

Sih∇yV (x+ hei)∇yV
i
h

A3 := −
∫
Ω′×Γ0

1

h
∇y ·

[
S(x+ hei)∇yV (x+ hei) − S(x)∇yV (x)

]
V i
h

= −
∫
Ω′×Γ0

νy · (Sih∇yV (x+ hei) + S∇yV
i
hV

i
h).

Re-arranging conveniently the terms, we obtain the following inequality:

1

2

∫
Ω′×B(0)

(V i
h)

2|J(x)| +
∫
Ω′×B(0)

|S(x)|(∇yV
i
h)

2 �

∫
Ω′×B(0)

|V i
h∂tU

i
hJ(x)|

+

∫
Ω′×B(0)

|(∂tV (x+ hei) + ∂tU(x+ hei))J
i
h(x)V

i
h|

+

∫
Ω′×B(0)

|Sih∇yV (x+ hei)∇yV
i
h|

+

∫
Ω′×Γ0

|νy · (S∇yV
i
h)V

i
h| +

∫
Ω′×Γ0

|νy · (Sih∇yV (x+ hei)V
i
h)|

=

5∑
�=1

I�. (5.36)

To estimate the terms I�, we make use of Cauchy–Schwarz and Young inequalities, the

inequality between the arithmetic and geometric means, and of the trace inequality. We

get

|I1| �
||J||2L∞(Ω′×B(0))

2
||V i

h||L2(Ω′×B(0)) +
1

2
||∂tUi

h||L2(Ω′×B(0)), (5.37)

|I2| �
||J||2L∞(Ω′×B(0))

2
2
(
||∂tV (x+ hei)||L2(Ω′×B(0)) + ||∂tU(x+ hei)||L2(Ω′×B(0))

)
+ ||V i

h||L2(Ω′×B(0)), (5.38)

|I3| � ε||∇yV
i
h||2L2(Ω′×B(0)) + cε||Sih||2L∞(Ω′×B(0))||∇yV (x+ hei)||2L2(Ω′×B(0)), (5.39)

∫
Ω′×Γ0

|νy · (S∇yV
i
h)V

i
h| � ||S ||L∞(Ω′×Γ0)||V i

h||L∞(Ω′×Γ0)

∫
Ω′×Γ0

|νy · ∇yV
i
h|

� |B(0)| 1
2 ||S ||L∞(Ω′×Γ0)||V i

h||L∞(Ω′×Γ0)||V i
h||2L1(Ω′;H2(B(0))),

(5.40)

https://doi.org/10.1017/S0956792511000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000209


514 T. L. van Noorden and A. Muntean

and ∫
Ω′×Γ0

|νy · (S∇yV (x+ hei))V
i
h| � |B(0)| 1

2 ||S ||L∞(Ω′×Γ0)||V i
h||L∞(Ω′×Γ0)||V ||2L1(Ω′;H2(B(0))).

(5.41)

Note that all terms |I�| are bounded from above. To get their boundedness, we essentially

rely on the energy estimates for V , U, Ui
h as well as on the L∞-estimates on V and V i

h

on sets like Ω′ × B(0) and Ω′ × Γ0. The conclusion of this proof follows by applying

Gronwall’s inequality. �

Using the claims above, we are now able to finish the proof of Lemma 5.7, by noting

that T3 ◦ T2 : L2(S;H1(Ω;H2 ∩ H1
0 (B0))) → L2(S;H1(Ω)) is continuous and compact via

applying Lemma 5.2 with B0 = H1(Ω) and B = B1 = L2(Ω). �

Putting now together the above results, we are able to formulate the main result of

section 5, as given below.

Theorem 5.11 Problem (P) admits at least a global-in-time weak solution in the sense of

Definition 5.1.

Remark 5.12 It is worthwhile to note that the methods of proof used in this section can

also deal with volume and surface nonlinear (Lipschitz) reaction rates as well as monotone

transport operators. These extensions of the analysis of the problem give some freedom

to the modelling of the situation. From the perspective of the formal asymptotics, there

are no such limitations in the choice of non-linearities.

6 Conclusions

In this paper, we have derived an effective, two-scale model for transport in heterogeneous

porous media using a formal, locally periodic asymptotic method. In this way, we have

relaxed the strictly periodic setting that is usual in the existing literature. Furthermore, we

have proved existence and uniqueness of weak solutions of the resulting two-scale model,

which is defined on x-dependent Bochner spaces.

The remaining challenge is to make the asymptotic homogenisation step (the passage

ε → 0) rigorous. Due to the x-dependence of the micro-structure, the existing rigorous

ways of passing to the limit seem to fail [6, 16, 23]. As next step, we hope to be able to

marry successfully the philosophy of the corrector estimates analysis by Chechkin and

Piatnitski [9] with the intimate two-scale structure of our model.
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