Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T15:16:17.273Z Has data issue: false hasContentIssue false

Extrapolation of perturbation-theory expansions by self-similar approximants

Published online by Cambridge University Press:  09 June 2014

S. GLUZMAN
Affiliation:
Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia emails: simon.gluzman@gmail.com, yukalov@theor.jinr.ru
V.I. YUKALOV
Affiliation:
Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia emails: simon.gluzman@gmail.com, yukalov@theor.jinr.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problem of extrapolating asymptotic perturbation-theory expansions in powers of a small variable to large values of the variable tending to infinity is investigated. The analysis is based on self-similar approximation theory. Several types of self-similar approximants are considered and their use in different problems of applied mathematics is illustrated. Self-similar approximants are shown to constitute a powerful tool for extrapolating asymptotic expansions of different natures.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

References

[1]Arnold, P. & Moore, G. (2001) BEC transition temperature of a dilute homogeneous imperfect Bose gas. Phys. Rev. Lett. 87, 120401.CrossRefGoogle ScholarPubMed
[2]Arnold, P. & Moore, G. (2001) Monte Carlo simulation of O(2) φ4 field theory in three dimensions. Phys. Rev. E 64, 066113.CrossRefGoogle Scholar
[3]Astrakharchik, G. E., Boronat, J., Casulleras, J. & Giorgini, S. (2004) Equation of state of a Fermi gas in the BEC-BCS crossover: A quantum Monte Carlo study. Phys. Rev. Lett. 93, 200404.CrossRefGoogle ScholarPubMed
[4]Baker, G. A. (1999) Neutron matter model. Phys. Rev. C 60, 054311.CrossRefGoogle Scholar
[5]Baker, G. A. & Graves-Moris, P. (1996) Padé Approximants, Cambridge University, Cambridge, UK.CrossRefGoogle Scholar
[6]Bender, C. M. & Boettcher, S. (1994) Determination of f(∞) from the asymptotic series for $f(x)$ about $x=0$. J. Math. Phys. 35, 19141921.CrossRefGoogle Scholar
[7]Bogolubov, N. N. (1949) Lectures on Quantum Statistics, Ryadyanska Shkola, Kiev, Ukraine.Google Scholar
[8]Bogolubov, N. N. (1963) On the Problem of Hydrodynamics of Superfluid, JINR, Dubna, Russia.Google Scholar
[9]Bogolubov, N. N. (1967) Lectures on Quantum Statistics, Vol. 1, Gordon and Breach, New York, NY.Google Scholar
[10]Bogolubov, N. N. (1970) Lectures on Quantum Statistics, Vol. 2, Gordon and Breach, New York, NY.Google Scholar
[11]Bogolubov, N. N. & Mitropolsky, Y. A. (1961) Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, NY.Google Scholar
[12]Carlson, J., Chang, S. Y., Pandharipande, V. K. & Schmidt, K. E. (2003) Superfluid Fermi gases with large scattering length. Phys. Rev. Lett. 91, 050401.CrossRefGoogle ScholarPubMed
[13]Cole, R. K. (1967) Quantum hard-sphere gas in the limit of high densities with application to solidified light gases. Phys. Rev. 155, 114121.CrossRefGoogle Scholar
[14]Doi, M. & Edwards, S. F. (2001) The Theory of Polymer Dynamics, Oxford University, Oxford, UK.Google Scholar
[15]Edwards, S. F. (1965) The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc. Lond. 85, 613624.CrossRefGoogle Scholar
[16]Erdélyi, A. (1955) Asymptotic Expansions, Dover, New York, NY.CrossRefGoogle Scholar
[17]Giacaglia, G. E. O. (1972) Perturbation Methods in Nonlinear Systems, Springer, New York, NY.CrossRefGoogle Scholar
[18]Gluzman, S. & Yukalov, V. I. (1998) Unified approach to crossover phenomena. Phys. Rev. E 58, 41974209.CrossRefGoogle Scholar
[19]Gluzman, S. & Yukalov, V. I. (2006) Self-similar power transforms in extrapolation problems. J. Math. Chem. 39, 4756.CrossRefGoogle Scholar
[20]Gluzman, S. & Yukalov, V. I. (2010) Self-similar extrapolation from weak to strong coupling. J. Math. Chem. 48, 883913.CrossRefGoogle Scholar
[21]Gluzman, S., Yukalov, V. I. & Sornette, D. (2003) Self-similar factor approximants. Phys. Rev. E 67, 026109.CrossRefGoogle ScholarPubMed
[22]Gompper, G. & Kroll, D. M. (1989) Steric interactions in multimembrane systems: A Monte Carlo study. Eur. Phys. Lett. 9, 5964.CrossRefGoogle Scholar
[23]Hardy, G. H. (1949) Divergent Series, Oxford University Press, Oxford, UK.Google Scholar
[24]Hioe, F. T., McMillen, D. & Montroll, E. W. (1978) Quantum theory of unharmonic oscillators: Energy levels of a single and a pair of coupled oscillators with quartic coupling. Phys. Rep. 43, 305335.CrossRefGoogle Scholar
[25]Horn, D. & Weinstein, M. (1984) The $t$-expansion: A nonperturbative analytic tool for Hamiltonian systems. Phys. Rev. D 30, 12561270.CrossRefGoogle Scholar
[26]Hulthen, L. (1938) Über das austauschproblem eines kristalls. Ark. Mat. Astron. Fys. A 26, N11.Google Scholar
[27]Janke, W. & Kleinert, H. (1995) Convergent strong-coupling expansions from divergent weak-coupling perturbation theory. Phys. Rev. Lett. 75, 27872791.CrossRefGoogle ScholarPubMed
[28]Kalos, M. H., Levesque, D. & Verlet, L. (1974) Helium at zero temperature with hard spheres and other forces. Phys. Rev. A 9, 21782195.CrossRefGoogle Scholar
[29]Kartashov, Y. V., Malomed, B. A. & Torner, L. (2011) Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247305.CrossRefGoogle Scholar
[30]Kashurnikov, V. A., Prokofiev, N. & Svistunov, B. (2001) Critical temperature shift in weakly interacting Bose gas. Phys. Rev. Lett. 87, 120402.CrossRefGoogle ScholarPubMed
[31]Kastening, B. (2002) Fluctuation pressure of a membrane between walls through five loops. Phys. Rev. E 66, 061102.CrossRefGoogle ScholarPubMed
[32]Kastening, B. (2004) Bose–Einstein condensation temperature of a homogenous weakly interacting Bose gas in variational perturbation theory through seven loops. Phys. Rev. A 69, 043613.CrossRefGoogle Scholar
[33]Kastening, B. (2004) Non-universal critical quantities from variational perturbation theory and their application to the Bose–Einstein condensation temperature shift. Phys. Rev. A 70, 043621.CrossRefGoogle Scholar
[34]Kastening, B. (2004) Shift of BEC temperature of homogenous weakly interacting Bose gas. Laser Phys. 14, 586590.Google Scholar
[35]Kastening, B. (2006) Fluctuation pressure of a fluid membrane between walls through six loops. Phys. Rev. E 73, 011101.CrossRefGoogle ScholarPubMed
[36]Kedlaya, K. S. (2001) The algebraic closure of the power series field in positive characteristic. Proc. Amer. Math. Soc. 129, 34613470.CrossRefGoogle Scholar
[37]Keller, C., de Liano, M., Ren, S. Z., Solis, M. A. & Baker, G. A. (1996) Quantum hard-sphere system equations of state revisited. Ann. Phys. (NY) 251, 6475.CrossRefGoogle Scholar
[38]Ketterle, W. & Zwierlein, M. W. (2008) Making, probing and understanding ultracold Fermi gases. Riv. Nuovo Cimento 31, 247422.Google Scholar
[39]Kleinert, H. (1993) Systematic corrections to the variational calculation of the effective classical potential. Phys. Lett. A 173, 332342.CrossRefGoogle Scholar
[40]Kleinert, H. (1999) Fluctuation pressure of membrane between walls. Phys. Lett. A 257, 269274.CrossRefGoogle Scholar
[41]Kleinert, H. (2006) Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, World Scientific, Singapore.CrossRefGoogle Scholar
[42]Kleinert, H. & Yukalov, V. I. (2005) Self-similar variational perturbation theory for critical exponents. Phys. Rev. E 71, 026131.CrossRefGoogle ScholarPubMed
[43]Kochetov, E. A., Kuleshov, S. P. & Smondyrev, M. A. (1982) Functional variational approach to polaron models. Phys. Part. Nucl. 13, 264277.Google Scholar
[44]Lam, P. M. (1990) The structure function of branched polymers in a good solvent: A lattice calculation. J. Chem. Phys. 92, 31363143.CrossRefGoogle Scholar
[45]Landau, L. D. & Lifshitz, E. M. (2000) Statistical Physics, Butterworth-Heinemann, Oxford, UK.Google Scholar
[46]Lee, T. D., Huang, K. & Yang, C. N. (1957) Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 11351145.CrossRefGoogle Scholar
[47]Li, B., Madras, N. & Sokal, A. D. (1995) Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks. J. Stat. Phys. 80, 661754.CrossRefGoogle Scholar
[48]Lieb, E. H. & Liniger, W. (1963) Exact analysis of an interacting Bose gas: The general solution and the ground state. Phys. Rev. 130, 16051616.CrossRefGoogle Scholar
[49]MacLane, S. (1939) The universality of formal power series fields. Bull. Amer. Math. Soc. 45, 888890.CrossRefGoogle Scholar
[50]Miller, J. D. (1991) Exact pair correlation function of a randomly branched polymer. Eur. Phys. Lett. 16, 623628.CrossRefGoogle Scholar
[51]Miyake, S. J. (1975) Strong-coupling limit of the polaron ground state. J. Phys. Soc. Japan 38, 181182.CrossRefGoogle Scholar
[52]Miyake, S. J. (1976) The ground state of the optical polaron in the strong-coupling case. J. Phys. Soc. Japan 41, 747752.CrossRefGoogle Scholar
[53]Muthukumar, M. & Nickel, B. G. (1984) Perturbation theory for a polymer chain with excluded volume interaction. J. Chem. Phys. 80, 58395850.CrossRefGoogle Scholar
[54]Muthukumar, M. & Nickel, B. G. (1987) Expansion of a polymer chain with excluded volume interaction. J. Chem. Phys. 86, 460476.CrossRefGoogle Scholar
[55]Nayfeh, A. H. (1973) Perturbation Methods, Wiley, New York, NY.Google Scholar
[56]Nho, K. & Landau, D. P. (2004) Bose–Einstein condensation temperature of a homogeneous weakly interacting Bose gas: Path integral Monte-Carlo study. Phys. Rev. A 70, 053614.CrossRefGoogle Scholar
[57]Pethick, C. J. & Smith, H. (2008) Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[58]Piryatinska, A., Saichev, A. I. & Woyszynski, W. A. (2005) Models of anomalous diffusion: The subdiffusive case. Physica A 349, 375420.CrossRefGoogle Scholar
[59]Prokofiev, N. & Svistunov, B. (2001) Worm algorithms for classical statistical models. Phys. Rev. Lett. 87, 160601.CrossRefGoogle Scholar
[60]Puiseux, V. A. (1850) Recherches sur les fonctions algébriques. J. Math. Pures Appl. 15, 365480.Google Scholar
[61]Saff, E. B. & Varga, R. S. (1976) On the sharpness of theorems concerning zero-free regions for certain sequences of polynomials. Numer. Math. 26, 245354.CrossRefGoogle Scholar
[62]Seifert, U. (1997) Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13137.CrossRefGoogle Scholar
[63]Selyugin, O. V. & Smondyrev, M. A. (1989) Phase transition and Padé approximants for Fröhlich polarons. Phys. Stat. Sol. B 155, 155167.CrossRefGoogle Scholar
[64]Simon, B. (1991) Fifty years of eigenvalue perturbation theory. Bull. Am. Math. Soc. 24, 303319.CrossRefGoogle Scholar
[65]Solis, M. A., de Liano, M. & Guardiola, R. (1994) London equation of state for a quantum hard-sphere system. Phys. Rev. B 49, 1320113203.CrossRefGoogle ScholarPubMed
[66]Yukalov, V. I. (1976) Theory of perturbations with a strong interaction. Moscow Univ. Phys. Bull. 51, 1015.Google Scholar
[67]Yukalov, V. I. (1976) Model of a hybrid crystal. Theor. Math. Phys. 28, 652660.CrossRefGoogle Scholar
[68]Yukalov, V. I. (1990) Statistical mechanics of strongly non-ideal systems. Phys. Rev. A 42, 33243334.CrossRefGoogle Scholar
[69]Yukalov, V. I. (1990) Self-similar approximations for strongly interacting systems. Physica A 167, 833860.CrossRefGoogle Scholar
[70]Yukalov, V. I. (1991) Method of self-similar approximations. J. Math. Phys. 32, 12351239.CrossRefGoogle Scholar
[71]Yukalov, V. I. (1992) Stability conditions for method of self-similar approximations. J. Math. Phys. 33, 39944001.CrossRefGoogle Scholar
[72]Yukalov, V. I. (2009) Cold bosons in optical lattices. Laser Phys. 19, 1110.CrossRefGoogle Scholar
[73]Yukalov, V. I. (2011) Basics of Bose–Einstein condensation. Phys. Part. Nucl. 42, 460513.CrossRefGoogle Scholar
[74]Yukalov, V. I. & Gluzman, S. (1998) Self-similar exponential approximants. Phys. Rev. E 58, 13591382.CrossRefGoogle Scholar
[75]Yukalov, V. I. & Gluzman, S. (2004) Extrapolation of power series by self-similar factor and root approximants. Int. J. Mod. Phys. B 18, 30273046.CrossRefGoogle Scholar
[76]Yukalov, V. I. & Gluzman, S. (2009) Optimisation of self-similar factor approximants. Mol. Phys. 107, 22372244.CrossRefGoogle Scholar
[77]Yukalov, V. I., Gluzman, S. & Sornette, D. (2003) Summation of power series by self-similar factor approximants. Physica A 328, 409438.CrossRefGoogle Scholar
[78]Yukalov, V. I. & Yukalova, E. P. (1993) Self-similar approximations for thermodynamic potentials. Physica A 198, 573592.CrossRefGoogle Scholar
[79]Yukalov, V. I. & Yukalova, E. P. (1994) Higher orders of self-similar approximations for thermodynamic potentials. Physica A 206, 553580.CrossRefGoogle Scholar
[80]Yukalov, V. I. & Yukalova, E. P. (1996) Temporal dynamics in perturbation theory. Physica A 225, 336362.CrossRefGoogle Scholar
[81]Yukalov, V. I. & Yukalova, E. P. (1999) Self-similar perturbation theory. Ann. Phys. (NY) 277, 219254.CrossRefGoogle Scholar
[82]Yukalov, V. I. & Yukalova, E. P. (2002) Self-similar structures and fractal transforms in approximation theory. Chaos Solit. Fract. 14, 839861.CrossRefGoogle Scholar
[83]Yukalov, V. I. & Yukalova, E. P. (2007) Method of self-similar factor approximants. Phys. Lett. A 368, 341347.CrossRefGoogle Scholar
[84]Yukalov, V. I., Yukalova, E. P. & Gluzman, S. (1998) Self-similar interpolation in quantum mechanics. Phys. Rev. A 58, 96115.CrossRefGoogle Scholar
[85]Zakharov, V. E. (1968) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.CrossRefGoogle Scholar