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The problem of extrapolating asymptotic perturbation-theory expansions in powers of a

small variable to large values of the variable tending to infinity is investigated. The analysis

is based on self-similar approximation theory. Several types of self-similar approximants are

considered and their use in different problems of applied mathematics is illustrated. Self-

similar approximants are shown to constitute a powerful tool for extrapolating asymptotic

expansions of different natures.
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1 Introduction

There exists a very old problem constantly met in various aspects of applied mathematics,

which can be formulated as follows. Very often realistic problems are so complicated that

they do not allow for exact solutions. It is standard for such problems to use some kind of

perturbation theory [11, 17, 55]. Then one gets answers in terms of expansions in powers

of a small parameter, or a small variable, say for x → 0. However, often the problem of

interest corresponds not to a small variable, but, rather the opposite, to large values of

this variable; very often it is the infinite limit x → ∞ that is of maximum interest [41].

One could find this limit, provided the general formula of expansion terms would be given

and the derived expansion would produce convergent series. None of these conditions

is usually valid. As a rule, only a few expansion terms can be derived. In addition, the

resulting series are divergent, being only asymptotic [16, 23]. Then the following question

arises: How from the knowledge of several terms of an asymptotic expansion at a variable

x → 0 could one find the limit corresponding to x → ∞?

One often extrapolates small-variable expansions by means of Padé approximants [5].

However, the straightforward use of these approximants yields

PM/N(x) ∼ xM−N (x → ∞),

which, depending on the relation between M and N, can tend to:

• infinity (when M > N),
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• zero (when M < N),

• a constant (if M = N).

In that sense, the limit x → ∞ is not defined.

When the character of a large-variable limit is known, one can invoke the two-point

Padé approximants [5]. However, the accuracy of the latter is not high and one confronts

several difficulties:

(1) Firstly of all, when constructing these approximants, one often obtains spurious poles

yielding unphysical singularities [5], sometimes a large number of poles [61].

(2) Secondly, there are the cases when Padé approximants are not able to sum perturbation

series even for small values of an expansion parameter [64].

(3) Thirdly, in the majority of cases, to reach a reasonable accuracy, one needs to have

tens of terms in perturbative expansions [5], while often interesting problems provide

only a few terms.

(4) Fourthly, defining the two-point Padé approximants, one always meets an ambiguity

in distributing the coefficients for deciding which of these must reproduce the left-side

expansion and which the right-side series. This ambiguity worsens with the increase

of approximants’ orders, making it difficult to compose the two-point Padé tables.

For the case of a few terms, this ambiguity makes the two-point Padé approximants

practically inapplicable. For example, it has been shown [63] that, for the same

problem, one may construct different two-point Padé approximants, all having correct

left- and right-side limits, but differing from each other in the intermediate region by

a factor of 40, which gives 1,000% uncertainty. This demonstrates that in the case

of short series, the two-point Padé approximants do not allow one to get a reliable

description.

(5) Fifthly, the two-point Padé approximants cannot always be used for interpolating

between two different expansions, but only when these two expansions have compatible

variables [5]. When these expansions have incompatible variables, the two-point Padé

approximants cannot be defined in principle.

(6) Finally, interpolating between two points, one of which is finite and another is at

infinity, one is able to characterize the large-variable limit of only rational powers [5].

Another method that allows for the extrapolation of divergent series is the optim-

ized perturbation theory based on the introduction of control functions defined by an

optimization condition and guaranteeing the transformation of divergent series into con-

vergent series [66, 67, 82]. Since 1976, when the optimized perturbation theory was intro-

duced [66,67], a number of variants of different control functions (see discussion in [81,82])

have been put forward. The Kleinert [39,41] variational perturbation theory, where control

functions are introduced through a variable transformation and variational optimization

conditions, is particularly worth mentioning. This method provides good accuracy for the

extrapolation of weak-coupling expansions to the strong-coupling limit, especially when

a number of terms in the weak-coupling perturbation theory are available [27].

In the present paper, we address the problem of extrapolating small-variable asymp-

totic expansions to their effective strong-coupling limits by employing another approach,
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based on the self-similar approximation theory [68–71,78–80]. The main difference of this

approach from the optimized perturbation theory is that we possess the approximation

methods without introducing control functions, which makes calculations essentially sim-

pler. The self-similar approximation theory can be combined with the Kleinert variational

perturbation theory [42]. This, however, also requires the introduction of variational con-

trol functions. In the present paper, however, we pay maximum attention to considering

simpler ways not involving control functions.

There exists a principal problem, when one accomplishes an extrapolation in the

case for which the exact solution is not known and only a few terms of the weak-

coupling perturbation theory are available. This is the problem of reliability of obtained

extrapolation. In such a case, it is important to be able to do extrapolation by several

methods, and comparing their results. If these results yield close values, this suggests that

the extrapolation is reliable.

In line with this idea, we aim at employing different variants of self-similar approxima-

tions, applying them to the same problems and comparing the results. If the approximants

for a problem, obtained by different methods, are close to each other, this would suggest

that the derived values are reliable.

We consider several variants of self-similar approximants for each problem and show

that these are really close to each other, hence these can successfully extrapolate asymptotic

expansions, valid at x → 0, to their effective limits of x → ∞. We especially concentrate

on the strong-coupling limit, where approximate methods usually are the least accurate,

leading to maximal errors. We show that, even in this least favourable situation, with

just a few perturbative terms available, the self-similar extrapolation methods provide

reasonable accuracy. For completeness, we also show that the self-similar methods allow

us to construct approximants displaying good accuracy in the whole region of the studied

variable. For instance, effective equations of state can be derived, these being in good

agreement with experimental data.

Differences between the present paper and our previous papers are as follows:

(i) We study several types of self-similar approximants and compare their accuracy,

which allows us to draw conclusions on the reliability of the method.

(ii) A large set of examples of different natures are analysed, demonstrating the gener-

ality of the method of self-similar approximants and their effectiveness for extrapolating

different functions met in various problems of applied mathematics.

(iii) We consider a new type of approximants resulting from a double self-similar

renormalization and show how these improve the accuracy as compared with exact

results, when these are available.

(iv) We show an effective way for calculating large-variable critical exponents.

(v) The method is shown to provide good accuracy for a whole range of variables.

This is demonstrated by constructing the equation of state that exactly reproduces a

phenomenological equation for quantum hard spheres.

2 Formulation of extrapolation problem

Suppose we are interested in the behaviour of a real function f(x) of a real variable

x ∈ [0,∞). Also, let this function be defined by a complicated problem that does not allow
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for an explicit derivation of the form of f(x). What can only be done is use some kind of

perturbation theory yielding asymptotic expansions representing the function

f(x) � fk(x) (x → 0) (2.1)

at small values of the variable x → 0, with k = 0, 1, . . . being the perturbation order. The

perturbative series of the kth order can be written as an expansion in powers of x as

fk(x) = f0(x)

(
1 +

k∑
n=1

anx
n

)
, (2.2)

where f0(x) is chosen so that the series in the brackets would start with the term one. It

is convenient to define the reduced expression

fk(x) ≡ fk(x)

f0(x)
= 1 +

k∑
n=1

anx
n, (2.3)

which will be subject to self-similar renormalization.

Note that practically any perturbative series can be represented in form (2.2). For

instance, if we have a Laurent-type series

fm+k(x) =

k∑
n=−m

cnx
n,

it can be transformed to (2.2) by rewriting it as

fm+k(x) =
c−m
xm

(
1 +

m+k∑
n=1

anx
n

)
.

Here we consider the series in integer powers, or those that can be reduced to such,

since this is the most frequent type of perturbation-theory expansions. Thus, the Puiseaux

expansion [60] of the type

fk(t) =

k∑
n=n0

cnt
n/m ,

where n0 is an integer and m is a non-zero natural number, can be reduced to form (1.2)

by the change of the variable t = xm. It is possible to generalize the approach to the series

of the type

fk(x) =

k∑
n

cnx
αn (αn < αn+1),

with arbitrary real powers αn arranged in an ascending order. When αn pertains to an

ordered group, the latter expression corresponds to the Hahn series [36, 49].

As is known, the most difficult region for approximating is that of the large variable,

where approximants are usually the least accurate. That is why our main interest here
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will be the large-variable behaviour of the function, where its asymptotic form is

f(x) � Bxβ (x → ∞). (2.4)

The constant B is called the critical amplitude and the power β is the critical exponent.

After employing the self-similar renormalization for the reduced function (2.3), we get

a self-similar approximant f
∗
k(x), which gives a self-similar approximant

f∗
k (x) = f0(x)f

∗
k(x) (2.5)

for the sought function f(x). Considering for the latter the limit x → ∞, we find the

related approximation for the critical amplitude and critical exponent. In many cases

the exponent is known from other arguments. Then we need to find only the critical

amplitude.

3 Variants of self-similar approximants

In the cases when one can compare the derived approximants with known expressions,

one can easily evaluate the accuracy of the approximants. But how could we trust the

approximants when no exact expression for the sought function is available? In that case,

it would be desirable to have several variants of approximants in order to compare them

with each other. If all of these give close results, this would suggest that the method is

reliable.

Several types of approximants, based on the self-similar approximation theory, have

been derived. We shall not repeat their derivation here. This can be found, along with

all the details, in our previous publications. We shall just present the corresponding

expressions and explain how these will be used for the problem of extrapolation to

infinity.

3.1 Self-similar factor approximants

Self-similar factor approximants have been introduced in [21,77]. For the reduced expan-

sion (2.3), the kth-order self-similar factor approximant reads as

f
∗
k(x) =

Nk∏
i=1

(1 + Aix)
ni , (3.1)

where

Nk =

{
k/2, k = 2, 4, . . .

(k + 1)/2, k = 3, 5, . . .
, (3.2)

and the parameters Ai and ni are defined from the accuracy-through-order procedure

by expanding expression (3.1) in powers of x, comparing the latter expansion with the

given sum (2.3) and equating the like terms in these expansions. When the approximation

order k = 2p is even, the above procedure uniquely defines all 2p parameters. When
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the approximation order k = 2p + 1 is odd, the number of equations in the accuracy-

through-order procedure is 2p, which is by one smaller than the number of parameters.

Then using the scale invariance arguments [83], one sets A1 = 1, thus uniquely defining

all parameters. Another way is to find one of the coefficients Ai from the variational

optimization of the approximant [76]. Both these approaches give close results, although

the scaling procedure of setting A1 to one is simpler.

With approximant (3.1), the self-similar approximant for the sought function (2.5)

becomes

f∗
k (x) = f0(x)

Nk∏
i=1

(1 + Aix)
ni . (3.3)

If the zero-order factor has the large-variable form

f0(x) � Axα (x → ∞), (3.4)

then approximant (3.3) behaves as

f∗
k (x) � Bkx

β (x → ∞). (3.5)

Under a given exponent β, the powers ni must satisfy the equality

β = α+

Nk∑
i=1

ni, (3.6)

while the critical amplitude B is approximated by

Bk = A

Nk∏
i=1

Anii . (3.7)

It is worth stressing that the factor f0(x) in equation (3.3) is explicitly defined by the

perturbative expansion (2.2), so it is known. The factor approximants (3.3) may have

singularities when some Ai and ni are negative. This makes it possible to associate such

singularities with critical points and phase transitions. Investigation of the critical points

and the related critical exponents, by means of the factor approximants, has been done

in our previous papers [21, 75–77, 83].

3.2 Self-similar root approximants

The derivation of the self-similar root approximants can be found in [18, 82, 84]. The

self-similar renormalization of the reduced expansion (2.3) yields

Rk(x) = (((. . . (1 + A1x)
n1 + A2x

2)n2 + A3x
3)n3 + . . .+ Akx

k)nk . (3.8)

The kth-order approximant for the sought function then becomes

f∗
k (x) = f0(x)Rk(x). (3.9)
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In Yukalov and Yukalova [82], it has been rigorously proved that the parameters Ai and

ni are uniquely defined, provided that k terms of the large-variable expansion at x → ∞
are known, and the condition pnp − p + 1 = const holds for p = 1, 2, . . . , k − 1. Then

expression (3.8) leads to

Rk(x) � Ankk x
knk (x → ∞). (3.10)

With the given exponent β, the power nk satisfies the relation

β = α+ knk (3.11)

and the kth-order approximation for the critical amplitude is

Bk = AAnkk . (3.12)

3.3 Iterated root approximants

Self-similar root approximants are uniquely defined when their parameters are prescribed

by the large-variable behaviour of the sought function. However, if we try to find these

parameters from the small-variable expansion (2.2), then we meet the problem of multiple

solutions [75]. To avoid this problem, one has to impose additional conditions on the

parameters. Such a straightforward condition would be the requirement that all k terms

in root (3.8) would contribute to the large-variable amplitude [20]. For this, it is necessary

and sufficient that the internal powers nj be defined as

nj =
j + 1

j
(1 � j � k − 1), (3.13)

with the external power related to the exponent β as

nk =
γ

k
(γ = β − α). (3.14)

Then expression (3.8) becomes the iterated root approximant

Rk(x) = (((. . . (1 + A1x)
2 + A2x

2)3/2 + A3x
3)4/3 + . . .+ Akx

k)γ/k, (3.15)

where all parameters Aj are uniquely defined by the accuracy-through-order procedure.

In the large-variable limit, equation (3.15) yields

Rk � Bk

A
xγ (x → ∞), (3.16)

with the critical amplitude

Bk = A((. . . (A2
1 + A2)

3/2 + A3)
4/3 + . . .+ Ak)

γ/k. (3.17)

It may happen that the iterated root approximants are well defined up to an order k,

after which they do not exist because some of the parameters Ap are negative. At the
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same time, the higher-order terms of the perturbation-theory expansion can be available

up to an order k + p. How then could we use these additional terms for constructing the

higher-order approximants?

3.4 Corrected root approximants

Corrections to the iterated root approximants (3.15), employing the higher-order terms,

can be constructed [20] by defining the corrected root approximants,

R̃k/p(x) = Rk(x)Ck/p(x), (3.18)

with the correction function

Ck/p(x) = 1 + dk+1x
k+1(((. . . (1 + b1x)

2 + b2x
2)3/2 + b3x

3)4/3 + . . .+ bp−1x
p−1)−(k+1)/(p−1),

(3.19)

where p > 2 and all parameters are defined from the accuracy-through-order procedure,

when the terms of the expansion of form (3.18) are equated with the corresponding terms

of the perturbation-theory expansion. Here, the critical exponent is defined by the iterated

root approximant (3.16) so that the limit x → ∞ of the correction function is finite:

Ck/p(∞) = 1 + dk+1((. . . (b
2
1 + b2)

3/2 + b3)
4/3 + . . .+ bp−1)

−(k+1)/(p−1). (3.20)

The corresponding approximation for the sought function takes the form

f∗
k/p(x) = f0(x)R̃k/p(x). (3.21)

Its large-variable behaviour is

f∗
k/p(x) � Bk/px

β (x → ∞), (3.22)

with the corrected critical amplitude

Bk/p = ABkCk/p(∞) . (3.23)

3.5 Self-similar power transforms

It is possible to get improvement of approximants by employing power transforms [19].

For this purpose, we define the power transform of the reduced expansion (2.3) as

Pk(x, m) ≡ f
m

k (x) , (3.24)

which is expanded in powers of x giving

Pk(x, m) ∼=
k∑
n=0

bn(m)xn. (3.25)
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After the self-similar renormalization of expansion (3.25), we get a self-similar approximant

P ∗
k (x, m). We then accomplish the inverse transformation

Fk(x, m) =
[
P ∗
k (x, m)

]1/m
. (3.26)

The powers mk = mk(x) are defined by the variational condition

∂Fk(x, m)

∂m
= 0. (3.27)

Finally, the corresponding approximation for the sought function is given by

f∗
k (x) = f0(x)Fk(x, mk). (3.28)

When we are interested in the large-variable limit, condition (3.27) reduces to the differ-

entiation of only critical amplitude.

3.6 Double self-similar approximants

Another way of improving the accuracy is by employing the procedure of self-similar

renormalization twice. The fact that the accuracy does improve can be illustrated by the

examples for which exact solutions are known.

The double renormalization is accomplished as follows. Firstly, renormalizing the re-

duced expansion (2.3), we construct the self-similar approximants (2.5). The approximants

f
∗
k(x) form the approximation sequence {f∗

k(x)}. Introducing the expansion function x(ϕ)

by the equation

f
∗
1(x) = ϕ, x = x(ϕ), (3.29)

we define

yk(ϕ) = f
∗
k(x(ϕ)). (3.30)

By this definition, the sequence {yk(ϕ)} is bijective to the sequence {f∗
k(x)}. In view of

equation (3.29), we have

y1(ϕ) = ϕ. (3.31)

Consider the sequence {yk(ϕ)} as the trajectory of a dynamical system in discrete time,

that is, of a cascade, with the initial condition (3.31). Embed this approximation cascade

into an approximation flow:

{yk(ϕ) : k ∈ �+} ⊂ {y(t, ϕ) : t ∈ �+}, (3.32)

where

�+ ≡ {0, 1, 2, . . .}, �+ ≡ [0,∞),

so that the flow trajectory passes through all points of the cascade trajectory,

y(t, ϕ) = yk(ϕ) (t = k). (3.33)
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The evolution equation for the flow reads as

∂

∂t
y(t, ϕ) = v(y) , (3.34)

with v(y) being the flow velocity.

Integrating the evolution equation (3.34) gives∫ y∗
k

yk

dy

v(y)
= τk, (3.35)

where yk = yk(ϕ), and τk is the minimal effective time necessary for reaching the approx-

imate fixed point y∗
k (ϕ). The latter, according to definition (3.30), is a twice renormalized

self-similar approximant

y∗
k (ϕ) = f

∗∗
k (x(ϕ)). (3.36)

Keeping in mind definition (3.30) also allows us to rewrite integral (3.35) as∫ f
∗∗
k

f
∗
k

dϕ

vk(ϕ)
= τk, (3.37)

where

f
∗
k = f

∗
k(x), f

∗∗
k = f

∗∗
k (x).

Assuming that we reach the quasi-fixed point in one step, we may set τk = 1.

Employing in the evolution integral (3.37) the Euler discretization for the velocity

vk(ϕ) = yk(ϕ) − ϕ = f
∗
k(x(ϕ)) − f

∗
1(x(ϕ)) (3.38)

and calculating this integral gives the twice renormalized approximant for the sought

function

f
∗∗
k (x) = f0(x)f

∗∗
k (x). (3.39)

The large-variable limit of the latter

f
∗∗
k (x) � B∗

kx
β (x → ∞) (3.40)

defines the approximate expression for the critical amplitude B∗
k . Usually, integral (3.37)

can be calculated only numerically.

In the following sections, the above methods of extrapolation will be illustrated by

a number of examples of different nature, with emphasis on the large-variable limit

x → ∞. Analysing these examples, we shall pay maximum attention to the possibility

of obtaining accurate approximate expressions by taking just a few terms in the small-

variable expansions, bearing in mind that complicated realistic problems usually provide

us with only a small number of terms of perturbation theory.

4 Explicitly defined functions

In order to clearly demonstrate how the method works and to show that it really provides

good accuracy, it is illustrative to start with functions whose explicit form is given.
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This will allow us to easily evaluate the accuracy of approximants. The consideration

of such simpler cases is necessary before considering the complicated problems whose

exact solutions are not known, since only then it is possible to explicitly demonstrate the

efficiency of the method and to evaluate what accuracy of the used approximants should

be expected.

Variable x will be varying in the range [0,∞).

4.1 Function-1

Consider a function

f(x) =
1

2
(
√

4 + x − 1), (4.1)

which is of importance because of giving the golden ratio

1

f(1)
= 1 + f(1) = 1.618034.

In its small-variable expansion

fk(x) =

k∑
n=0

cnx
n, (4.2)

the first five coefficients are

c0 =
1

2
, c1 =

1

8
, c2 = − 1

128
, c3 =

1

1024
, c4 = − 5

32768
.

Here f0 = c0.

Despite its simplicity, this function expansion is not trivial, since the first two coefficients

are positive, after which they start alternating.

The large-variable behaviour

f(x) � Bxβ = 0.5
√
x (4.3)

shows that

B = 0.5, β = 0.5.

Using the approximants described above, we fix exponent β, concentrating on the accuracy

of calculating critical amplitude.

The method of factor approximants of Section 3.1 yields B4 = 0.440. Power transforms

of Section 3.5, with factor approximants, do not provide essential improvement. The

optimization condition (3.27) results in two solutions for m, which yields for the amplitudes

the values 0.416 and 0.455. The iterated root approximants of Section 3.3 give B2 =

0.374, B3 = 0.385, B4 = 0.393. The corrected iterated roots of Section 3.4 give B2/2 = 0.422.

Power transforms, with iterated roots, again yield two solutions for B2, with the values

0.404 and 0.433. All these results are close to the Padé approximant, P2/2 = 0.433. Essential

improvement of accuracy is achieved by double approximants in Section 3.6 on the basis

of the iterated roots, giving B∗
4 = 0.476.
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4.2 Function-2

Let us take a more complicated function

f(x) =
2

π
arccot(−x) exp

(
1 − 1

1 + x

)
. (4.4)

In expansion (4.2), using the value arccot(0) = π/2, we have

c0 = 1, c1 = 1.637, c2 = 0.137, c3 = −0.364, c4 = −0.064 .

Again f0 = c0. Here the first three coefficients are positive, while the next two are negative.

The limit at infinity is

f(∞) = 2e = 5.437, (4.5)

where the equality arccot(−∞) = π is used.

The irregularity in the coefficient signs makes the extrapolation more difficult. The

factor approximants give f∗
4(∞) = 9.049. Power transforms, with the factor approximants,

improve the result yielding the limit 5.192. Iterated roots give R3(∞) = 3.399, R4(∞) =

3.547. Corrected iterated roots are close to the latter values: R2/2(∞) = 3.424. Power

transforms, with iterated roots, give two values: 3.547 and 4.535. As we see, the power-

transformed factor approximants are the most accurate.

4.3 Function-3

Expanding the function

f(x) =
arccot(−x)

1 + e−x , (4.6)

we get the coefficients

c0 =
π

4
, c1 =

1

2

(
1 +

π

4

)
, c2 =

1

4
, c3 = − 1

6

(
1 +

π

16

)
, c4 = − 5

48
.

Here f0 = c0. Again, the first three coefficients are positive, while the next two are negative.

The limit at infinity is

f(∞) = π. (4.7)

As in the previous case, the irregularity in the coefficient signs makes extrapolation

difficult. For instance, Padé approximants fail, the best of them giving 1.414, which is rather

far from limit (4.7). The factor approximants give f∗
4(∞) = 4.759. The power-transformed

factor approximants are more accurate, yielding the limit 3.142. Iterated roots are not

good, with the limit 1.698. The power-transformed iterated roots give two solutions: 3.742

and 2.267. Thus, the power-transformed factor approximant, with the value 3.142, is the

best.
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4.4 Debye–Hükel function

The Debye–Hükel function

D(x) =
2

x
− 2

x2
(1 − e−x) (4.8)

appears in the theory of strong electrolytes [45]. Its expansion gives the sign-alternating

coefficients

c0 = 1, c1 = − 1

3
, c2 =

1

12
c3 = − 1

60
,

c4 =
1

360
, c5 = − 1

2520
c6 =

1

20160
.

Here, f0 = c0.

The large-variable behaviour is

D(x) � 2

x
(x → ∞). (4.9)

Factor approximants give B4 = 1.640. The power-transformed factor approximants

result in B5 = 1.779. Corrected factor approximants yield B2/2 = 1.642. Iterated roots

result in B2 = 2.449, B3 = 2.229, B4 = 2.127. For corrected iterated roots, we have

B1/2 = 1.611, B1/3 = 1.841, B1/4 = 1.934, B2/2 = 1.130, B2/3 = 1.712, B2/4 = 1.811. The

power-transformed iterated roots in the fourth order give two solutions: 1.993 and 2.049.

The best two-point Padé approximant P2/2 gives the critical amplitude 1.333, which is

much worse than the self-similar approximants of the same fourth order.

4.5 Stirling function

The Stirling series expansion for the function

f(x) =
1√
2π

e1/xx1/xΓ

(
1 +

1

x

)
(4.10)

can be written as

fk(x) =
1√
x

(
1 +

k∑
n=1

anx
n

)
, (4.11)

with the coefficients

a1 =
1

12
, a2 =

1

288
, a3 = − 139

51840
,

a4 = − 571

2488320
, a5 =

163879

209018880
, a6 =

5246819

75246796800
,

a7 = − 534703531

902961561600
, a8 = − 4483131259

86684309913600
.

Here, f0 = 1/
√
x.

The limit at infinity is

f(∞) =
1√
2π

= 0.398942. (4.12)
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Factor approximants yield the limit f∗
6(∞) = 0.454. The power-transformed factor

approximants improve the accuracy, giving f∗
5(∞) = 0.406. Iterated roots result in B2 =

0.485, B3 = 0.422, but the fourth-order approximant is complex. Corrected iterated roots

give the limit B2/1 = 0.408, B2/2 = 0.312, B2/3 = 0.405. Padé approximants are essentially

worse.

5 Functions defined through integrals

Many functions are defined by means of integral representations. Expansions of such

functions often result in strongly divergent series. However, self-similar approximants

provide rather accurate extrapolation from the zero variable to its infinite limit.

5.1 Integral-1

Consider the integral

f(x) = (1 + 2x)

∫ ∞

0

e−t

1 + x2t2
dt. (5.1)

Its expansion in powers of x contains the coefficients

c0 = 1, c1 = 2, c2 = −2, c3 = −4, c4 = 24,

c5 = 48, c6 = −720, c7 = −1440, c8 = 40320, c9 = 80640.

The general expressions for the latter are

c2n = (−1)n(2n)!, c2n+1 = (−1)n2(2n)!.

The limit of equation (5.1) at infinity is

f(∞) = π. (5.2)

Factor approximants yield f∗
4(∞) = 1.965, f∗

5(∞) = 2.015, demonstrating good nu-

merical convergence, e.g. giving in the ninth order the limit 3.113. Iterated roots lead

to R2(∞) = 1.754, R3(∞) = 2.071, but the higher-order approximants are complex. The

power-transformed iterated roots in the fourth order give two solutions: 1.971 and 2.071.

Corrected iterated roots in the fourth order give 2.582 and display good numerical con-

vergence in higher orders. Padé approximants of the same order are less accurate, for

instance, P2/2 = 1.875.

5.2 Complimentary error function

The complimentary error function

f(x) = erfc(−x) (5.3)

is expressed through the error function as

erfc(x) ≡ 1 − erf(x),
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the error function being

erf(x) ≡ 2√
π

∫ x

0

e−t2dt.

Hence, function (5.3) is defined by means of the integral

erfc(x) ≡ 2√
π

∫ ∞

x

e−t2dt .

Expanding equation (5.3), we get the coefficients

c0 = 1, c1 = 1.12838, c2 = 0, c3 = −0.37613, c4 = 0.

The limit at infinity is

f(∞) = 2. (5.4)

All self-similar approximants give close results. Thus, factor approximants yield f∗
4(∞) =

3.772. Iterated roots give R3(∞) = 2.382. Power-transformed iterated roots of the fourth

order have two solutions: 2.305 and 3.739. Taking into account more expansion terms

results in better accuracy. Thus, f∗
5(∞) = 2.629.

5.3 Integral-2

The function

f(x) =
erfc(−x)
1 + e−x (5.5)

is defined through the integral representation for the complimentary error function con-

sidered in the previous section. The coefficients of the corresponding expansion are

c0 =
1

2
, c1 = 1, c2 = 1.62838, c3 = −0.41779, c4 = −0.23508.

The limit at infinity is

f(∞) = 2 . (5.6)

Factor approximants overestimate the limit, yielding f∗
3(∞) = 5.052, f∗

5(∞) = 3.286.

Power-transformed factor approximants, on the other hand, underestimate it, giving to

the fourth order 1.392. Iterated root approximants lead to B3 = 1.371, B4 = 1.893. Power-

transformed iterated roots to the fourth order give the limit 1.684. In the same order,

Padé approximants give 1.027. Iterated root approximants here are the most accurate.

The large-variable behaviour of functions (5.3) and (5.5) involves exponentials. There-

fore the accuracy of approximations can be essentially improved by employing exponential

self-similar approximants [74]. However, here we limit ourselves by the analysis of ap-

proximants described in Section 3.

5.4 Mittag–Leffler function

A particular case of the Mittag-Leffler function

E(x) = ex
2

erfc(x), (5.7)
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which is expressed through the complimentary error function, appears in the model of

anomalous diffusion [58]. The small-variable expansion yields the coefficients

c0 = 1, c1 = − 2√
π
, c2 = 1, c3 = − 4

3
√

π
, c4 =

1

2
.

In the large-variable limit, one has

E(x) � B

x
(x → ∞), (5.8)

with the critical amplitude

B =
1√
π

= 0.56419. (5.9)

Factor approximants give in the fourth order B4 = 0.511. The same result holds for the

corrected factor approximants B2/2 = 0.511. Power-transformed factors yield, in the fourth

order, the amplitude 0.541. Iterated roots lead to B1 = 0.886, B2 = 0.741, B3 = 0.680,

B4 = 0.650. Corrected iterated roots give in the fourth order 0.403. Power-transformed

iterated roots yield three solutions, all being close to 0.641. The accuracy improves when

more terms in the expansion are taken into account. For instance, the factor approximants

in the sixth order give B6 = 0.532.

6 Anharmonic and nonlinear models

Divergent series often appear in applying perturbation theory to anharmonic and non-

linear models that are typical for many problems in physics and chemistry. In these

problems, perturbation theory is usually done with respect to a parameter called the

coupling parameter which characterizes the strength of interactions or anharmonicity of

an external field.

6.1 Zero-dimensional anharmonic model

This is one of the simplest models that, at the same time, demonstrates mathematical

features typical of many problems in chemistry and physics. The partition function of this

model reads as

Z(g) =
1√
π

∫ ∞

−∞
exp

(
−x2 − gx4

)
dx, (6.1)

where g ∈ [0,∞) is a dimensionless coupling parameter. The weak-coupling perturbation

theory yields the series

Zk(g) =

k∑
n=0

cng
n, (6.2)

with the coefficients

cn =
(−1)n√

π n!
Γ

(
2n+

1

2

)
.
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Explicitly, the first few coefficients are

c0 = 1, c1 = − 3

4
, c2 =

105

32
,

c3 = − 3465

128
, c4 =

675675

2048
.

In the strong-coupling limit,

Z(g) =� Bg−1/4 (g → ∞), (6.3)

with

B = 1.022765. (6.4)

Fixing the exponent β, we calculate the critical amplitude Bk , comparing it with

the known exact value from equation (6.4). Factor approximants give the fourth order

B4 = 0.838. Corrected factor approximants, to the same order, yield B2/2 = 1.131. Iterated

root approximants give B2 = 0.760, but the higher-order approximants are complex.

Corrected iterated roots result in B2/2 = 0.678. Power-transformed iterated roots of the

fourth order produce two solutions: 0.879 and 0.971. As we see, the best accuracy is

provided by the corrected factor approximants and power-transformed iterated roots.

6.2 One-dimensional anharmonic oscillator

The anharmonic oscillator is described by the Hamiltonian

Ĥ = − 1

2

d2

dx2
+

1

2
x2 + gx4, (6.5)

in which x ∈ (−∞,+∞) and g is a positive anharmonicity parameter. The perturbation

theory for the ground-state energy yields [24] the series

Ek(g) =

k∑
n=0

cng
n, (6.6)

with the coefficients

c0 =
1

2
, c1 =

3

4
, c2 = − 21

8
, c3 =

333

16
, c4 = − 30885

128
.

The strong-coupling limit is

E(g) � 0.667986g1/3 (g → ∞). (6.7)

Factor approximants give B3 = 0.750, B5 = 0.725, B7 = 0.712. Corrected factor ap-

proximants yield B3/4 = 0.728. The power-transformed factor approximant of the fourth

order gives 0.681. Iterated root approximants result in B2 = 0.572, B3 = 0.855, but the

fourth-order approximant is complex. Corrected iterated roots give B4 = 0.587, and power-

transformed iterated roots, 0.665. The latter value is the closest to the exact amplitude in

equation (6.7).
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Comparing these results with those obtained by means of the Kleinert variational

perturbation theory [27], we see that the latter provides better accuracy. However, we

would like to recall that our main aim in the present paper is to test the methods of

the self-similar approximation theory, without involving the introduction of variational or

other control functions, and based on just a few initial terms of the perturbation theory.

Although, in our case, the accuracy is lower than in the Kleinert method, the calculations

are much simpler.

6.3 Scalar field theory

Consider the so-called mφ2 quantum field theory on a d-dimensional cubic lattice with

lattice spacing a. The free energy of the system can be expressed [6] as the integral

f(x) = x exp

{
2

∫ ∞

0

e−t ln
[
e−xtI0(xt)

]
dt

}
, (6.8)

where I0(·) is the modified Bessel function of zero order and x = 1/ma2. Expanding the

integral in powers of the variable x yields the series

fk(x) = x

(
1 +

k∑
n=1

anx
n

)
, (6.9)

with the coefficients

a1 = −2, a2 = 3, a3 = − 10

3
, a4 =

29

12
,

a5 = − 11

10
, a6 =

391

180
, a7 = − 2389

630
.

When passing to continuous space, one takes the limit a → 0, which means that x → ∞.

The sought continuous-space limit is

f(∞) =
eγ

2π
= 0.28347. (6.10)

Factor approximants of the fourth order give the limit 0.322 and power-transformed

factor approximants, 0.333. Iterated root approximants yield f∗
2(∞) = 0.408, f∗

3(∞) = 0.377,

f∗
4(∞) = 0.365. Their accuracy can be improved by taking more terms in expansion (6.9),

e.g. f∗
12(∞) = 0.280. Corrected iterated roots give f∗

2/2(∞) = 0.266, and power-transformed

iterated roots of the fourth order lead to 0.356 and 0.347. The best Padé approximant,

up to the fifth order, gives P2/3 = 0.326. For these low orders, the most accurate is the

corrected root approximant f∗
2/2(∞) = 0.266.

6.4 Nonlinear Schrödinger equation

The nonlinear Schrödinger equation serves as a basic tool for modelling several different

problems, such as those of waves on the surface of a deep fluid [85], electromagnetic

waves in fibre optics [29] and the Bose–Einstein condensates [57,72,73]. For the last case,
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it is often called the Gross–Pitaevskii equation, although Bogolubov was the first to write

down this equation for the Bose systems in his famous Lectures on Quantum Statistics

published in 1949 [7] and wrote on it many times since (see, e.g. [9, 10]). This equation

for non-equilibrium superfluids was also studied in [8]. The one-dimensional stationary

nonlinear Schrödinger equation for Bose condensed atoms in a harmonic trap reads

ĤNLSψ = Eψ, (6.11)

with the nonlinear Hamiltonian

ĤNLS = − 1

2

d2

dx2
+

1

2
x2 + g|ψ|2. (6.12)

Here, g is a dimensionless coupling parameter. The energy levels can be represented in

the form

E(g) =

(
n+

1

2

)
f(g), (6.13)

where n = 0, 1, 2, . . . is a quantum index labelling the eigenvalues. Employing the optimized

perturbation theory for the function f(g), as in [84], gives the expansion

fk(g) = 1 +

k∑
n=1

anz
n (6.14)

in powers of the effective coupling

z ≡ Jn

n+ 1/2
g,

in which

Jn ≡ 1

2nπn!

∫ ∞

−∞
exp(−2x2)H4

n (x) dx,

with Hn(·) being a Hermite polynomial. The coefficients in expansion (6.14) are

a1 = 1, a2 = − 1

8
, a3 =

1

32
, a4 = − 1

128
.

Then for the strong-coupling limit, we have

f(g) � 3

2
z2/3 (z → ∞). (6.15)

Hence, the critical amplitude is B = 3/2.

Factor approximants give B4 = 1.496, which is very close to 1.5. Corrected factor

approximants, to the fourth order, yield 1.451 and power-transformed factor approximants,

1.477. Iterated roots result in B2 = 1.379, B3 = 1.415, B4 = 1.435. Corrected iterated roots

give B2/2 = 1.492 and power-transformed iterated roots, 1.426. For the double self-

similar approximant, based on iterated roots, we get B∗
4 = 1.498. The latter is slightly

better than the value B4 = 1.496, given by the factor approximant, but calculating the

doubly renormalized approximants is essentially more complicated. Of course, calculations,
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employing any of the self-similar approximants, are much less time-consuming than the

direct solution of the nonlinear differential equation (6.11).

7 Problems in many-body theory

Perturbation theory in many-body problems is usually accomplished with respect to

the coupling parameter characterizing the interaction strength. However, this coupling

parameter is often rather large. Moreover, perturbative expansions practically always

yield divergent series for any finite value of the coupling parameter. Another difficulty

is that the many-body problems, as a rule, are so much complicated that they allow

one to calculate only a few low-order terms of perturbation theory. We show here that

self-similar approximants allow for an effective extrapolation of such short series, giving

good accuracy even in the extreme case of infinitely strong coupling.

7.1 Lieb–Liniger Bose gas

Lieb and Liniger [48] have considered a one-dimensional Bose gas with contact interac-

tions. The ground-state energy of the gas can be written as an expansion with respect to

the coupling parameter as

E(g) � g − 4

3π
g3/2 +

1.29

2π2
g2 − 0.017201g5/2. (7.1)

In the strong-coupling limit, we have the Tonks–Girardeau expression

E(∞) =
π2

3
= 3.289868. (7.2)

By the change of the variables

e(x) ≡ E
(
x2

)
, g ≡ x2, (7.3)

expansion (7.1) reduces to the form

e(x) � x2(1 + a1x+ a2x
2 + a3x

3), (7.4)

in which

a1 = − 4

3π
= −0.424413, a2 =

1.29

2π2
= 0.065352, a3 = −0.017201 .

The fourth-order term can be set as having a4 = 0.

Different self-similar approximants yield close results. The most accurate among these

correspond to iterated root approximants displaying fast numerical convergence: E∗
2 (∞) =

8.713, E∗
3 (∞) = 4.765, E∗

4 (∞) = 3.2924. The last expression provides very good accuracy

when compared with the exact value (7.2).
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7.2 Bose–Einstein condensation temperature

The Bose-Einstein condensation temperature of ideal uniform Bose gas in three-

dimensional space is known to be

T0 =
2π�2

mkB

[
ρ

ζ(3/2)

]2/3

, (7.5)

where m is atomic mass and ρ is the gas density. The ideal gas is, however, unstable below

the condensation temperature [73]. Atomic interactions stabilize the system and shift the

transition temperature by the amount

ΔTc ≡ Tc − T0. (7.6)

This shift, at asymptotically small gas parameter

γ ≡ ρ1/3as, (7.7)

in which as is atomic scattering length, behaves as

ΔTc

T0
� c1γ (γ → 0). (7.8)

The Monte Carlo simulations [1, 2, 30, 56, 59] give

c1 = 1.3.± 0.05. (7.9)

At the same time, the coefficient c1 can be defined [32–34] as a strong-coupling limit

c1 = lim
g→∞

c1(g) ≡ B (7.10)

of a function c1(g) that is available only as an expansion in an effective coupling parameter

c1(g) � b1g + b2g
2 + b3g

3 + b4g
4 + b5g

5, (7.11)

where

b1 = 0.223286, b2 = −0.0661032, b3 = 0.026446,

b4 = −0.0129177, b5 = 0.00729073.

Expansion (7.11) can be represented as

c1(g) � b1g
(
1 + a1g + a2g

2 + a3g
3 + a4g

4
)
, (7.12)

with the coefficients

an ≡ bn+1

b1
(n = 1, 2, 3, 4).

Padé approximants do not provide good accuracy, the best of them gives c1(∞) = 0.985.

Factor approximants, to the third order, yield B3 = 1.025. At the fourth order, factor

approximants give B4 = 1.096 if one of the parameters Ai is set to one, and 1.446 if it
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is defined by the variational procedure. On average, the latter values give B4 = 1.271.

Iterated roots result in B2 = 1.383 to the second order and B3 = 0.854 to the third order;

the fourth-order approximant is complex. Corrected iterated roots give B1/2 = 0.924,

B1/3 = 1.289, B2/2 = 1.309. Power-transformed iterated roots give two solutions: 1.227 and

1.388, which on average makes 1.308. The corrected iterated root B2/2 = 1.309 produces

the most accurate result, practically coinciding with that found by the Monte Carlo

simulations [1,2,30,56,59]. Kastening [32–34], using the Kleinert variational perturbation

theory involving seven loops, found the value 1.27 ± 0.11, which is close to our results.

7.3 Unitary Fermi gas

The ground-state energy of a dilute Fermi gas can be obtained by means of perturbation

theory [4, 38] with respect to the effective coupling parameter

g ≡ |kFas| , (7.13)

where kF is the Fermi wave number, and as is the atomic scattering length. This perturb-

ation theory yields the expansion

E(g) � c0 + c1g + c2g
2 + c3g

3 + c4g
4, (7.14)

with the coefficients

c0 =
3

10
, c1 = − 1

3π
, c2 = 0.055661,

c3 = −0.00914, c4 = −0.018604.

The scattering length and, respectively, the effective coupling parameter (7.13) can be

varied by means of the Feshbach resonance techniques in a rather wide range, including

g → ∞. The latter limit corresponds to the system called a unitary Fermi gas. Numerical

calculations [3, 12] yield

E(∞) = 0.132. (7.15)

Expansion (7.14) can be rewritten in the form

E(g) � c0(1 + a1g + a2g
2 + a3g

3 + a4g
4), (7.16)

in which

an ≡ cn

c0
(n = 1, 2, 3, 4) .

Factor approximants give E∗
4 (∞) = 0.174 and corrected factor approximants give 0.143.

Power-transformed factor approximants yield 0.162. Iterated roots give E∗
3 (∞) = 0.169,

E∗
4 (∞) = 0.163. Corrected iterated roots result in E∗

1/2(∞) = 0.103 and power-transformed

iterated roots result in 0.163. Doubly renormalized iterated roots improve the limit to

0.146. Padé approximants are not accurate, the best of them giving P2/2 = 0.170.
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7.4 One-dimensional Heisenberg antiferromagnet

The ground-state energy of an equilibrium one-dimensional Heisenberg antiferromagnet

can be represented [25] as the infinite time limit for the energy E(t) of a non-equilibrium

antiferromagnet. At small time t → 0, one has an expansion

E(g) � − 1

4

(
1 +

4∑
n=1

ant
n

)
, (7.17)

with the coefficients

a1 = 4, a2 = −8, a3 = − 16

3
, a4 = 64.

In the other limit, this ground-state energy was calculated by Hulthen [26] exactly as

E = E(∞) = −0.4431 . (7.18)

We apply the self-similar approximations to extrapolate the small-time expansion (7.17)

to the infinite time limit t → ∞ determining E(∞).

Factor approximants yield E∗
4 (∞) = −0.570, with power-transformed factor approx-

imants resulting in practically the same value. Corrected factor approximants give

E∗
2/2(∞) = −0.211. Corrected iterated roots also underestimate the limit, giving −0.254.

Iterated roots give E∗
3 (∞) = −0.511, E∗

4 (∞) = −0.482. Power-transformed iterated roots

yield −0.475. The best Padé approximant is P2/2 = −0.329. The most accurate here is the

power-transformed iterated root approximant E∗
4 (∞) = −0.475.

7.5 Fröhlich optical polaron

The ground-state energy of the Fröhlich optical polaron in the weak-coupling perturbation

theory [43, 63] reads as

E(g) � −g(1 + a1g + a2g
2), (7.19)

with the coefficients

a1 = 1.591962 × 10−2, a2 = 0.806070 × 10−3.

In the strong-coupling limit, the asymptotic behaviour of the ground-state energy has

been found by Miyake [51, 52] in the form

E(g) � Bg2 (g → ∞), (7.20)

with the amplitude

B = −0.108513. (7.21)

Since just a few terms in the perturbative expansion are available, the Padé approximants

are not applicable at all, yielding unreasonable values for the amplitude by many orders

differing from equation (7.21). Self-similar approximants give more realistic values. Thus,

factor approximants give for the amplitude B the value 0.061 and iterated roots the value
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0.049. The doubly renormalized iterated roots improve the accuracy, giving the value

0.1287 for the amplitude.

8 Characteristics of polymer systems

Polymers are rather complicated molecules and are highly important in many branches

of physics and chemistry. As a rule, their characteristics are calculated by means of per-

turbation theory with respect to a small parameter, although in reality this parameter can

be quite large. Self-similar approximants can successfully extrapolate these characteristics

to arbitrary values of the parameters, including asymptotically large values.

8.1 Randomly branched polymers

Many characteristics of polymers are expressed through their structure factors. The

structure factor of three-dimensional branched polymers is given [44,50] by the confluent

hypergeometric function

S(x) = F1

(
1 ;

3

2
;
3

2
x

)
, (8.1)

in which x is a dimensionless wave-vector modulus. The long-wave expansion

S(x) � c0 + c1x+ c2x
2 + c3x

3 + c4x
4 (8.2)

contains the coefficients

c0 = 1, c1 = −1, c2 = 0.6, c3 = −0.257143, c4 = 0.085714.

In the short-wave limit, one has

S(x) � B

x
(x → ∞), (8.3)

with the amplitude

B =
1

3
. (8.4)

The reconstruction of the short-wave amplitude by Padé approximants leads to senseless

negative values. Factor approximants give B4 = 0.097, and the power-transformed factors

yield two solutions: 0.179 and 0.329. Iterated roots, at low orders, overestimate the

amplitude, giving B2 = 0.745, B3 = 0.642 and B4 = 0.590. The same happens for the

power-transformed roots yielding the values close to 0.6. However, the higher orders of

the iterated roots converge to value (8.4). For instance, the seventh-order iterated root

approximant gives a very good accuracy, with B7 = 0.330.

8.2 Fluctuating fluid string

There exists an important class of systems, called fluid membranes [62], which finds wide

applications in chemistry, biology, medicine and in a variety of technological applications.

Firstly, let us consider a model of a fluid string that is a cartoon of a one-dimensional
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membrane oscillating between two rigid walls [14, 15]. The free energy of the string

coincides with the ground-state energy of a quantum particle in a one-dimensional rigid

potential [31,40]. This energy, as a function of a finite wall stiffness g, can be represented

as

E(g) =
π2

8g2

(
1 +

g2

32
+
g

4

√
1 +

g2

64

)
. (8.5)

The low-stiffness expansion results in

Ek(g) =
π2

8g2

(
1 +

k∑
n=1

ang
n

)
, (8.6)

with the coefficients

a1 =
1

4
, a2 =

1

32
, a3 =

1

512
, a4 = 0,

a5 = − 1

131072
, a6 = 0, a7 =

1

16777216
.

The case of interest corresponds to rigid walls, when the stiffness tends to infinity. For

such rigid walls, the energy is

E(∞) =
π2

128
= 0.077106. (8.7)

Padé approximants are not applicable for this problem, giving negative values of large-

stiffness energy. Factor approximants give positive values, although overestimating the

energy, e.g. E∗
4 (∞) = 0.15. Iterated roots yield E∗

2 (∞) = 0.039, E∗
3 (∞) = 0.051 and E∗

4 (∞) =

0.058. Corrected iterated roots give E∗
2/2(∞) = 0.169 and power-transformed iterated roots,

E∗
4 (∞) = 0.065. Taking more terms in the expansion improves the accuracy. Thus, iterated

roots of higher orders yield E∗
5 (∞) = 0.062, E∗

6 (∞) = 0.065 and E∗
7 (∞) = 0.067. The most

accurate result is obtained by employing the doubly renormalized iterated roots, giving

E∗∗
2 (∞) = 0.07237. The variational perturbation theory to the sixth order gives [35] the

value 0.076991.

8.3 Fluctuating fluid membrane

In the case of a two-dimensional membrane, its pressure can be calculated by perturbation

theory with respect to wall stiffness [35], which yields

pk(g) =
π2

8g2

(
1 +

k∑
n=1

ang
n

)
, (8.8)

with the coefficients

a1 =
1

4
, a2 =

1

32
, a3 = 2.176347 × 10−3,

a4 = 0.552721 × 10−4, a5 = −0.721482 × 10−5, a6 = −1.777848 × 10−6.
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The rigid-wall limit, calculated by means of the Monte Carlo simulations [22], is found

to be

p(∞) = 0.0798 ± 0.0003. (8.9)

Padé approximants are again not applicable, resulting in negative values of pressure.

Factor approximants of low orders overestimate the limit, e.g. the fourth order giving 0.312.

To higher orders, factor approximants become slightly better, but still overestimating the

pressure. Iterated roots of low orders give p∗
2(∞) = 0.039, p∗

3(∞) = 0.053 and p∗
4(∞) = 0.061,

and power-transformed iterated roots in the fourth order give 0.068. Taking into account

all available coefficients improves the results. For instance, in the case of the iterated

roots, we have p∗
5(∞) = 0.067, p∗

6(∞) = 0.071. Doubly renormalized iterated roots give

p∗∗
3 (∞) = 0.0792, which is the most accurate result. This is to be compared with the value

of 0.0821 from the variational perturbation theory [35], which overestimates the Monte

Carlo result (8.9).

8.4 Two-dimensional polymer chain

An important characteristic of polymer chains is their expansion factor, that is, the ratio of

the mean-square end-to-end distance of the chain, with interactions between its segments,

to the value of the mean-square end-to-end distance of the chain, without such interactions.

Two-dimensional polymers are often met in chemistry and biology. For such polymers,

perturbation theory with respect to weak interactions can be developed [53, 54] and, in

a certain limiting case, can be reduced to a series in a single dimensionless interaction

parameter g. For a two-dimensional polymer chain, perturbation theory results [53] in the

expansion factor,

F(g) � 1 +

4∑
n=1

ang
n, (8.10)

with the coefficients

a1 =
1

2
, a2 = −0.12154525, a3 = 0.02663136, a4 = −0.13223603.

In the strong-interaction limit [47], one has

F(g) � Bgβ (g → ∞), (8.11)

with the critical exponent

β = 1. (8.12)

One also considers the critical index

ν ≡ 1

2

(
1 +

β

2

)
, (8.13)

which here is ν = 0.75.

Calculating the critical amplitude, we have the following. Factor approximants are

complex, but the power-transformed factor approximant at the fourth order gives 0.31.

Iterated roots yield B2 = 0.08, with the higher orders being complex. The corrected iterated
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roots yield B2/2 = 0.09. The exact value of the amplitude B is not known, because of

which we cannot evaluate the accuracy of approximants. But, as we see, all approximants

give the values of order 0.1.

8.5 Three-dimensional polymer coil

In the case of a three-dimensional polymer coil, perturbation theory [53] for the expansion

factor leads to series (8.10), however with the coefficients

a1 =
4

3
, a2 = −2.075385396, a3 = 6.296879676,

a4 = −25.05725072, a5 = 116.134785, a6 = −594.71663.

The strong-coupling limit [54] is

F(g) � 1.531g0.3544 (g → ∞), (8.14)

which yields for the critical index (8.13) ν = 0.5866. Numerical fitting [54] for the whole

range of interactions results in the formula

F(g) =
(
1 + 7.524g + 11.06g2

)0.1772
. (8.15)

Employing four terms in a weak-coupling expansion gives for the factor approximants

the amplitude B4 = 1.548, and for power-transformed factor approximants, 1.535. Iterated

roots yield B2 = 1.543, B3 = 1.549, B4 = 1.538. Corrected iterated roots result in B2/2 =

1.544 and power-transformed iterated roots result in B4 = 1.535. Doubly renormalized

iterated roots give 1.530. Higher-order approximants improve the results, but already at

the fourth order all these approximants are close to the numerical value, B = 1.531. The

accuracy of Padé approximants is several orders worse [21].

9 Calculation of critical exponents

In the previous sections, we have concentrated on the calculation of critical amplitudes,

with known critical exponents, by extrapolating the small-variable perturbative expansions

to the large-variable limit, employing the techniques of self-similar approximants. Now

we show how the critical exponents can also be found by using these techniques.

9.1 Scheme of general approach

When a function, for asymptotically large variable, behaves as

f(x) � Bxβ (x → ∞), (9.1)

then the critical exponent can be represented by the limit

β = lim
x→∞

x
d

dx
ln f(x). (9.2)
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Assuming that the small-variable expansion for the function is given by the sum fk(x),

as in equation (2.2), we have the corresponding small-variable expression for the critical

exponent

βk(x) = x
d

dx
ln fk(x), (9.3)

which can be expanded in powers of x, leading to

βk(x) =

k∑
n=0

bnx
n. (9.4)

Applying the method of self-similar approximants to expansion (9.4), as has been done

above, we get a self-similar approximant β∗
k (x) whose limit, being by definition finite,

β∗
k (x) → const (x → ∞),

gives us the sought approximate expression for the critical exponent

β∗
k = lim

x→∞
β∗
k (x). (9.5)

Note that the value of the critical amplitude B does not need to be considered at all.

Below we illustrate this method of calculating critical exponents by concrete examples.

9.2 One-dimensional anharmonic oscillator

Let us consider, as in Section 6.2, the model of a one-dimensional anharmonic oscillator

whose mathematical structure is typical for many applied problems, yielding strongly

divergent perturbation series.

The exact critical exponent, as follows from equation (6.7), is

β =
1

3
.

In addition to the coefficients cn of Section 6.2, we shall analyse the higher-order terms

of sum (6.6), with the coefficients

c5 =
916731

256
, c6 = − 65518401

1024
, c7 =

2723294673

2048
,

c8 = − 1030495099053

32786
, c9 =

54626982511455

65536
, c10 = −24478940702.8.

Employing the scheme of Section 9.1, we find, for the critical exponent, the factor

approximants β∗
4 = 0.241, β∗

7 = 0.303 and β∗
8 = 0.282. Iterated roots result in β∗

2 = 0.397,

β∗
3 = 0.181, but β∗

4 is complex. Corrected iterated roots yield β∗
2/2 = 0.307, β∗

2/3 = 0.328,

β∗
2/4 = 0.310, β∗

2/5 = 0.346 and β∗
2/6 = 0.305. Power-transformed roots give two solutions:

0.156 and 0.238. Doubly renormalized iterated roots of the second order lead to 0.319. As

we see, the self-similar approximants are rather accurate, being close to 0.3.
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9.3 Three-dimensional polymer coil

As another example, we consider the three-dimensional polymer coil of Section 8.5. The

exponent found numerically, according to equation (8.14), is

β = 0.3544.

Following the scheme of Section 9.1, we obtain the self-similar approximants for

critical exponent. Factor approximants yield β∗
3 = 0.343, β∗

4 = 0.346 and β∗
5 = 0.349.

Iterated roots result in β∗
2 = 0.345, β∗

3 = 0.343, β∗
4 = 0.351 and β∗

5 = 0.349. Power-

transformed iterated roots give two solutions: 0.285 and 0.349, and corrected iterated

roots give β∗
1/4 = 0.348, β∗

2/2 = 0.345, β∗
3/2 = 0.349. Doubly renormalized iterated roots

yield β∗∗
4 = 0.353, β∗∗

5 = 0.355. All these approximants are close to the numerical value

β = 0.3544.

10 Equation of state

The problems, considered in the previous sections, were related to the cases when it was

necessary to find the large-variable behaviour of the studied functions. However, generally,

the self-similar approximation theory allows us to derive approximants valid for a whole

range of the variable. To illustrate this, we show below how it is possible to construct an

equation of state, providing a good description in the whole region of densities.

Let us consider a system of quantum hard spheres [37] characterized by the s-wave

scattering length as corresponding to the diameter of a hard sphere. The ground-state

energy, in the limit of low density ρ → 0, is given [46] by the asymptotic expression

E

N
� 2π

ρas

m

(
1 +

128

15
√

π

√
ρa3

s

)
, (10.1)

where m is the sphere mass. The density can increase up to the value ρ0, when the system

of the spheres becomes close packed. For a primitive hexagonal close packing, such as

producing a face-centred cubic arrangement,

ρ0 =

√
2

a3
s

. (10.2)

In the close-packed limit, the energy behaves as

E

N
� B

2m

(
ρ−1/3 − ρ

−1/3
0

)
, (10.3)

with the experimental value

B ≡ 22/3π2 (10.4)

found by Cole [13].

To rewrite the low-density asymptotic expression in a more convenient way, we introduce

the variable x by the relation

ρ

ρ0
=

x6

(1 + x2)3
. (10.5)
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As is seen, x → 0 when ρ → 0 and x → ∞ when ρ → ρ0. With the new variable, expansion

(10.1) for x → 0 takes the form

E

N
� 2π

ρ0as

m
x6

(
1 − 3x2 +

128

15
√

π

√
ρ0a3

s x
3 + 6x4 − 192

5

√
ρ0a3

s x
5

)
, (10.6)

while the close-packed limit reads as

E

N
� π2

ma2
s

x4 (x → ∞). (10.7)

Using the iterated root approximant of the second order for expansion (10.6), we get

E∗
2

N
= 2π

ρ0as

m
x6

(
1 + A2x

2
)−1

, (10.8)

with A2 = 2
√

2/π corresponding to limit (10.7). Inverting the change of the variable (10.5),

we return to the initial variable, that is, to density, obtaining the equation of state

E∗
2

N
= 2π

ρas

m

[
1 −

(
ρ

ρ0

)1/3
]−2 [

1 + b

(
ρ

ρ0

)1/3
]−1

, (10.9)

in which

b =
2
√

2

π
− 1 . (10.10)

This equation exactly coincides with the empirical equation, called the modified London

equation [65], which is in very good agreement with the Green function Monte Carlo

computer simulations for the many-body hard-sphere fluid [28]. Higher orders of the

self-similar iterated root approximants, as we have checked, do not essentially change

the accuracy of the equation of state (10.9) that already gives a perfect agreement with

computer simulations.

11 Conclusions

We have considered the problem of extrapolating perturbation-theory expansions, ob-

tained for asymptotically small variable x → 0, to the large-variable limit x → ∞. For this

purpose, we have applied the theory of self-similar approximations, concentrating on six

different variants, resulting in self-similar factor approximants (Section 3.1), self-similar

root approximants (Section 3.2), iterated root approximants (Section 3.3), corrected root

approximants (Section 3.4), self-similar power-transformed approximants (Section 3.5) and

doubly renormalized self-similar approximants (Section 3.6).

Padé approximants are shown to be much less accurate than the self-similar approxim-

ants, and often not applicable at all. In some cases, more refined techniques, such as the

Kleinert variational perturbation theory, employing control functions introduced through

a variable transformation, can give better accuracy, although they are essentially more

complicated. However, our main aim here has been the analysis of the validity of the

approximants that could provide good accuracy, at the same time being sufficiently simple

for calculations and yielding explicit analytical formulas.
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In order to demonstrate the wide applicability of the self-similar approximants, we

treated a number of examples of rather different nature. In the majority of cases, the

approximants yield close results and provide good accuracy of extrapolation. In general,

their accuracy is essentially higher than that of Padé approximants. In some cases, the latter

are not applicable at all, giving qualitatively wrong results, while self-similar approximants

do work in such cases.

Comparing different variants of the analysed self-similar approximants, we see that

power-transformed approximants often lead to multiple solutions for the sought para-

meters, because of which they are less convenient than other approximants enjoying

unique solutions. The doubly renormalized approximants, although improving the final

results, are cumbersome, allowing only for their complicated numerical calculation. The

self-similar factor approximants and iterated root approximants seem to be the most

convenient approximants for the purpose of the considered extrapolation.

Having to hand several methods of self-similar extrapolation is important because of

the following reason. A problem under consideration can be so complicated that the exact

answer is not known and only a few terms of perturbation theory are available, then it

is rather difficult to judge the accuracy of the approximation used. However, if different

methods give close results, this serves as an argument that the obtained approximations

are reliable.

Finally, we have considered problems whose large-variable behaviour is of power-law

type. We are aware that there exists another class of problems possessing exponential

behaviour and also demonstrating the Stokes phenomenon. For the problems of this class,

it is necessary to use another variant of the self-similar approximation theory, involving

self-similar exponential approximants [74,84]. These, as has been demonstrated in the cited

papers, make it possible to derive accurate approximations for the functions of exponential

behaviour as well as to treat problems accompanied by the Stokes phenomenon. We do

not address such problems here but have been studied in our previous papers [74, 84].
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