Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-06T18:25:38.308Z Has data issue: false hasContentIssue false

A criterion for symmetric tricritical points in condensed ordered phases

Published online by Cambridge University Press:  05 January 2011

F. BISI
Affiliation:
Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy email: eg.virga@unipv.it Laboratory of Applied Mathematics, Fondazione Università di Mantova, Via Scarsellini 2, 46100 Mantova, Italy email: fulvio.bisi@unipv.it
E. C. GARTLAND JR.
Affiliation:
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA email: gartland@math.kent.edu
E. G. VIRGA
Affiliation:
Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy email: eg.virga@unipv.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Basic methods from bifurcation theory are applied to derive a criterion that predicts when a symmetric tricritical point may occur in a transition between condensed ordered phases described by any finite number of scalar order parameters. At such a point, a change of order takes place in the phase transition, which passes from first to second order, or vice versa.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

References

[1]Bisi, F., Virga, E. G., Gartland, E. C. Jr., De Matteis, G., Sonnet, A. M. & Durand, G. E. (2006) Universal mean-field phase diagram for biaxial nematics obtained from a minimax principle. Phys. Rev. E 73, 051709.CrossRefGoogle ScholarPubMed
[2]Chow, S.-N. & Hale, J. K. (1982) Methods of Bifurcation Theory, Springer-Verlag, New York.CrossRefGoogle Scholar
[3]De Matteis, G., Bisi, F. & Virga, E. G. (2007) Constrained stability for biaxial nematic phases. Contin. Mech. Thermodyn. 19, 123.CrossRefGoogle Scholar
[4]De Matteis, G. & Virga, E. G. (2005) Tricritical points in biaxial liquid crystal phases. Phys. Rev. E 71, 061703.CrossRefGoogle ScholarPubMed
[5]Gartland, E. C. Jr., & Virga, E. G. (2010) Minimum principle for indefinite mean-field free energies. Arch. Ration. Mech. Anal. 196, 143189.CrossRefGoogle Scholar
[6]Gibelli, L. & Turzi, S. (2009) A catastrophe-theoretic approach to tricritical points with applications to liquid crystals. SIAM J. Appl. Math. 70, 6376.CrossRefGoogle Scholar
[7]Golubitsky, M. & Schaeffer, D. G. (1985) Singularities and Groups in Bifurcation Theory, Vol. I, Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
[8]Golubitsky, M., Stewart, I. & Schaeffer, D. G. (1988) Singularities and Groups in Bifurcation Theory, Vol. II, Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
[9]Govaerts, W. J. F. (2000) Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia, PA.CrossRefGoogle Scholar
[10]Griffiths, R. B. (1973) Proposal for notation at tricritical points. Phys. Rev. B 7, 545551.CrossRefGoogle Scholar
[11]Griffiths, R. B. (1974) Thermodynamic model for tricritical points in ternary and quaternary fluid mixtures. J. Chem. Phys. 60, 195206.CrossRefGoogle Scholar
[12]Griffiths, R. B. & Widom, B. (1973) Multicomponent-fluid tricritical points. Phys. Rev. A 8, 21732175.CrossRefGoogle Scholar
[13]Healey, T. J. (1988) A group-theoretic approach to computational bifurcation problems with symmetry. Comput. Methods Appl. Mech. Eng. 67, 257295.CrossRefGoogle Scholar
[14]Keller, H. B. & Langford, W. F. (1972) Iterations, perturbations and multiplicities for nonlinear bifurcation problems. Arch. Ration. Mech. Anal. 48, 83108.CrossRefGoogle Scholar
[15]Kuznetsov, Y. A. (2004) Elements of Applied Bifurcation Theory, 3rd ed., Springer, New York.CrossRefGoogle Scholar
[16]Laurie, I. D. & Sarbach, S. (1984) Theory of tricritical points. In: Domb, C. & Lebowitz, J. L. (editors), Phase Transitions and Critical Phenomena, Vol. 9, Academic Press, New York.Google Scholar
[17]Longa, L. (1986) On the tricritical point of the nematic-smectic A phase transition in liquid crystals. J. Chem. Phys. 85, 29742985.CrossRefGoogle Scholar
[18]Longa, L. (1989) Order-parameter theories of phase diagrams for antiferroelectric smectic-A phases: Role of orientational degrees of freedom. Liq. Cryst. 5, 443461.CrossRefGoogle Scholar
[19]Longa, L., Grzybowski, P., Romano, S. & Virga, E. G. (2005) Minimal coupling model of the biaxial nematic phase. Phys. Rev. E 71, 051714.CrossRefGoogle ScholarPubMed
[20]Luckhurst, G. R. (2004) Liquid crystals – a missing phase found at last? Nature (London) 430, 413414.CrossRefGoogle Scholar
[21]Maier, W. & Saupe, A. (2004) A simple molecular theory of the nematic liquid-crystalline state. In: Sluckin, T. J., Dunmur, D. A. & Stegemeyer, H. (editors), Crystals That Flow: Classic Papers from the History of Liquid Crystals, Taylor & Francis, London, pp. 380387 (1958 trans.).CrossRefGoogle Scholar
[22]Maier, W. & Saupe, A. (1958) Eine einfache molekulare. Theorie des nematischen kristallinflüssigen Zustandes. Z. Nat. Forsch. 13a, 564566.Google Scholar
[23]Merkel, K., Kocot, A., Vij, J. K., Korlacki, R., Mehl, G. H. & Meyer, T. (2004) Thermotropic biaxial nematic phase in liquid crystalline organo-siloxane tetrapodes. Phys. Rev. Lett. 93, 237801.CrossRefGoogle ScholarPubMed
[24]McMillan, W. L. (1971) Simple molecular model for the smectic A phase of liquid crystals. Phys. Rev. A 4, 12381246.CrossRefGoogle Scholar
[25]Sonnet, A. M., Virga, E. G. & Durand, G. E. (2003) Dielectric shape dispersion and biaxial transitions in nematic liquid crystals. Phys. Rev. E 67, 061701.CrossRefGoogle ScholarPubMed
[26]Straley, J. P. (1974) Ordered phases of a liquid of biaxial particles. Phys. Rev. A 10, 18811887.CrossRefGoogle Scholar
[27]Triantafyllidis, N. & Peek, R. (1992) On stability and the worst imperfection shape in solids with nearly simultaneous eigenmodes. Int. J. Solids Struct. 29, 22812299.CrossRefGoogle Scholar
[28]Vainberg, M. M. & Trenogin, V. A. (1962) The methods of Lyapunov and Schmidt in the theory of non-linear equations and their further development. Russ. Math. Survs. 17, 160.CrossRefGoogle Scholar
[29]Vainberg, M. M. & Trenogin, V. A. (1974) Theory of Branching of Solutions of Non-Linear Equations, Noordhoff, Leyden, the Netherlands.Google Scholar
[30]Widom, B. (1996) Theory of phase equilibrium. J. Phys. Chem. 100, 1319013199.CrossRefGoogle Scholar
[31]Yeomans, J. M. (1992) Statistical Mechanics of Phase Transitions, Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
[32]Yu, L. J. & Saupe, A. (1980) Observation of a biaxial nematic phase in Potassium Laurate-1-Decanol-water mixtures. Phys. Rev. Lett. 45, 10001003.CrossRefGoogle Scholar