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email: fulvio.bisi@unipv.it
3Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

email: gartland@math.kent.edu

(Received 24 November 2010; revised 30 November 2010; accepted 1 December 2010;

first published online 5 January 2011)

Basic methods from bifurcation theory are applied to derive a criterion that predicts when

a symmetric tricritical point may occur in a transition between condensed ordered phases

described by any finite number of scalar order parameters. At such a point, a change of order

takes place in the phase transition, which passes from first to second order, or vice versa.
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1 Introduction

The study of equilibrium phases in ordered systems and their transitions is intimately

related to the theory of critical points and their bifurcations. The mathematical theory of

bifurcation can shed light on the physical understanding of phase transitions, as the con-

nection between these two realms is far more than semantic. Here we apply the methods

of bifurcation theory to a peculiar aspect of critical phenomena, namely, to the change of

order in a phase transition upon varying control or model parameters.

We are interested in aspects of phase transitions in bulk samples of ordered materials,

such as liquid crystals. In a mathematical model of such a system, the phase is typically

represented by a finite number of scalar variables, or ‘order parameters’, and the transition

from one phase to another occurs when one or more material or control parameters pass

through certain critical values. The information is usually organised in a ‘phase diagram’.

See for example [18, 30, 31]. A particular example that we have in mind (which is

described in a later section) concerns the phases of a biaxial liquid crystal, which can

be ‘isotropic’ (disordered) at high temperatures and either ‘uniaxial nematic’ or ‘biaxial

nematic’ (orientationally ordered) at lower temperatures, depending on the values of

certain material biaxiality parameters.

In the areas of liquid crystals and other related condensed-matter systems, the term

‘tricritical point’ has come to signify a point in a phase diagram at which the nature of

a phase transition changes from ‘first order’ (associated with a discontinuous change in

at least one of the order parameters) to ‘second order’ (in which all order parameters
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change continuously). This terminology appears to derive from the usage in physical

chemistry concerned with multi-component fluid mixtures. There the term ‘tricritical

point’ specifically refers to a scenario in which the change in the phase transition comes

about when three coexisting fluid phases coalesce into one. This generalises the term

‘critical point’, in which two coexisting phases coalesce. If more than three coexisting

phases coalesce, the point is referred to as a ‘multicritical point’. The point is said to be

a ‘symmetric’ tricritical (or multicritical) point if all but one of the phases are related to

each other through some symmetry of the system. See for example [4, 10–12, 16, 17].

The connection between coalescing phases and the first-order vis-à-vis second-order

nature of associated phase transitions can be illustrated by simple Landau expansions.

Consider the two different model free energies

F1(ψ) = βψ2 + a3ψ
3 + ψ4 , F2(ψ) = βψ2 + a4ψ

4 + ψ6.

Here one should think of ψ as an order parameter, the non-zero values of which indicate

some degree of order in the system, β as a control parameter (such as temperature) and

a3 and a4 as material parameters (which can differ from one type of material or mixture

to another). Equilibrium states are solutions of F ′(ψ) = 0:

F ′
1(ψ) = 0 ⇔ ψ = 0 or 2β + 3a3ψ + 4ψ2 = 0 ,

F ′
2(ψ) = 0 ⇔ ψ = 0 or β + 2a4ψ

2 + 3ψ4 = 0 .

Equilibria are stable if they provide the global free-energy minimum, F(ψ∗) = minψ F(ψ);

they are metastable (or locally stable) if they give a local minimum.

For the free energy F1, with a3 < 0, the system undergoes a first-order phase transition

at a value β = β∗ > 0, with the coexisting phases ψ = 0 and ψ = ψ∗ > 0. As a3 → 0, these

two phases coalesce, and the phase transition becomes second order at β∗ = 0. See Figure 1

(left). For F2, with a4 < 0, the system again undergoes a first-order phase transition at some

β∗ > 0, this time with three coexisting phases: ψ = 0 and ψ = ±ψ∗, ψ∗ > 0. As a4 → 0,

these three phases coalesce, and the phase transition again becomes second order at β∗ = 0.

See Figure 1 (right). In the terminology of Griffiths and Widom [10–12], the former case

corresponds to a ‘critical point’, while the latter case is a ‘symmetric tricritical point’.

In this paper, we are concerned with indicator functions that can be used to identify

points in a bifurcation diagram where a potential change from a first-order to a second-

order phase transition could occur in the presence of a reflectional symmetry breaking.

This is a common and important scenario in such ordered materials. In keeping with

the terminology discussed above, we define a symmetric tricritical point to be a point at

which a first-order phase transition becomes second-order in the presence of a reflectional

symmetry breaking.

This is made more precise in Section 2, where we first recall basic facts from bifurcation

theory, phrased in the language adopted in the rest of the paper. In Section 3, we derive a

tricriticality criterion from the general bifurcation equations that applies to a bifurcation

breaking the reflectional symmetry enjoyed by the free energy, F . Though our analysis is

performed under rather general hypotheses, it becomes much neater when the Hessian

H0 of F at a symmetry-breaking bifurcation point has a one-dimensional null space �, a

case that shall be treated throughout in greater detail. This case applies in particular to

https://doi.org/10.1017/S0956792510000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792510000355


A Criterion for Symmetric Tricritical Points 5

–0.5 0

0

0.5

0.5

0.5

1
a3= –1

β

Ψ

–0.5 0

0

0.5

1
a3= 0

β

Ψ

–0.5 0

0

0.5

–0.5

0

0.5

1

–1

a4= –1

β

Ψ

–0.5 0 0.5

–0.5

0.5

1

–1

a4= 0

β

Ψ

Figure 1. (Colour online) Model scenarios of transitions from first order to second order with two

coalescing phases (left) versus three coalescing phases (right). Left: bifurcation diagram for model

free energy F1(ψ) = βψ2 + a3ψ
3 +ψ4 with a3 < 0 (upper, first-order transition) versus a3 = 0 (lower,

second-order transition). Right: bifurcation for model free energy F2(ψ) = βψ2 + a4ψ
4 + ψ6 with

a4 < 0 (upper, first order) versus a4 = 0 (lower, second order). Dashed lines represent unstable

equilibria; solid lines represent locally stable equilibria; heavy solid lines represent globally stable

equilibria. The free-energy crossover point is indicated with a light vertical line, and the coexisting

phases are indicated by heavy solid dots.

the uniaxial–biaxial transition in nematic liquid crystals treated in Section 4. Finally, in

Section 5 we collect the main conclusions of this work and comment about their possible

extension.

2 General setting

In this preliminary section, we present the general mathematical setting within which our

bifurcation analysis of the equilibrium phases of an ordered condensate will be phrased.

Let F : �n+1 → � be a real-valued, smooth function representing either a mean-field

free energy or a Landau potential that describes the different condensed ordered phases

of a homogeneous system. We shall write F = F(x, β), where x = (x1, . . . , xn) ∈ �n is the

set of scalar order parameters and β is a parameter, typically a reciprocal dimensionless

temperature. For a given value of β, the equilibrium condensed phases correspond to

solutions of the equation

G(x, β) = 0 , (2.1)
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where

G(x, β) := ∇xF(x, β) .

We shall assume that (2.1) is solved by a special pair (x0, β0), with x0 ∈ �n and β0 ∈ �.

We are interested in any further solution to (2.1) in the vicinity of (x0, β0) that can be

parameterised as s �→ (x(s), β(s)), where s is a scalar parameter chosen in an open interval

I ⊂ � containing 0, so that x(0) = x0 and β(0) = β0. Any such family C = (x(s), β(s)) will

be called a solution curve of (2.1) based at P0 := (x0, β0).

The function G, restricted along a solution curve C, becomes a function Γ of the

parameter s that vanishes identically in I , that is,

Γ(s) := G(x(s), β(s)) = 0 , ∀s ∈ I . (2.2)

It further follows from (2.2) that

Γ̇(s) = H(x(s), β(s)) t(s) + β̇(s) b(x(s), β(s)) = 0 , ∀s ∈ I , (2.3)

where t(s) := ẋ(s), the Hessian H of F is the symmetric tensor on �n defined by

H(x, β) := ∇xG(x, β) = ∇2
xF(x, β) (2.4)

and

b(x, β) :=
∂

∂β
G(x, β) =

∂

∂β
∇xF(x, β) . (2.5)

We say that P0 is a bifurcation point whenever there are at least two solution curves of

(2.1) based at P0. Among all possible functions F , we shall consider in this paper only

those that enjoy a certain symmetry, and among all possible bifurcation points only those

where a solution curve of (2.1) is based that breaks such a symmetry. The particular

symmetry we envisage here, relevant to symmetric tricritical points according to Griffith’s

definition [10, 11], is recalled in Section 2.1 together with the consequences it entails for

our analysis.

2.1 �2 symmetry

We collect some basic results for bifurcation problems that possess �2 symmetry. We

follow the developments in [8, 9 (ch. 8), 13].

We assume that our free-energy function F is invariant under a �2 symmetry group.

That is, we assume that there is an involution S on �n that is orthogonal and symmetric

(for involutions, one implies the other):

S2 = I, S−1 = ST = S ,

where I is the identity in �n. The group

S = {I, S}
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is isomorphic to the group of integers modulo 2, and we assume that F is S invariant:

F(Sx, β) = F(x, β) , ∀x ∈ �n , ∀β ∈ � .

This symmetry induces an orthogonal decomposition of �n into symmetric and antisym-

metric subspaces:

�n = �s ⊕ �a , �s ⊥ �a ,

where

�s := {x ∈ �n | Sx = x}, �a := {x ∈ �n | Sx = −x}.
Several consequences follow from the S invariance of F . Expansion around y = 0 of

both sides of the identity

F(Sx + y, β) = F(x + Sy, β) ,

using S−1 = ST = S, gives

∇k
xF(Sx, β) · (y ⊗ · · · ⊗ y) = ∇k

xF(x, β) · (Sy ⊗ · · · ⊗ Sy) , k = 1, 2, . . . . (2.6)

The case k = 1 gives that the gradient is S equivariant:

G(Sx, β) = SG(x, β) , ∀x ∈ �n , ∀β ∈ � .

Note also that for k odd, with x ∈ �s (satisfying Sx = x) and y ∈ �a (satisfying Sy = −y),

(2.6) implies

∇k
xF(x, β) · (y ⊗ · · · ⊗ y) = 0 ,

from which follows

∇k
xF(x, β) · (y1 ⊗ · · · ⊗ yk) = 0 , ∀x ∈ �s , ∀y1, . . . , yk ∈ �a , k = 1, 3, 5, . . . (2.7)

(since ∇k
xF is a symmetric multilinear form and as such is completely determined by its

traces, or the so-called polar forms, ∇k
xF(x, β) · (y ⊗ · · · ⊗ y) [2 (sec. 2.1)]). Again, the case

k = 1 of the above gives

x ∈ �s ⇒ G(x, β),
∂

∂β
G(x, β), . . . ∈ �s .

In particular, the vector b defined in (2.5) satisfies

b(x, β) ∈ �s , ∀x ∈ �s . (2.8)

More generally, it follows from (2.7) that

∇k
xF(x, β) · (y1 ⊗ · · · ⊗ yk−1) ∈ �s , ∀x ∈ �s , ∀y1, . . . , yk−1 ∈ �a , k = 1, 3, 5, . . . . (2.9)

The case k = 2 of (2.6) yields

H(Sx, β) = SH(x, β)S , ∀x ∈ �n , ∀β ∈ � ,
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where H is the Hessian, defined in (2.4). This implies that �s and �a are in-

variant subspaces of H(x, β) when H is evaluated at a point in the symmetric

space:

x ∈ �s ⇒ H(x, β) �s ⊂ �s and H(x, β) �a ⊂ �a.

This allows one to decompose the Hessian into symmetric and antisymmetric parts, when

evaluated at a point x in �s:

x ∈ �s ⇒ H(x, β) = Hs(x, β) + Ha(x, β) , Hs := PsHPs , Ha := PaHPa , (2.10)

where Ps is the orthogonal projection onto �s and Pa = I−Ps is the orthogonal projection

onto �a.

The invariance of �s and �a under H(x, β) for x ∈ �s has implications in terms of

possible bifurcation scenarios. A solution curve in the symmetric space,

G(x(s), β(s)) = 0 , x(s) ∈ �s, s ∈ I,

necessarily remains in the symmetric space unless it suffers a ‘symmetry breaking bifurca-

tion’. This is a consequence of the tangent-vector equation (2.3), which can be written at

a point (x0, β0) as

H0t0 + β̇(0)b0 = 0

with

H0 := H(x0, β0) , t0 := ẋ(0) , b0 := b(x0, β0) ,

and the facts that, for x0 ∈ �s, both �s and �a are invariant under H0 and b0 ∈ �s.

A symmetry-breaking bifurcation point is a point P0 = (x0, β0) along a solution curve

in �s at which the tangent vector to a bifurcating branch satisfies

t0 ∈ �a and necessarily β̇(0) = 0 . (2.11)

This implies that Ha(x0, β0) is singular and

� ∩ �a � {0}, where � := ker H0 .

The situation is the cleanest when dim � = 1. In this case, either Hs(x0, β0) or Ha(x0, β0)

is singular (but not both). If Hs(x0, β0) is singular, then the point P0 could be either

a limit point or a bifurcation point to another branch in �s. If Ha(x0, β0) is singular,

then the point is a potential symmetry-breaking bifurcation point, and the existence

of a symmetry-breaking branch would be guaranteed by the ‘Equivariant Branching

Lemma’, provided the necessary additional hypotheses are satisfied. See, for example,

[8, 9, 13].

Exploring � and identifying the ‘directions’ t0 ∈ � along which a symmetry-breaking

bifurcation can take place is the essence of the general Lyapunov–Schmidt reduction

method, amply illustrated, for example, in [7,8] (especially, in Secs. 1.3, 7.1 and 7.3 of the

cited works). Here, such a general strategy will be adapted to our needs. To this end, we

recall a number of preliminary results, which are collected in the remaining part of this

section.
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At the �2-symmetry-breaking bifurcation point, since � is non-trivial, and consequently

t0 � 0, by continuity, it must also be ẋ(s) � 0 in a neighbourhood of s = 0, which here

we take as coincident with the whole of I . Thus, the parameter s can be chosen so as to

be the arc-length along the bifurcating branch x(s) in �n. Such a choice will entail a few

simplifications in what follows. Hereafter we shall denote by t(s) the unit vector tangent

to the curve x(s):

t(s) := ẋ(s) ,

which satisfies the condition

t(s) · t(s) = 1 , ∀s ∈ I . (2.12)

It follows immediately from (2.12) that

ẍ(s) · t(s) = 0 , ∀s ∈ I . (2.13)

We shall assume that dim � < n. Moreover, we shall denote by �⊥ the orthogonal

complement of � in �n, so that �n can also be split as �n = � ⊕ �⊥. We further qualify

as � projection the tensor P� that transforms any vector v ∈ �n into its component in

�; it can be represented as

P� =

m∑
i=1

ui ⊗ ui ,

where {u1, . . . um} is any orthonormal basis for �. Similarly, we define the �⊥ projection

P�⊥ as

P�⊥ := I − P� .

It is easily proved that

P�H0 = H0P� = 0 .

Moreover, the restriction of H0 onto �⊥ can be inverted; we denote this restricted

inversion as

H−1
0 := (H0|�⊥)−1 , (2.14)

which is a tensor on �⊥, as H−1
0 �⊥ = �⊥. We shall denote the projections delivered by

P� and P�⊥ , respectively, by [·]� and [·]�⊥ . In particular, for any vector v ∈ �n,

v� := P�v and v�⊥ := P�⊥ v .

It is worth remarking that although both � and �⊥ have here finite dimensions, the

general Lyapunov–Schmidt reduction would also apply, were the dimension of �⊥ infinite.

3 Bifurcation equations

In this section we derive the equations that determine what solution curves C = (x(s), β(s))

can actually branch off a bifurcation point P0 = (x0, β0) and break the �2 symmetry

enjoyed by x0 ∈ �s. Much in the original spirit of the Lyapunov–Schmidt method,

presented in [28], also in its historical development (see [29], for a broader perspective),

we perform an asymptotic expansion of C in the vicinity of P0. Here this objective is
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pursued by successive differentiations of both sides of (2.3) with respect to s. We thus

obtain the following equations:

Γ̈(s) = ∇3
xF(x(s), β(s)) · [ẋ(s) ⊗ ẋ(s)] + ∇2

xF(x(s), β(s)) ẍ(s)

+2β̇(s)
∂

∂β
∇2

xF(x(s), β(s)) ẋ(s)

+β̈(s)
∂

∂β
∇xF(x(s), β(s)) + β̇(s)2

∂2

∂β2
∇xF(x(s), β(s)) = 0 , ∀s ∈ I,

(3.1)

and

...
Γ(s) = ∇4

xF(x(s), β(s)) · [ẋ(s) ⊗ ẋ(s) ⊗ ẋ(s)]

+3∇3
xF(x(s), β(s)) · [ẋ(s) ⊗ ẍ(s)] + ∇2

xF(x(s), β(s))
...
x(s)

+3β̇(s)
∂

∂β
∇3

xF(x(s), β(s)) · [ẋ(s) ⊗ ẋ(s)] + 3β̇(s)2
∂2

∂β2
∇2

xF(x(s), β(s)) ẋ(s)

+3
∂

∂β
∇2

xF(x(s), β(s))
[
β̈(s)ẋ(s) + β̇(s)ẍ(s)

]
+ 3β̇(s)β̈(s)

∂2

∂β2
∇xF(x(s), β(s))

+β̇(s)3
∂3

∂β3
∇xF(x(s), β(s)) +

...
β(s)

∂

∂β
∇xF(x(s), β(s)) = 0 , ∀s ∈ I .

Both the above equations are then evaluated at s = 0 by recalling that, by (2.11), β̇(0) = 0.

By operating with the projection P� on both sides of the equations thus obtained and

with the projection P�⊥ on both sides of the only equation obtained from (3.1), since �
is invariant under H0, we finally arrive at

[
∇3

xF(x0, β0) · (t0 ⊗ t0)
]
�

+ β̈0b0� = 0 , (3.2a)[
∇3

xF(x0, β0) · (t0 ⊗ t0)
]
�⊥

+ H0ẍ0�⊥ + β̈0b0�⊥ = 0 , (3.2b)[
∇4

xF(x0, β0) · (t0 ⊗ t0 ⊗ t0)
]
�

+ 3
[
∇3

xF(x0, β0) · (ẍ0 ⊗ t0)
]
� (3.2c)

+ 3β̈0 [B0t0]� +
...
β0b0� = 0 ,

where the subscript 0 denotes evaluation at s = 0 and

B0 :=
∂

∂β
H(x0, β)

∣∣∣∣
β=β0

.

Hereafter we shall assume that

� � �a , (3.3)

so that only Ha is singular at P0. Such an assumption will considerably simplify our

analysis, while encompassing the application envisaged in Section 4. It follows from (2.8)

and (3.3) that b0� = 0. Moreover, for x0 ∈ �s, (2.9) for k = 3 implies that

∇3
xF(x0, β0) · (t0 ⊗ t0) ∈ �s , (3.4)

whence it follows that [
∇3

xF(x0, β0) · (t0 ⊗ t0)
]
�

= 0 , (3.5)
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so that (3.2a) is identically satisfied. As already shown in (2.14), the Hessian H0 is invertible

in �⊥, and so (3.2b) can be solved for ẍ0�⊥ :

ẍ0�⊥ = −H−1
0

(
∇3

xF(x0, β0) · (t0 ⊗ t0) + β̈0b0

)
, (3.6)

the projection onto �⊥ being omitted, again by (3.3) and (3.5). Furthermore, since b0 ∈ �s,

again by (3.4) we can give (3.6) the following equivalent form

ẍ0�⊥ = −H−1
0s

(
∇3

xF(x0, β0) · (t0 ⊗ t0) + β̈0b0

)
, (3.7)

where H0s := Hs(x0, β0) is the non-singular component of H0 in the symmetric subspace

�s, defined as in (2.10). The vector ẍ0 in (3.2c) can uniquely be decomposed as ẍ0 =

ẍ0� + ẍ0�⊥ , where ẍ0� ∈ � and ẍ0�⊥ ∈ �⊥ ∩ �s = �s. By (3.5), (3.2c) thus becomes

[
∇4

xF(x0, β0) · (t0 ⊗ t0 ⊗ t0)
]
�

+ 3
[
∇3

xF(x0, β0) ·
(
ẍ0�⊥ ⊗ t0

)]
�

+ 3β̈0 [B0t0]� = 0 , (3.8)

where ẍ0�⊥ is given by (3.7).

While ẍ0�⊥ is determined by (3.7), determining ẍ0� would in general require deriving

higher order asymptotic equations – computing
....
Γ (s) and possibly higher derivatives of

the function Γ(s) in (2.2), except in the case where dim� = 1, as in this case ẍ0� = 0, by

(2.13) evaluated at s = 0. As will be seen below, the case dim � = 1 is remarkably simpler:

for it our analysis also becomes more stringent. Equation (3.8) is the general vector form

of the bifurcation equation in the unknowns (t0, β̈0) for a reflectional symmetry breaking.

It is clear from its structure that its solutions come in reflectional symmetric pairs: any

solution (t0, β̈0) is accompanied by (−t0, β̈0), each solution representing a ‘half-branch’

emanating from x0 ∈ �s into �a.

Equation (3.8) can be reduced to a system of m scalar equations, linear in β̈0 and cubic

in the m − 1 independent scalar components ui of t0 in a basis {u1, . . . , um} of �, where

m = dim�. Such a system of algebraic equations will be easily solved in Section 3.1.1

for dim� = 1, a case relevant to our application in Section 4. Here we remark that in

general they are but a set of compatibility conditions and there is no guarantee that a

solution to the scalar bifurcation equations corresponds indeed to a solution curve C for

the equilibrium equation (2.1). Different existence theorems that fill this gap have been

provided in the literature under different analytical assumptions, such as Theorem 4.1

in [28] (see, in particular, Claim 3) and Theorem 4.12 in [14], just to quote two among

the earliest contributions to the bifurcation theory. Here we do not dwell further on this

issue. As customary in many applied studies, we assume that a pair (t0, β̈0) that solves (3.8)

identifies the lowest order in an asymptotic expansion near P0 of a bifurcated solution that

breaks a reflectional symmetry. This is in keeping with the numerical approach followed in

Section 4, where the solutions to the algebraic bifurcation equations drive a continuation

algorithm.

3.1 Tricriticality criterion

As explained in the Introduction, according to the definition we have adopted, a tricritical

point occurs wherever in a phase diagram a phase transition changes from first to second
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order as a control parameter, typically related to the temperature, is changed. Thus, by

its own nature, a tricritical point is connected to a global property of the potential F . If,

for example, F represents the mean-field approximation to the free energy of an ordering

physical system, the stable equilibrium phase at a given value of β is represented by the set

of stationary points {xm(β)} of F(·, β) where F attains its least value. As shown in [5], this

minimum principle also applies to the case where F is indefinite, and thus possesses neither

a global minimum nor a global maximum. Our local bifurcation analysis can become

predictive of the occurrence of a tricritical point in the equilibrium phase diagram of

the physical system described by F only in the light of extra information on the global

behaviour of F . Generally, such information stems from the knowledge of the ground

state of F , defined as the class of symmetry-related equilibrium configurations {x∞} with

the least value of F in the asymptotic limit as the absolute temperature approaches zero:

under appropriate regularity assumptions, {x∞} = limβ→∞{xm(β)}. Relating the symmetry

enjoyed by the ground state of F to the symmetry of the molecular interactions – often

known a priori – that concur to a microscopic definition of F is, to our knowledge, still

an open problem. Here we assume that the ground state of F possesses the �2 symmetry

broken by the bifurcation being considered and that the symmetry-breaking bifurcating

branch approaches an equilibrium configuration in {x∞} as β → ∞.

With such an assumption of a global nature, distinguishing between putative first- and

second-order transitions becomes an issue that can be resolved locally. In particular, if

β̈0 > 0 at the bifurcation point P0 = (x0, β0), that is, if the bifurcation is supercritical

in β, being β̇0 = 0, the corresponding transition is likely to be of second order, as no

equilibrium state close to x0 could be found for β < β0 along the bifurcating branch.

Contrariwise, if β̈0 < 0, that is, if the bifurcation is subcritical in β, the transition is likely

to be of first order. (This is the situation depicted on the right panels of Figure 1, which

also serve here as models for our discussion). Clearly, even in the light of our global

assumption, relating supercritical and subcritical bifurcations to second- and first-order

transitions remains conjectural, in the absence of a stability analysis of the bifurcating

branch. Here we start by adopting the vanishing of β̈0 as a criterion to signal a possible

tricritical point; it will be corroborated by the stability analysis performed in Section 3.2.

3.1.1 Case dim� = 1

In the case where dim� = 1, the unit vector t0 is determined within its sign by merely

being a non-trivial member of �. Equation (3.8) thus reduces to a scalar equation for β̈0,

which is easily given the following linear form:

3ξβ̈0 − τ = 0 , (3.9)

where

ξ := t0 ·
[
∇3

xF(x0, β0) ·
(
H−1

0s b0 ⊗ t0
)

− B0t0
]

(3.10)

and

τ := ∇4
xF(x0, β0) · (t0 ⊗ t0 ⊗ t0 ⊗ t0)

−3∇3
xF(x0, β0) ·

(
H−1

0s [∇3
xF(x0, β0) · (t0 ⊗ t0)] ⊗ t0 ⊗ t0

)
.

(3.11)
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Clearly, if ξ = 0, the bifurcation equation (3.9) is compatible only if τ = 0, but it fails to

determine β̈0. If, on the contrary, ξ� 0, (3.9) determines β̈0, and this vanishes whenever

τ does. Thus, for dim� = 1, if ξ� 0, our tricriticality criterion simply reads as τ = 0.

3.2 Stability analysis

Here we study the stability of the bifurcating branch in the vicinity of the bifurcation point,

P0. Such a study relies on the evaluation of the eigenvalues of the Hessian H(x(s), β(s))

for s near 0. Clearly, for s = 0, H0 possesses the eigenvalue, λ0 = 0, with multiplicity

m = dim�. We are interested in evaluating the sign of the m eigenvalues of H(x(s), β(s))

that are close to nought as s grows away from s = 0, the sign of all others remaining

unchanged by continuity.

For ε sufficiently small, a solution curve Cε = (xε, βε) in the vicinity of P0 is represented

through the following asymptotic expansions:

xε : = x(ε) = x0 + ε t0 +
1

2
ε2ẍ0 + o(ε2) , (3.12a)

βε : = β(ε) = β0 +
1

2
ε2β̈0 + o(ε2) , (3.12b)

where the pair (t0, β̈0) solves the bifurcation equation (3.8). Let uε be any eigenvector of

Hε := H(xε, βε) with eigenvalue λε approaching λ0 = 0 as ε → 0, so that

Hεuε = λεuε . (3.13)

Paralleling (3.12), we represent λε and uε as

λε = ελ̇0 +
1

2
ε2λ̈0 + o(ε2) , (3.14a)

uε = u0 + ε u̇0 +
1

2
ε2ü0 + o(ε2) , (3.14b)

where u̇0 · u0 = 0 and

ü0 · u0 = −u̇0 · u̇0 (3.15)

to guarantee that uε · uε = 1, up to second order in ε. For ε sufficiently small, uε is close

to �, and u0 ∈ �. The asymptotic expansions in (3.14) are unknown, and our objective

here is to derive equations that are able to determine them.

By expanding Hε up to the second order in ε, with the aid of (3.12), we readily arrive

at

Hε = H0 + ε∇3
xF(x0, β0) · t0

+
1

2
ε2

(
∇3

xF(x0, β0) · ẍ0 + β̈0B0 + ∇4
xF(x0, β0) · (t0 ⊗ t0)

)
+ o(ε2) .

(3.16)

https://doi.org/10.1017/S0956792510000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792510000355


14 F. Bisi et al.

It easily follows from (3.14) and (3.16) that (3.13) can be given the form

ε
(
∇3

xF(x0, β0) · (t0 ⊗ u0) + H0u̇0

)
+

1

2
ε2

(
β̈0B0u0 + ∇4

xF(x0, β0) · (t0 ⊗ t0 ⊗ u0)

+ ∇3
xF(x0, β0) · (ẍ0 ⊗ u0) + 2∇3

xF(x0, β0) · (t0 ⊗ u̇0) + H0ü0)

= ελ̇0u0 +
1

2
ε2

(
λ̈0u0 + 2λ̇0u̇0

)
+ o(ε2) .

By requiring this equation to be satisfied up to second order in ε, we conclude that

H0u̇0 + ∇3
xF(x0, β0) · (t0 ⊗ u0) = λ̇0u0 , (3.17a)

∇4
xF(x0, β0) · (t0 ⊗ t0 ⊗ u0) + ∇3

xF(x0, β0) · (ẍ0 ⊗ u0)
(3.17b)

+ 2∇3
xF(x0, β0) · (t0 ⊗ u̇0) + β̈0B0u0 + H0ü0 = λ̈0u0 + 2λ̇0u̇0 .

By (3.5), since u0 ∈ �, projecting both sides of (3.17a) along u0, one finds that

λ̇0 = 0 . (3.18)

Thus the sign of λε is established at the second order in ε, and it is clearly the same for

both half-branches, as reversing the sign of ε amounts to reversing t0. By decomposing u̇0

as u̇0 = u̇0� + u̇0�⊥ , we, from (3.17a) and (3.18), easily obtain

u̇0�⊥ = −H−1
s0

(
∇3

xF(x0, β0) · (t0 ⊗ u0)
)
, (3.19)

where use has been made again of (2.9) for k = 3. Since both u̇0� and ẍ0� enter (3.17b)

and at the present order of asymptotic approximation they remain undetermined, (3.17b)

cannot be reduced into an equation for u0 only, except in the case where dim� = 1,

which entails that both u̇0� and ẍ0� vanish. This case again deserves a separate treatment.

3.2.1 Case dim� = 1

For dim� = 1, u0 is parallel to t0, and with no loss of generality we can take u0 = t0.

Now, the right-hand side of (3.19) delivers indeed u̇0 as does the right-hand side of (3.7)

for ẍ0; comparing these equations, one finds that

u̇0 = ẍ0 + β̈0H
−1
s0 b0 . (3.20)

On the other hand, projecting both sides of (3.17b) along u0, by (3.18) one easily arrives

at

λ̈0 = ∇4
xF(x0, β0) · (t0 ⊗ t0 ⊗ t0 ⊗ t0) + ∇3

xF(x0, β0) · (ẍ0 ⊗ t0 ⊗ t0)

+2∇3
xF(x0, β0) · (u̇0 ⊗ t0 ⊗ t0) + β̈0B0t0 · t0 .

(3.21)

By further inserting both (3.20) and (3.7) into (3.21), also with the aid of (3.10) and (3.11),

we finally obtain

λ̈0 = τ− ξβ̈0 =
2

3
τ , (3.22)

https://doi.org/10.1017/S0956792510000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792510000355


A Criterion for Symmetric Tricritical Points 15

where (3.9) has been used. By projecting both sides of (3.17b) onto �⊥, we easily determine

ü0�⊥ , while ü0� is determined by (3.15).

Equations (3.22) and (3.18) show that when dim � = 1, the sign of τ is the same as

that of the eigenvalue λε of Hε that vanishes for ε = 0. A positive λε qualifies a stable

branch, and this also applies to the class of indefinite free energies F studied in [5]. It was

indeed shown there that for an equilibrium phase the number of negative eigenvalues of

H cannot be less than a ‘repulsive dimension’ characteristic of the microscopic interaction

potential: if an eigenvalue λ0 of H vanishes at a bifurcation point, thus jeopardising the

stability of an equilibrium phase, then stability can be restored along a bifurcating branch

if λ̈0 > 0.

We are now in a position to quantitatively interpret the scenarios illustrated on the

right panels of Figure 1. By (3.22), a first-order transition occurs whenever both β̈0 and

τ are negative; contrariwise, a second-order transition occurs whenever both β̈0 and τ

are positive. We immediately see that the either case requires β̈0τ > 0. Assuming that

ξ � 0, by (3.9) we reduce the latter inequality to ξ > 0, which thus characterises the

scenarios depicted in the right panels of Figure 1. We conclude that for dim� = 1 a

phase transition is likely to be

first order for ξ > 0 and τ < 0 , and second order for ξ > 0 and τ > 0 . (3.23)

A tricritical point may then arise whenever ξ > 0 and τ = 0, strengthening the criterion

already envisaged above. Such a criterion extends to the case of an arbitrary number of

scalar order parameters, the one derived in [4], with a different method, for the condensed

phases described by two scalar order parameters. In the following section we apply the

criterion derived here to a system with four scalar order parameters.

4 Symmetric tricritical points in biaxial nematics

The results of the previous sections have been used in the analysis of a certain mean-field

model for biaxial nematic liquid crystals. The simplest (and most common) liquid-crystal

fluid phase is the uniaxial nematic phase, which manifests long-range orientational order

of a distinguished molecular axis but no positional order in the centres of mass of the

molecules. In contrast, the biaxial nematic phase comprises some degree of orientational

order with respect to two molecular axes.

The existence of a bulk biaxial nematic phase was first demonstrated for lyotropic liquid

crystals (solutions) by Yu and Saupe in 1980 [32]. Only recently, and after years of effort,

has the phase been realised in thermotropic liquid crystals (homogeneous systems) – see,

for example, [20] and references therein. These materials are currently of high interest

from the basic scientific point of view and also because of their potential for technological

applications. This has led in turn to a high interest in mathematical models for biaxial

nematics.

Mean-field models are simplified, approximate models for the collective behaviour of

extremely large ensembles of interacting particles. These are derived in systematic ways

by replacing the details of the interactions that a single particle has with the rest of the

particles in an ensemble by the interaction with a single ‘mean field’ felt by the particle
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e1

e3e2

Figure 2. (Colour online) Idealised molecular architecture for particles forming a biaxial nematic

phase.

(and to which the particle itself also contributes). Mean-field models are valuable tools

for analysing the qualitative behaviour of bulk systems.

In the area of liquid crystals, the most famous mean-field model is that of Maier and

Saupe [21, 22], which successfully predicts the weak first-order nature of the isotropic-

uniaxial phase transition. A mean-field model for the biaxial nematic phase was proposed

by Straley in 1974 [26] and reconsidered by Sonnet, Virga and Durand in 2003 [25]. The

bifurcation and phase behaviour of this model has been explored in a series of papers

culminating in [1]. The phase diagram involves three states of the system, isotropic,

uniaxial nematic and biaxial nematic, which exist in different ranges of temperature and

for different values of material parameters, and it contains both first-order and second-

order transitions, as well as triple points and tricritical points. The tricriticality criterion

developed in the previous section has been used to identify candidate symmetric tricritical

points. Here we discuss its implementation in the context of this model.

4.1 The model

Straley’s mean-field model for biaxial nematics begins from a pair potential or the two-

particle Hamiltonian for the interaction of two particles whose idealised molecular archi-

tecture is that of a platelet, as in Figure 2. The orientational pair potential is a function

of only the relative orientation of two such particles, the dependence on intermolecular

separation having been removed by averaging. We let Ω denote the set of all possible

orientations of a particle with respect to some fixed frame of reference. An orientation

ω ∈ Ω can be expressed in several ways, e.g. in terms of molecular frame vectors (e1, e2, e3),

Euler angles (θ, φ, ψ), rotation matrices R ∈ SO(3) etc. Given two orientations, ω,ω′ ∈ Ω,

the two-particle Hamiltonian associates a potential energy to their relative orientation.

Straley’s model pair potential is most cleanly expressed model in terms of contractions

of real, symmetric and traceless tensors that are built from the frame vectors of the

two interacting particles and are invariant under the symmetry of the platelet geometry,
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ei ↔ −ei, i = 1, 2, 3:

H(ω,ω′) = −U0[q · q′ + γ(q · b′ + b · q′) + λb · b′]

q(ω) := e1(ω) ⊗ e1(ω) − 1

3
I, b(ω) := e2(ω) ⊗ e2(ω) − e3(ω) ⊗ e3(ω) .

(4.1)

The function H can be viewed as a reduction of a more general expansion, truncated at

quadrupolar order [19, 25]. Here U0 represents a positive interaction energy. For values

of the dimensionless material parameters γ and λ in an appropriate range [1, 3], H(ω,ω′)

will achieve its minimum values when the two frames are aligned: ei ‖ e′
i, i = 1, 2, 3. Thus,

the nature of the interaction model is to encourage such an alignment.

The orientational Hamiltonian for an ensemble of identical particles interacting through

such a potential is simply the sum over all pairwise interactions:

H(ω) =
∑
i<j

H(ωi, ωj), ω = (ω1, . . . , ωN) ∈ ΩN.

The equilibrium orientational probability density function follows the Boltzmann distri-

bution with normalisation constant given by the ensemble partition function:

ρ(ω, β) =
e−βH(ω)

Z(β)
, Z(β) =

∫
ΩN

e−βH(ω)dω , β :=
1

kBt

dω = dω1 · · · dωN, dωi = sin θi dθi dφi dψi , i = 1, . . . , N.

Here kB is the Boltzmann constant, and t is absolute temperature. Ensemble averages are

denoted as

〈g〉ρ :=

∫
ΩN

g(ω)ρ(ω, β) dω ,

and the free energy of the ensemble is given by

F(β) = − 1

β
ln Z(β) .

See, for example, [5] and references contained therein.

The mean-field approximation to the ensemble free energy above is most cleanly

expressed in tensorial form, while it is necessary to use scalar variables and orientation

angles to work with it numerically. It begins by replacing the two-particle Hamiltonian

with a single-particle potential of interaction between a particle and the ‘mean field’

generated by the ensemble:

H0(ω) = z
[
〈H(ω, ·)〉ρ0

− 1

2
〈H(·, ·)〉ρ2

0

]
.

Here the scaling factor z is the average number of interactions per particle (N(N−1)/2, if

all particles interact), and the constant 1
2
〈H〉 must be subtracted to avoid the overcounting

that would result without it when summing over the ensemble. From Straley’s pair
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potential (4.1), one obtains the single-particle Hamiltonian as

1

zU0
H0(ω; Q,B) =

1

2
(Q · Q + 2γQ · B + λB · B)

− {q(ω) · Q + γ[q(ω) · B + b(ω) · Q] + λb(ω) · B},

where

Q = 〈q(·)〉ρ0
, B = 〈b(·)〉ρ0

. (4.2)

The tensors Q and B above represent the mean field and are referred to as ‘order

tensors’. These are equal to the zero tensor in the isotropic, disordered state (when ρ0 is

the uniform probability density). A non-zero value of either Q or B indicates some degree

of order in the system. The mean-field equilibrium orientational probability distribution

function again follows the Boltzmann law, normalised by the mean-field partition function:

ρ0(ω, β,Q,B) =
e−βH0(ω,Q,B)

Z0(β,Q,B)
, Z0(β,Q,B) =

∫
Ω

e−βH0(ω,Q,B)dω .

Note that the mean-field model of the orientational state depends on the order tensors

Q and B and that the defining equations (4.2) are in fact implicit, as the probability

distribution function with respect to which the averages are being calculated itself depends

on Q and B. For this reason, equations (4.2) are referred to as ‘self-consistency’ equations,

and the mean-field models are sometimes referred to as ‘self-consistent field theories’.

The mean-field approximation to the free energy of the ensemble (per particle) is given

by

F0(β,Q,B) = − 1

β
lnZ0(β,Q,B) .

For Straley’s model, in dimensionless form, this becomes

F0(β,Q,B) =
1

2
(Q · Q + 2γQ · B + λB · B)

− 1

β
ln

1

|Ω|

∫
Ω

eβ{q(ω)·Q+γ[q(ω)·B+b(ω)·Q]+λb(ω)·B}dω ,
(4.3)

where

F0 :=
F0

zU0
, β :=

zU0

kBT
.

The constant factor |Ω| =
∫
Ω
dω = 8π2, which does not affect the equilibrium phases, has

been introduced for normalisation so that F0 = 0 in the isotropic state Q = B = 0 – we

henceforth drop the overbars.

Stationarity of F0 can be seen to imply self-consistency (except for the degenerate case

λ = γ2):

DQF0 = 0 , DBF0 = 0 ⇒ Q = 〈q(·)〉ρ0
, B = 〈b(·)〉ρ0

.

In the case of multiple coexisting equilibria, the phase of the system is given by the

equilibrium pair (Q,B) that gives the least value of the free energy F0. At high temperatures

(low values of β), the only stationary point of F0 is given by the isotropic state Q = B = 0.

As the temperature is lowered (β is increased), non-trivial solutions of (4.2) emerge with
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lower free-energy values, yielding ordered phases of different types and degrees of order

(depending on the nature of Q and B). We emphasise that while the expression for the

mean-field approximate free energy (4.3) makes sense for any real, symmetric and traceless

tensors Q and B, it has a provable relationship to the true free energy of the ensemble

only when Q and B satisfy the self-consistency conditions (4.2).

4.2 Numerical implementation

When the mean-field free energy in (4.3) develops an ordered phase (that is, it is stationary

for Q or B different from zero), it does so in a degenerate way, as Q and B (and the

whole ensemble) can order in any orientation or direction in space. Thus we can fix an

eigenframe ex, ey , ez , which we assume both Q and B share, and represent these symmetric

and traceless tensors as

Q = S
(

ez ⊗ ez − 1

3
I
)

+ T (ex ⊗ ex − ey ⊗ ey),

B = S ′
(

ez ⊗ ez − 1

3
I
)

+ T ′(ex ⊗ ex − ey ⊗ ey).

(4.4)

The real variables in x = (S, T , S ′, T ′) are ‘scalar order parameters’ (related to the

eigenvalues of Q and B). In terms of these variables, the isotropic phase corresponds to

S = T = S ′ = T ′ = 0, while the uniaxial nematic phase is given by either S � 0 or S ′ � 0

(or both) together with T = T ′ = 0, and the biaxial nematic phase is associated with

T � 0 and/or T ′ � 0. We note that there are actually three equivalent expressions in

(S, T , S ′, T ′) for each uniaxial state and six for each biaxial one because of the possibility

of interchanging the roles of ex, ey and ez .

In terms of the parameterisation above, the dimensionless mean-field free energy (4.3)

takes the following form:

F0(S, T , S
′, T ′, β) =

1

3
S2 + T 2 + 2γ

(1

3
SS ′ + TT ′

)
+ λ

(1

3
S ′2 + T ′2

)
− 1

β
ln
Z0

8π2
, (4.5a)

where

Z0(S, T , S
′, T ′, β) =

∫ 2π

0

∫ 2π

0

∫ π

0

eβg(θ,φ,ψ) sin θ dθ dφ dψ , (4.5b)

with

g(θ, φ, ψ) = (S + γS ′)
(
cos2θ − 1

3

)
+ sin2θ [(T + γT ′) cos 2φ+ (γS + λS ′) cos 2ψ]

+(γT + λT ′)[(1 + cos2θ) cos 2φ cos 2ψ − 2 cos θ sin 2φ sin 2ψ] .
(4.5c)

The function F0 in (4.5a) is invariant under the transformations of (S, T , S ′, T ′) that leave

both Q and B in (4.4) unchanged upon exchanging the members of the basis (ex, ey, ez).

In particular, by exchanging ex and ey , the pair (T ,T ′) is transformed into (−T ,−T ′).

As can also be checked directly, such a parity transformation also leaves F0 unchanged,

thus embodying a symmetry of the type considered in this paper. In particular, the

corresponding spaces �s and �a that decompose �4 are here �s = {x ∈ �4 | x =

(S, 0, S ′, 0)} and �a = {x ∈ �4 | x = (0, T , 0, T ′)}. Specifically, this �s represents a
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collection of uniaxial phases. Two other equivalent flavours of the same collection are

obtained from it by applying to (4.4) the transformations that exchange ez with either ex
or ey . It is easily shown (for example, by use of (38b) of [3]) that the equivalent images

of �s under these transformations are �′
s = {x ∈ �4 | x = − 1

2
(S,−S, S ′,−S ′)} and

�′′
s = {x ∈ �4 | x = − 1

2
(S, S , S ′, S ′)}, whence similar expressions for the corresponding

orthogonal complements �′
a and �′′

a would follow. Our method, which is here applied to

the symmetry-breaking bifurcations into �a, would equally apply to the corresponding

bifurcations of the replicas �′
s and �′′

s of �s into �′
a and �′′

a, respectively. We shall

hereafter disregard these equivalent bifurcation replicas, with no loss in generality.

Free energies are calculated using formulas (4.5) (after some simplifications) with a high-

order quadrature rule used to approximate the triple integral. The stationarity conditions

are a coupled system of four nonlinear equations in the four unknowns (S, T , S ′, T ′)

resulting from

∇xF0 = 0 ⇔ ∂F0

∂S
=

∂F0

∂T
=

∂F0

∂S ′ =
∂F0

∂T ′ = 0 .

For given material parameters, γ and λ, solution branches are explored with the aid of a

numerical bifurcation package, MatCont (see http://sourceforge.net/projects/matcont/),

with β as continuation parameter. The isotropic state, S = T = S ′ = T ′ = 0, is always an

equilibrium solution for any value of β. All non-trivial solutions that we have been able to

find were obtained by following branches (including secondary bifurcations) bifurcating

from the isotropic (trivial) branch.

As branches of equilibria are traced out numerically, free energies are tabulated and

local stability is assessed at each computed solution point. The tabulated free energies are

used to determine the globally stable phase of the system. The assessment of local stability

involves the eigenvalues of the Hessian of F0 with respect to S , T , S ′ and T ′. In some

cases (depending on the values of γ and λ) this is simply a matter of determining if the

minimum eigenvalue of the Hessian is non-negative. In other cases, for values of γ and

λ associated with ‘partly repulsive’ pair potentials, the criterion for local stability is more

subtle and involves the non-negativity of an eigenvalue of the Hessian other than the

minimum one – see [1,5]. As branches of equilibria are traced out, the ξ and τ parameters

of Section 3.1 are also calculated to identify potential tricritical points. We now sketch

how the calculation of ξ and τ is performed.

We consider a bifurcation breaking the �2 symmetry (T ,T ′) �→ (−T ,−T ′) at a point

P0 = (x0, β0) with a rank defect of one, as discussed in Section 3.1.1. Thus the Hessian of

F0 is singular at P0 and has a one-dimensional kernel � ⊂ �a. The formulas for ξ and τ

are given by (3.10) and (3.11), which for the purpose of numerical evaluation we write as

ξ =
[
∇3

xF(x0, β0) · (t0 ⊗ t0)
]

· H−1
0s b0 − B0t0 · t0 (4.6)

and

τ = ∇4
xF(x0, β0) · (t0 ⊗ t0 ⊗ t0 ⊗ t0)

−3
[
∇3

xF(x0, β0) · (t0 ⊗ t0)
]

· H−1
0s

[
∇3

xF(x0, β0) · (t0 ⊗ t0)
]
.

(4.7)

The role of F is now being played by the mean-field free energy F0 of (4.5a). By computing

explicitly τ in (4.7) and requiring it to vanish, one recovers the tricriticality criterion worked

out in [6] (see (4.4)) within a theory limited to condensed phases described at most by

https://doi.org/10.1017/S0956792510000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792510000355


A Criterion for Symmetric Tricritical Points 21

four scalar order parameters. In our numerical implementation of the search for general

symmetric tricritical points with dim � = 1, we found it convenient to restore H−1
0 in both

(4.6) and (4.7) instead of H−1
s0 , which has there the same effect. We found this method

more appealing for its genericness, as only H0 and t0 need to be known numerically for it

to apply: such a feature becomes more valuable when the method is applied to retrace the

bifurcation branches emanating from the other two equivalent uniaxial states related to

the one being considered here by the three-fold symmetry enjoyed by the representation

of Q and B in (4.4).

The numerical bifurcation package that we have employed requires user-supplied func-

tions to evaluate the equilibrium equations and some higher derivative information. This

information is expressed in terms of coordinate vectors and matrices with respect to the

standard bases:

F = F(x, p) , x = (S, T , S ′, T ′) p = (β, γ, λ)

g :=

[
∂F

∂xi

]
4×1

, H :=

[
∂2F

∂xi∂xj

]
4×4

, Hp :=

[
∂2F

∂xi∂pj

]
4×3

.

The formulas for these were developed analytically from (4.5), with a high-order quadrat-

ure rule used to evaluate the various triple integrals that occur in all these expressions.

Note that g and H are just the coordinate vector and matrix for the gradient G and

the Hessian H, respectively. Note also that the first column of the Hp matrix is just the

coordinate vector for b = ∂
∂β

∇xF . These routines are available to be called to evaluate

any of these quantities, as needed, for any values of (S, T , S ′, T ′, β, γ, λ). We base our

computations of ξ and τ upon them.

The evaluation of ξ and τ begins by first calling the user-supplied function to evaluate

the Hessian matrix H0 at P0, and then using a library routine to calculate its eigenvalues

and orthonormal eigenvectors:

H0ui = λiui , i = 1, 2, 3, 4, uT
jui = δij , λ1 = 0 , λ2, λ3, λ4 � 0 .

From these we build

t0 = u1 , Q = [u2, u3, u4] .

The column vector t0 is the coordinate vector of the tangent to the bifurcating branch,

and the columns of the 4×3 matrix Q form an orthonormal basis for the column space of

H0. In terms of Q, one can express the matrix representation of the orthogonal projection

onto �⊥ (which coincides with the range of H0) and the inverse of H0 restricted to its

range:

[ P�⊥] = QQT,
[
H−1

0

]
= Q

(
QTH0Q

)−1
QT.

For the computation of both the ξ and τ formulas, we require the vector ∇3
xF(x0, β0)·

(t0 ⊗ t0). In order to evaluate this, it is helpful to observe that it corresponds to the second

directional derivative of the gradient G in the direction t0:

∇3
xF(x0, β0) · (t0 ⊗ t0) =

d2

dε2
G(x0 + ε t0, β0)

∣∣∣∣
ε=0

.
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Let v denotes the associated coordinate vector, which we can approximate by standard

central finite differences:

v =
d2

dε2
g(x0 + ε t0, β0)

∣∣∣∣
ε=0

≈ 1

ε2
[ g(x0 + ε t0, β0) − 2g(x0, β0) + g(x0 − ε t0, β0)] .

The middle term in brackets above vanishes at all equilibrium points, and we obtain our

final approximate formula for this vector:

ṽ :=
1

δ2
2

[ g(x0 + δ2t0, β0) + g(x0 − δ2t0, β0)].

Here the evaluations of g are performed by the user gradient routine, and the step size

δ2 is chosen to give machine-attainable accuracy. The coordinate vector associated with

H−1
0 (∇3

xF(x0, β0) · (t0 ⊗ t0)), which we call w, can then be approximated via

w =
[
H−1

0

(
∇3

xF(x0, β0) · (t0 ⊗ t0)
) ]

= Q(QTH0Q)−1QTv ≈ Q(QTH0Q)−1QTṽ =: w̃

by solving a three-by-three linear algebraic system.

The value of ∇4
xF(x0, β0) · (t0 ⊗ t0 ⊗ t0 ⊗ t0) can be approximated in a similar way by

observing that

∇4
xF(x0, β0) · (t0 ⊗ t0 ⊗ t0 ⊗ t0)

=
∂4F

∂xi∂xj∂xk∂xl

∣∣∣∣
P0

t0i t
0
j t

0
k t

0
l = t0i

[
∂2Hij

∂xk∂xl

∣∣∣∣
P0

t0k t
0
l

]
t0j .

The expression in brackets above can be related to the second directional derivative of

Hij in the direction t0:

d2

dε2
Hij(x0 + ε t0, β0)

∣∣∣∣
ε=0

=
∂2Hij

∂xk∂xl

∣∣∣∣
P0

t0k t
0
l .

Again this can be approximated by standard central differences to obtain

∇4
xF(x0, β0) · (t0 ⊗ t0 ⊗ t0 ⊗ t0)

≈ 1

δ2
2

tT0 [H(x0 + δ2t0, β0) − 2H(x0, β0) + H(x0 − δ2t0, β0)] t0 .

The matrix H0 = H(x0, β0) has already been evaluated. The other two needed Hessian

matrices can be evaluated via the user Hessian routine, and we arrive at our final

approximation to the τ formula (4.7):

τ ≈ 1

δ2
2

tT0 [H(x0 + δ2t0, β0) − 2H0 + H(x0 − δ2t0, β0)] t0 − 3w̃Tṽ . (4.8)

Again the step size δ2 is chosen to give machine-attainable accuracy.

The values of ξ can be similarly calculated. The coordinate vector b0 = [b0] =

[ ∂
∂β

∇xF(x0, β0)] is obtained from the first column of the matrix Hp returned by the user
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routine. The coordinate vector r = [ H−1
0 b0] is computed in the same way that w was

calculated from v above:

r =
[
H−1

0 b0

]
= Q

(
QTH0Q

)−1
QTb0 .

The matrix B0 = [ ∂
∂β

∇2
xF(x0, β0)] can be approximated by centred differences with respect

to β:

B0 ≈ 1

2δ1
[H(x0, β0 + δ1) − H(x0, β0 − δ1)] =: B̃0 ,

where again the user Hessian routine is called for the evaluations of H, and δ1 is chosen

to deliver machine-attainable accuracy. The final approximation for the ξ formula (4.6) is

given by

ξ ≈ rTṽ − tT0B̃0t0 . (4.9)

The limiting factor in the accuracy of these formulas is the accuracy to which the user

functions evaluate ∂F/∂xi, ∂2F/∂xi∂xj and ∂2F/∂xi∂β. With the finite-difference step sizes

δ1 and δ2 properly calibrated, the computed τ and ξ should have no worse than half the

precision of the outputs of the user routines. In our implementation, the quadrature used

for the triple integrals in the user routines delivers close to full floating-point double-

precision accuracy (around 14–15 significant digits), and so the computed values of τ and

ξ should have around seven significant digits.

Further advantage of the one-dimensional nature of the kernel of H0 could be taken

by computing w̃ and r using the (non-singular) bordered systems,[
H0 t0
tT0 0

] [
w̃

u

]
=

[
ṽ

0

]
,

[
H0 t0
tT0 0

] [
r

u

]
=

[
b0

0

]
, (4.10)

which uniquely determine w̃ and r via

H0w̃ = ṽ, tT0w̃ = 0, H0r = b0, tT0r = 0,

with u = 0 in each case. This is more consistent with common practice in numerical

bifurcation theory – see [9 (ch. 3), 16 (pp. 176–177)].

In the numerical phase and bifurcation analysis of the biaxial mean-field model ex-

pressed in (4.5), tricritical points are encountered in multiple places. One such encounter

is associated with a phase sequence, in which a high-temperature isotropic phase, upon

cooling, suffers a first-order transition to a uniaxial phase associated with a branch that

bifurcates from the isotropic branch at a slightly lower temperature (slightly larger value

of β). This uniaxial branch then suffers a secondary bifurcation to a biaxial branch as the

temperature is further lowered. For small values of the biaxiality parameter λ, this sec-

ondary bifurcation is supercritical and is associated with a second-order uniaxial–biaxial

phase transition. For larger values of λ, this bifurcation becomes subcritical, and the

transition becomes first-order transition. The value of λ (and associated critical value of

β) at which the change from supercritical (second-order) to subcritical (first-order) occurs

corresponds to a tricritical point of the precise nature analysed in Section 3.1.

The primary order parameters that play a role in this particular phase sequence are

S and T ′. Figures 3–5 illustrate the supercritical, tricritical and subcritical sequences as
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Figure 3. (Colour online) Bifurcation diagram for the biaxial mean-field free energy F0 in (4.5a):

supercritical case (γ = 0.1, λ = 0.175). Dominant-order parameters: S , T ′. Isotropic branch:

S = T ′ = 0. Uniaxial branch: S � 0, T ′ = 0. Biaxial branch: T ′ � 0. Critical parameter values are

given in Table 4.2. Dashed lines: unstable equilibria; solid lines: locally stable; heavy solid lines:

globally stable.
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Figure 4. (Colour online) Bifurcation diagram for biaxial mean-field free energy F0 in (4.5a):

tricritical case (γ = 0.1, λ = 0.206). Dominant-order parameters: S , T ′. Isotropic branch: S = T ′ = 0.

Uniaxial branch: S � 0, T ′ = 0. Biaxial branch: T ′ � 0. Critical parameter values are given in

Table 4.2. Dashed lines: unstable equilibria; solid lines: locally stable; heavy solid lines: globally

stable.

λ changes from 0.175 to 0.206 to 0.215 (with fixed γ = 0.1). The values of ξ and τ

at the bifurcation point, computed using formulas (4.9) and (4.8), are summarised in

Table 4.2 and indicate the proper sign patterns associated with the criterion developed in

Section 3.2.1. Further increase in the λ parameter results in the biaxial branch superseding

the uniaxial one, accompanied by the direct first-order isotropic-biaxial transition [1]. It

should finally be recalled that, as already mentioned above, there are two other uniaxial

branches equivalent to this one (related to interchanged roles of ex, ey and ez) and

associated symmetry-breaking secondary bifurcations corresponding to different values of

(S, T , S ′, T ′) that exactly present the same picture.
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Table 1. Parameter values associated with phase sequences illustrated in Figures 3–5; γ and

λ are dimensionless model parameters associated with the biaxial mean-field model (4.5); β0

corresponds to the value of continuation parameter β (reduced reciprocal temperature) at

the secondary bifurcation from the uniaxial (T ′ = 0) to the biaxial (T ′ � 0) branch; ξ

and τ are the values of the parameters associated with the tricriticality criterion defined in

(3.10) and (3.11) and evaluated by (4.9) and (4.8)

Figure γ λ β0 ξ τ

3 0.1 0.175 7.362 0.889 1.114

4 0.1 0.206 6.850 0.183 0.000

5 0.1 0.215 6.767 0.241 −1.282
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Figure 5. (Colour online) Bifurcation diagram for biaxial mean-field free energy F0 in (4.5a):

subcritical case (γ = 0.1, λ = 0.215). Dominant-order parameters S , T ′. Isotropic branch: S = T ′ = 0.

Uniaxial branch: S � 0, T ′ = 0. Biaxial branch: T ′ � 0. Critical parameter values are given in

Table 4.2. Dashed lines: unstable equilibria; solid lines: locally stable; heavy solid lines: globally

stable.

5 Conclusions

We considered symmetric tricritical points, where an ordering phase transition changes

from first to second order, or vice versa. We pointed out how the origin of this name –

tricritical – can be retraced in the language of phase coexistence and how it came to

acquire the broader meaning adopted here, especially in the liquid crystal literature, where

tricritical points have been both predicted theoretically [24] and observed experiment-

ally [23]. We reviewed classical methods of bifurcation theory and applied them to the

issue at hand, intending to arrive at a simple analytical criterion that indicates where

tricritical points may take place along a phase represented by a family of (possibly

temperature-depending) stationary points for a free energy F expressed in terms of any

finite number of scalar order parameters, be it derived from a mean-field approximation

or suggested by a Landau theory.

We fully succeeded in our objective only when the equilibrium solutions representing

a competing phase bifurcate at a point where the Hessian of F has a null space � of
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dimension one. Our analysis of the bifurcation equations was intentionally more general

and also allowed for dim� > 1, to explore possible avenues to extend our criterion,

which, however, remains fully predictive only for dim � = 1.

A feature of the types of problems we consider, which distinguishes them from more

general problems of equivariant bifurcation theory, is that they are gradient systems,

for which the equilibrium equations derive from energy (or free energy, in our case).

This provides additional structure, as, for example, the Jacobian associated with the

equilibrium equations is actually the Hessian, and therefore symmetric with orthogonal

kernel, range etc. The setting is similar to that found in computational mechanics, for

example [13] or [27]. In the latter paper, an energy-derived system is analysed via the

Lyapunov–Schmidt reduction and questions related to the stability of bifurcating branches

are also considered. What is referred to in that paper as ‘the symmetric case’ is analogous

to the type of symmetry breaking that we have considered here. The approach of [27]

is somewhat more algebraic and coordinate-based, however, and aspects different from

those considered here are explored there.

As is clear from its formulation (3.23), the tricriticality criterion proposed here is of

a local nature, as it only indicates whether a transition, in case it really takes place

at the bifurcation point under scrutiny, is of first or second order. In order to know

whether a putative first- or second-order transition actually takes place, one should also

assess information of a global nature. As already remarked in Section 3.1, a necessary

condition is that the branch representing the competing phase connects at sufficiently low

temperatures with the ground state of F . Even this, however, is not sufficient, and other

bifurcations away from the one being followed may realise the least stationary value of

F at the given temperature. Nevertheless, as shown by the explicit implementation of

the criterion in Section 4.2, monitoring τ and ξ along all branches explored numerically

provides a complete inventory of the bifurcation points that may become tricritical points.

If the limitation of our criterion connected to its local nature can be circumvented

by systematic exploration of the equilibrium branches connected with the free-energy

ground state, then the limitation arising from the assumption that dim � = 1 is intrinsic.

In the mean-field model for biaxial nematics, illustrated in Section 4.1, all secondary

bifurcations into the biaxial phase enjoy a reflectional symmetry and happened to satisfy

the assumption dim� = 1, so that (3.23) allowed us to identify in [1] all tricritical points

of the uniaxial–biaxial transition in the admissible parameter space (γ, λ). The same model,

however, reveals a different scenario when the isotropic-uniaxial transition is examined.

The relevant bifurcations are no longer symmetric and moreover dim� = 2 in the generic

case. In order to ascertain whether the isotropic-uniaxial transition is of first or second

order in the admissible parameter space (γ, λ), we need a bifurcation analysis that follows

the same path outlined in Section 2 above, but conforms to different assumptions. Such

an analysis, which will be presented elsewhere, shows that only a first-order transition into

the uniaxial phase is possible from the isotropic phase for the free energy in (4.5a) for a

generic choice of the model parameters (γ, λ). This is a case where a local criterion, like the

one presented here, becomes most predictive, as it dictates analytically the order of phase

transition, avoiding any speculations based on the absence or presence of discontinuities

in the temperature dependence of the order parameters, which are very hard to validate

numerically.
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