Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-06T13:57:21.726Z Has data issue: false hasContentIssue false

Coarsening rates for the dynamics of slipping droplets

Published online by Cambridge University Press:  04 September 2013

GEORGY KITAVTSEV*
Affiliation:
Max-Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany email: georgy.kitavtsev@mis.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Reduced ordinary differential equation (ODE) models arising from a high-order lubrication system and describing coarsening dynamics of droplets in nanometric polymer film interacting on a hydrophobically coated solid substrate in the presence of large slippage at the liquid/solid interface are analysed. In the limiting case of infinite slip length corresponding in applications to free films, a collision/absorption model then arises and is solved explicitly. The exact coarsening law is derived for it analytically and confirmed numerically. Existence of a threshold for the decay of initial distributions of droplet distances at infinity at which the coarsening rates switch from algebraic to exponential ones is shown.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

References

[1]Bates, P. W. & Xun, J. P. (1994) Metastable patterns for the Cahn-Hilliard equation: Part I. J. Diff. Equ. 111, 421457.CrossRefGoogle Scholar
[2]Bates, P. W. & Xun, J. P. (1995) Metastable patterns for the Cahn-Hilliard equation: Part II. Layer dynamics and slow invariant manifold. J. Diff. Equ. 117, 165216.CrossRefGoogle Scholar
[3]Bertozzi, A. L., Grün, G. & Witelski, T. P. (2001) Dewetting films: Bifurcations and concentrations. Nonlinearity 14, 15691592.Google Scholar
[4]Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. (2009) Wetting and spreading. Rev. Mod. Phys. 81 (2), 739.Google Scholar
[5]Bray, A. J. (1994) Theory of phase-ordering kinetics. Adv. Phys. 43, 357459.Google Scholar
[6]Brochard-Wyart, F., de Gennes, P.-G., Hervert, H. & Redon, C. (1994) Wetting and slippage of polymer melts on semi-ideal surfaces. Langmuir 10, 15661572.CrossRefGoogle Scholar
[7]Brochard-Wyart, F., Gay, C. & de Gennes, P. G. (1996) Slippage of polymer melts on grafted surfaces. Macromolecules 29, 377382.Google Scholar
[8]Brochard-Wyart, F. & Redon, C. (1992) Dynamics of liquid rim instabilities. Langmuir 8, 23242329.Google Scholar
[9]Clasen, C., Eggers, E., Fontelos, M., Lie, J. & McKinley, G. H. (2006) The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283308.Google Scholar
[10]Craster, R. V. & Matar, O. K. (2009) Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 1131.Google Scholar
[11]de Gennes, P. G. (1985) Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827863.Google Scholar
[12]Derrida, B., Godrèche, C. & Yekutieli, I. (1991) Scale-invariant regimes in one-dimensional models of growing and coalescing droplets. Phys. Rev. A 44 (10), 62416251.Google Scholar
[13]Erneux, T. & Davis, S. H. (1993) Nonlinear rupture of free films. Phys. Fluids 5, 1117.CrossRefGoogle Scholar
[14]Erneux, T. & Gallez, D. (1997) Can repulsive forces lead to stable patterns in thin liquid films? Phys. Fluids 9, 11941196.CrossRefGoogle Scholar
[15]Fetzer, R., Münch, A., Wagner, B., Rauscher, M. & Jacobs, K. (2007) Quantifying hydrodynamic slip: A comprehensive analysis of dewetting profiles. Langmuir 23, 1055910566.CrossRefGoogle ScholarPubMed
[16]Glasner, K. B. (2008) Ostwald ripening in thin film equations. SIAM J. Appl. Math. 69, 473493.Google Scholar
[17]Glasner, K., Otto, F., Rump, T. & Slepjev, D. (2009) Ostwald ripening of droplets: The role of migration. Eur. J. Appl. Math. 20 (1), 167.CrossRefGoogle Scholar
[18]Glasner, K. B. & Witelski, T. P. (2003) Coarsening dynamics of dewetting films. Phys. Rev. E 67, 016302.Google Scholar
[19]Glasner, K. B. & Witelski, T. P. (2005) Collission vs. collapse of droplets in coarsening of dewetting thin films. Physica D 209, 80104.Google Scholar
[20]Kargupta, K., Sharma, A. & Khanna, R. (2004) Instability, dynamics and morphology of thin slipping films. Langmuir 20, 244253.Google Scholar
[21]Kitavtsev, G. (2009) Derivation, Analysis and Numerics of Reduced Ode Models Describing Coarsening Dynamics of Liquid Droplets. PhD thesis, Institute of Mathematics, Humboldt University of Berlin, Berlin, Germany.Google Scholar
[22]Kitavtsev, G., Laurençot, P. & Niethammer, B. (2011) Weak solutions to lubrication equations in the presence of strong slippage. Methods Appl. Anal. 18, 183202.Google Scholar
[23]Kitavtsev, G., Recke, L. & Wagner, B. (2011) Center manifold reduction approach for the lubrication equation. Nonlinearity 24 (8), 23472369.CrossRefGoogle Scholar
[24]Kitavtsev, G. & Wagner, B. (2010) Coarsening dynamics of slipping droplets. J. Engr. Math. 66, 271292.CrossRefGoogle Scholar
[25]Limary, R. & Green, P. F. (2002) Late-stage coarsening of an unstable structured liquid film. Phys. Rev. E 60, 021601.CrossRefGoogle Scholar
[26]Limary, R. & Green, P. F. (2003) Dynamics of droplets on the surface of a structured fluid film: Late-stage coarsening. Langmuir 19, 24192424.Google Scholar
[27]Menon, G., Niethammer, B. & Pego, B. (2010) Dynamics and self-similarity in min-driven clustering. Trans. Amer. Math. Soc. 362, 65916618.Google Scholar
[28]Menon, G. & Pego, B. (2004) Approach to self-similarity in Smoluchowskis coagulation equations. Comm. Pure Appl. Math. 57 (9), 11971232.Google Scholar
[29]Menon, G. & Pego, B. (2008) The scaling attractor and ultimate dynamics for Smoluchowskis coagulation equations. J. Nonlinear Sci. 18 (2), 143190.Google Scholar
[30]Münch, A. (2005) Dewetting rates of thin liquid films. J. Phys. Condens. Matter 17, S309–S318.Google Scholar
[31]Münch, A. & Wagner, B. (2005) Contact-line instability of dewetting thin films. Physica D 209, 178190.Google Scholar
[32]Münch, A., Wagner, B. & Witelski, T. P. (2006) Lubrication models with small to large slip lengths. J. Engr. Math. 53, 359383.Google Scholar
[33]Oron, A., Davis, S. H. & Bankoff, S. G. (1997) Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.Google Scholar
[34]Otto, F., Rump, T. & Slepjev, D. (2006) Coarsening rates for a droplet model: Rigorous upper bounds. SIAM J. Appl. Math. 38, 503529.CrossRefGoogle Scholar
[35]Peschka, D. (2008) Self-Similar Rupture of Thin Liquid Films With Slippage. PhD thesis, Institute of Mathematics, Humboldt University of Berlin, Berlin, Germany.Google Scholar
[36]Pismen, L. M. & Pomeau, Y. (2004) Mobility and interactions of weakly nonwetting droplets. Phys. Fluids 16, 26042612.Google Scholar
[37]Redon, C., Brochard-Wyart, F. & Rondelez, F. (1991) Dynamics of dewetting. Phys. Rev. Lett. 66 (6), 715718.Google Scholar
[38]Reiter, G., Sharma, A., Casoli, A., David, M.-O., Khanna, R. & Auroy, P. (1999) Thin film instability induced by long range forces. Langmuir 15, 25512558.Google Scholar
[39]San, X. & Ward, M. J. (2000) Dynamics and coarsening of interfaces for the viscous Cahn–Hilliard equation in one spatial dimension. Stud. Appl. Math. 105, 203234.Google Scholar
[40]Seemann, R., Herminghaus, S. & Jacobs, K. (2001) Gaining control of pattern formation of dewetting films. J. Phys. Condens. Matter 13, 49254938.Google Scholar
[41]Sharma, A. & Reiter, G. (1996) Instability of thin polymer films on coated substrates: Rupture, dewetting and drop formation. J. Colloid Interface Sci. 178, 383389.Google Scholar
[42]Williams, M. B. & Davis, S. H. (1982) Nonlinear theory of film rupture. J. Colloid Interface Sci. 90, 220228.Google Scholar