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Reduced ordinary differential equation (ODE) models arising from a high-order lubrication

system and describing coarsening dynamics of droplets in nanometric polymer film interacting

on a hydrophobically coated solid substrate in the presence of large slippage at the liquid/solid

interface are analysed. In the limiting case of infinite slip length corresponding in applications

to free films, a collision/absorption model then arises and is solved explicitly. The exact

coarsening law is derived for it analytically and confirmed numerically. Existence of a

threshold for the decay of initial distributions of droplet distances at infinity at which the

coarsening rates switch from algebraic to exponential ones is shown.
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1 Introduction

Dewetting processes of a liquid polymer film of nanometer thickness interacting on a

hydrophobically coated solid substrate have attracted intensive research during last sev-

eral decades, see. e.g. [4, 10, 33]. In general, such processes can be divided into three

stages. During the first stage a liquid polymer film is susceptible to instability due to

small perturbations of film profile. Typically, such films rupture, thereby initiating a

complex dewetting process, see e.g. [37, 38, 40]. The influence of intermolecular forces

plays an important part in the rupture and subsequent dewetting process, see e.g. [11, 42

and references therein]. Typically, the competition between the long-range attractive and

short-range repulsive van der Waals forces reduces the unstable film to an ultrathin

layer that connects evolving patterns and is given by the minimum of the correspond-

ing intermolecular potential, i.e. the film settles into an energetically more favourable

state, see [3, 14]. The second stage is associated with the formation of regions of this

minimal thickness, bounded by moving rims that connect to the undisturbed film, see

e.g. [8, 31, 41].

In this study we are interested in the third and the last stages of the dewetting

process, namely the long-time coarsening process that originates in the breaking up of

the evolving patterns into small droplets and is characterized by its subsequent slow-

time coarsening dynamics, which has been observed and investigated experimentally by

Limary and Green [25,26]. They show that during coarsening the average size of droplets

increases and the number of droplets decreases. The coarsening mechanisms that were
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Figure 1. Numerical solution to (1.5a)–(1.5b) with ε = 0.1, β = 2.5, Re = 1, σ = 1, ν = 4 showing

an example of a coarsening process (collapse of the 4th small droplet and collision of the 2nd and

3rd droplets) in an array of five quasi-equilibrium droplets.

observed in such films are typically subsequent collapses of smaller droplets and collisions

of neighbouring ones. During collapse the size of a droplet shrinks in time and its

mass is distributed in the ultrathin layer. In turn, collisions among droplets occur due

to the mass transfer through the ultrathin layer between them that causes a translation

movement between them, i.e. droplet migration. Colliding droplets each time form a bigger

droplet. A numerical example of coarsening dynamics in two-dimensional films is shown in

Figure 1.

Besides intermolecular forces and surface tension at the free surface of the film, the

dewetting of polymer films on hydrophobic substrates also involves such boundary effect

as slippage on a solid substrate [6, 7, 15]. Recently, in Münch et al. [32] one-dimensional

lubrication equations over a wide range of slip lengths were derived from the underlying

equations for the conservation of mass and momentum, together with boundary conditions

for tangential and normal stresses as well as the kinematic condition at the free boundary,

impermeability and the Navier-slip condition at the liquid–solid interface. Asymptotic

arguments based on the magnitude of the slip length show that within a lubrication

scaling there are two distinguished regimes, see [32].

These are the weak-slip and strong-slip models. The former model was derived under

the scaling of the physical slip-length B as B = ηb, where the (small) parameter η,

0 < η � 1, refers to the vertical to horizontal scale separation of thin film, and b denotes

the non-dimensionalised slip length parameter. This model takes the form

∂th = −∂x

(
(h3 + b h2)∂x (σ∂xxh − Πε(h))

)
. (1.1)

Here h(x, t) denotes the height profile for the free surface of a liquid film. The high

order of the lubrication equation (1.1) is a result of the contribution from surface tension

at the free boundary, reflected by the linearized curvature term σ∂xxh with parameter

σ > 0. Further contribution to the pressure is denoted by Πε(h) and represents that

of intermolecular forces, namely long-range attractive and short-range repulsive van

der Waals intermolecular forces. Our analysis here can be applied to a general class

of intermolecular potentials which includes those commonly employed to describe the
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Figure 2. (Colour online) Plot of intermolecular pressure Πε(h) and potential function Uε(h) for

ε = 0.1.

dewetting in nanoscopic thin films [33]. A potential from this class should satisfy the

following assumptions:

• It should have a unique zero at 0 < ε � 1, and a unique maximum at Pmax(ε).

• It should decay as O(h−α) for h → +∞ with some α > 3 and tend to −∞ as h → 0.

For illustrative purposes we work below with a fixed potential from this class already

used for the analysis of coarsening dynamics in [3, 18, 19] and given by

Πε(h) =
ε2

h3
− ε3

h4
with 0 < ε � 1. (1.2)

The corresponding maximum value in this case is given by

Pmax(ε) =
27

256ε
. (1.3)

The potential can be written as a derivative of the potential function Uε(h) = U(h/ε) (see

Figure 2), where

U(H) = − 1

2H2
+

1

3H3
. (1.4)

The small parameter ε is the global minimum of Uε(h) and to the leading order gives the

thickness of an ultrathin layer.

In turn, the strong-slip model describing the second important asymptotic regime was

derived in [32] under the scaling of the physical slip-length B as B = β/η and takes the

form

Re (ε∂t(hu) + ∂x(hu
2)) = ν∂x(h∂xu) + h∂x(σ∂xxh − Πε(h)) − u

β
, (1.5a)

ε∂th = − ∂x (hu) , (1.5b)

with β denoting the non-dimensionalised slip-length parameter in this case. Here u(x, t)

and h(x, t) denote the average velocity in the lateral direction and the height profile for

the free surface, respectively. Terms Re (∂t(hu) + ∂x(hu
2)) and ν∂x(h∂xu) in (1.5a)–(1.5b),

with Re, ν � 0 denoting the Reynolds number and viscosity parameter, represent inertial

and Trouton viscosity terms, respectively. The pressure and the flux terms in this model
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have the form

p(h) = σ∂xxh − Πε(h), j(h, u) = hu. (1.6)

Note that the small parameter ε from the definition (1.2) is introduced as the prefactor

before time derivatives in (1.5a)–(1.5b) in order to capture later on the right timescale for

the slow dynamics associated with collapse and collisions of droplets.

In addition, the weak-slip and strong-slip models contain as limiting cases three further

lubrication models. One of them is the no-slip model, which is obtained setting b = 0 in

the weak-slip model:

∂th = −∂x

(
h3∂x (∂xxh − Πε(h))

)
. (1.7)

The second one is obtained from the strong-slip model in the limit β → ∞ and describes

the dynamics of suspended or falling free films:

Re (ε∂t(hu) + ∂x(hu
2)) = ν∂x(h∂xu) + h∂x(σ∂xxh − Πε(h)), (1.8a)

ε∂th = − ∂x (hu) . (1.8b)

For the third limiting case, the non-dimensionalised slip-length parameter βI is taken of

the order of magnitude of the physical slip-length B, therefore lying in between those that

lead to the weak-slip and strong-slip models. The corresponding intermediate-slip model

is given by (up to rescaling time by βI )

∂th = −∂x

(
h2∂x (∂xxh − Πε(h))

)
. (1.9)

It can be obtained by rescaling time in (1.1) by b and letting b → ∞ or by rescaling time

and the horizontal velocity by β in (1.5a)–(1.5b) and taking the limit β → 0. Existence of

weak solutions in (1.5a)–(1.5b) and (1.8a)–(1.8b) and rigorous convergence of the former

ones to the classical solutions of (1.9) as β → 0 was shown recently in [22].

As in [22], we consider systems (1.5a)–(1.5b) and (1.8a)–(1.8b) on a bounded interval

(0, L) with the boundary conditions

u = 0, and ∂xh = 0 at x = 0, L, (1.10)

whereas equations (1.1), (1.7) and (1.9) with

∂xxxh = 0, and ∂xh = 0 at x = 0, L. (1.11)

Both (1.10) and (1.11) incorporate zero flux at the boundary and as a consequence imply

the conservation of mass

1

L

∫ L

0

h(x, t) dx = const, ∀t > 0.

Within the context of thin liquid films, first studies of the coarsening dynamics can be

found in Glasner and Witelski [18, 19] and Pismen and Pomeau [36]. There the authors

considered the no-slip lubrication model (1.7). They confirmed numerically the existence

of two coarsening driven mechanisms, namely collision and collapse. One of the typical

problems considered in [18, 19] was the calculation of coarsening rates, i.e. how fast the
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number of droplets decreases due to coarsening in time. Often, in order to identify the

characteristic dependence for coarsening rates one needs to model very large arrays of

droplets (around 104). But due to the presence of the ultrathin layer of order ε between

droplets, the problem of numerical solution for any lubrication equation becomes very

stiff in time and demands high spatial resolution as the number of droplets increases.

Therefore, there exists a need for further reduction of lubrication models to more simple,

possibly finite-dimensional ones.

The authors in [18, 19] observed that solutions of lubrication equations describing

coarsening dynamics stay in time very close to a perturbed finite combination of quasi-

stationary droplets and can be therefore parameterized by a finite number of parameters,

namely positions and pressures of drops. On the basis of this observation they derived for

the first time from the lubrication equation (1.7) a closed reduced ODE model describing

the slow evolution of positions and pressures in time. Using this reduced model the

authors also derived the corresponding coarsening law in the form

n(t) ∼ t−2/5, (1.12)

where n(t) denotes the number of droplets remaining at time t. Later, analogous reduced

ODE models from lubrication equation (1.1) with a general mobility M(h) = hq , q > 0 in

one- and two-dimensional cases were derived and analysed in [16, 17]. A step to rigorous

justification of these models on the basis of a centre manifold approach was made recently

in [23]. For the case M(h) = h the coarsening law (1.12) was justified rigorously in [34]

using the gradient flow structure of the corresponding lubrication equation. The works

of [16, 17] concern the migration of droplet. There it was shown that the direction of

the migration of droplets governed by (1.1) with a general mobility M(h) = hq , q > 0 is

opposite to one of the mass flux from the surrounding ultrathin film. Moreover, for q � 2

the driving coarsening mechanism is collapse of droplets that is due to mass diffusion in

the ultrathin layer between droplets and is similar to Ostwald ripening in binary alloys,

see [1, 2, 39]. Also note that in the no-slip case q = 3, i.e. one described by (1.7), as was

shown in [19] even the systems coarsening solely due collisions obey the law (1.12).

Recently, Kitavtsev and Wagner [24] and Kitavtsev [21] have shown that the coarsening

dynamics of quasi-stationary droplets governed by (1.5a)–(1.5b) is also driven by collapse

and collision. There reduced ODE models analogous to that of [18, 19] were derived for

system (1.5a)–(1.5b) as well as for its limiting case (1.8a)–(1.8b). In contrast to the case

of (1.1), it was found there that the coefficients of the strong-slip reduced ODE model

explicitly depend on the slip length β. In particular, there exists a critical length βcr = O(ε)

such that the migration of droplets proceeds in the direction of the applied mass flux for

β > βcr and opposite to it for β < βcr. Moreover, it was shown that for moderate and

large β the driving coarsening mechanism switches from collapse to collision of droplets.

Based on these observations it was conjectured and shown numerically in [24] that the

coarsening rates for systems (1.5a)–(1.5b) and (1.8a)–(1.8b) can be remarkably different

from (1.12).

In this study we continue the research initiated in [24]. Our aim here is to derive explicit

coarsening laws for the dynamics of droplets in the strong-slip and free film regimes, i.e.

governed by lubrication system (1.5a)–(1.5b) and its limiting case (1.8a)–(1.8b). The part
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missing in [24] was the derivation of flux representation between interacting droplets for

moderate and large slip lengths β which was important for the closure of the derived

reduced ODE models. Therefore, inspired by the matched asymptotics technique applied

by Glasner [16] to the lubrication equation (1.1), we present in Section 2 a closed form

derivation of reduced ODE models for (1.5a)–(1.5b) and (1.8a)–(1.8b) that incorporate

the explicit flux representation for all 0 < β � ∞.

In Section 3 we concentrate on the reduced ODE model corresponding to (1.8a)–

(1.8b), i.e. on the regime of free films characterized by the infinite slip length β = ∞.

In this case the migration and subsequent collisions of droplets dominate completely the

collapse events during the coarsening process. Therefore, we look only at the migration

subsystem of the derived reduced ODE model such that droplet masses and accordingly

(as it is explained in detail in Section 3) pressures are kept constant during evolution

of droplets and updated only after each subsequent collision event. We further observe

that for special initial data this migration subsystem can be explicitly solved, while its

solution represents subsequent collisions of N − 1 droplets with the largest last one.

Therefore, we call such combination of the migration ODEs and the initial data an

exactly solvable collision/absorption model. It turns out that the coarsening law for this

model depends only on the initial distribution of distances between droplets and can be

derived analytically. Finally, we derive the continuous counterpart of the coarsening law

proceeding to the limit N → ∞.

In Section 4 we consider several examples of initial distributions of distances between

droplets and show that the corresponding coarsening rates depend only on the distribution

decay at infinity. Moreover, for an explicit family of distributions decaying as 1/x1+α with

α > 0, we show the existence of a threshold at α = 1 at which the coarsening rates switch

from algebraic to exponential ones.

In Section 5.1 we justify the derived hierarchy of the reduced models by the numerical

comparison of their solutions with the solutions of the initial partial differential equation

(PDE) system (1.5a)–(1.5b) and its limiting cases (1.9) and (1.5a)–(1.5b). We observe that

deviation between them stays O(ε) uniformly in time. Next, we compare solutions of the

collision/absorption model from Section 3 with those of a fully reduced ODE system for

the case β = ∞. Finally, in Section 5.2 we check numerically the derived coarsening law

for the collision/absorption model in the case of finite N and its continuous counterpart.

2 Derivation of reduced ODE models

We consider a solution to (1.5a)–(1.5b) which stays close in time to a union of N + 1

droplets, whose precise characterization is described below. Similar to the derivation of

reduced coarsening models for the classical thin film equation in [16], we distinguish three

regions in our matched asymptotic analysis (see Figure 3).

• Droplet core (DC) region: This region corresponds to droplets and is composed of

the union of disjoint intervals (Xi(t) − Ri(t), Xi(t) + Ri(t)) so that Xi(t) and Ri(t) are

respectively the centre and the radius of the ith droplet, where i = 0, . . . , N. The

dynamical points Xi(t) ±Ri(t) are called contact line points and are defined through the
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Figure 3. Three asymptotic regions in an array of droplets.

relation

h(Xi ± Ri) = εH∗, (2.1)

where H∗ is the global maximum of U ′(H) with function U(H) defined in (1.4). We

expand

Ri = Ri,0 + εRi,1 + · · · , Xi = Xi,0 + εXi,1 + · · · (2.2)

and denote

Ṙ =
dR

dt
, Ẋ =

dX

dt
.

• Contact line (CL) region: It is a microscopic internal layer in the neighbourhood of the

contact line points where h and x scale like ε. Here we employ the change of variables

(x, t) → (z, τ), where z denotes the moving rescaled spatial coordinate, i.e

z =
R(t) − |x − X(t)|

ε
, ∓∂x =

1

ε
∂z , ∂t = ∂τ − 1

ε
∂z(Ṙ0 ∓ Ẋ0). (2.3)

Sign ∓ in the last expression corresponds to two CL regions around the points X ∓ R,

respectively. Accordingly, by definition (2.1) we have h(z = 0) = εH∗.

• Precursor layer (PL) region: It is the complement (−L,L) \ ∪i(Xi − Ri, Xi +Ri). In this

region h scales like ε.

The main goal is to determine the evolution of Ri(t) and Xi(t). To do so as in [16], we

propose self-consistent asymptotic expansions in each of the three regions and connect

them via matching conditions as ε → 0. Corrections to the leading order base solutions

solve linear equations, and the Fredholm-type solvability conditions will yield information

about the dynamics. Proceeding so, we consider other physical parameters Re, β, σ, ν in

(1.5a)–(1.5b) to be O(1) as ε → 0. We should point out that the asymptotical analysis below

is valid for both the case of finite and zero Reynolds numbers Re. The corresponding

inertia terms in (1.5a)–(1.5b) appear to be of much smaller order in the leading order and

corrector equations as far as the following balance between Re and ε holds,

Re � ε−2 (2.4)
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and therefore do not influence the leading order of coarsening dynamics of droplets.

Condition (2.4) is consistent with physical parameter balances used during the derivation

of (1.5a)–(1.5b) in [32].

2.1 Leading order systems

Let us first consider the motion of the ith droplet with i ∈ 1, . . . , N−1. For the convenience

in this and next two sections, we suppress the subscript i. Let us start with the CL region.

Here the solution to (1.5a)–(1.5b) is expanded as

h = εH1 + ε2H2 + · · · , u = εU1 + ε2U2 + · · ·

We will also use the induced expansions

P = P0 + εP1 + · · · , J = ε2J2 + ε3J3 + · · ·

for the pressure and flux functions defined in (1.6). The corresponding leading order

system in ε in this region is given by

∂z(σ∂zzH1 − U ′(H1)) = 0,

∂zH1(Ṙ0 ∓ Ẋ0) = ∓∂z(H1U1).

Integrating the last system and using matching conditions to the DC and PL regions

∂zH1 → 0, ∂zzH1 → 0, H1 → 1 as z → −∞,

∂zzH1 → 0, H1 → +∞ as z → +∞, (2.5)

one obtains

σ

2
(∂zH1)

2 = U(H1) − U(1), (2.6a)

U1 = −(1 − 1

H1
)(Ṙ0 ∓ Ẋ0) ∓ J2(−∞)

H1
. (2.6b)

In particular,

lim
z→+∞

U1 = −(Ṙ0 ∓ Ẋ0), lim
z→−∞

U1 = ∓J2(−∞). (2.7)

Next, in the DC region we expand the solution as

h = h0 + εh1 + ε2h2 + · · · , u = u0 + εu1 + ε2u2 + · · ·

and correspondingly pressure as

p = p0 + εp1 + · · ·

In turn, the leading order system in this region is given by

σh0∂x(∂xxh0) − u0

β
= 0,

−∂x(h0u0) = 0.
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Integrating the second equation in the last system and using the matching condition

h0(X ∓ R) = 0 (2.8)

one obtains u0 ≡ 0. Next, integrating the first equation one obtains the full solution

h0 =
1

R
√

12σ
(R2 − (x − X(t))2), u0 ≡ 0. (2.9)

Correspondingly, the leading order pressure is given by

p0 ≡ 1

R
√

3σ
. (2.10)

In the PL region we expand the solution as

h = εh1 + ε2h2 + · · · , u = εu1 + ε2u2 + · · ·

and correspondingly pressure and flux as

p = p0 + εp1 + · · · , j = ε2j2 + ε3j3 + · · ·

The leading order system in this region is given by

h1∂x(U
′(h1)) = 0,

∂th1 = −∂x(h1u1).

Integrating the system and using the matching condition h1(X ∓ R) = 1, one obtains

h1 ≡ 1, u1 = j2 ≡ const. (2.11)

2.2 Corrector systems in PL and CL regions

For the next order corrections h2, u2 in the PL region, one has the system

h1∂x(U
′′(h1)h2) = −u1

β
,

∂th2 = −∂x(h1u2 + h2u1).

From the first equation and (2.11) one obtains

∂xxh2 = ∂xxp0 = 0 and j2 = −β∂xp0. (2.12)

Proceeding further in the expansion in the CL region for the second-order corrections

H2, U2, one obtains the system

−ν∂z(H1∂zU1) = H1(σ∂zzH2 − U ′′(H1)H2),

0 = ∂zH2(Ṙ0 − Ẋ0) − ∂z(H1U2 + H2U1). (2.13)
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Let us introduce a linear operator

L
[
H

U

]
=

[
H1∂z(σ∂zzH2 − U ′′(H1)H2))

∂z(H2(Ṙ0 − Ẋ0 − U1) − H1U2)

]
.

The formal adjoint operator to L is given by

L∗
[
g

v

]
=

[
−σ∂zzz(H1g) + U ′′(H1)∂z(H1g) − ∂zV (Ṙ0 − Ẋ0 − U1)

∂zvH1

]
.

The following two linear independent functions lie in the kernel of the operator L∗:[
g1

v1

]
:=

[
1

0

]
,

[
g2

v2

]
:=

[
1/H1

0

]
. (2.14)

To derive necessary Fredholm-type solvability conditions for the system (2.13) we multiply

the first equation in (2.13) by g2 and integrate it by (−∞,+∞) to obtain

P0(+∞) − P0(−∞) =

∫ +∞

−∞

ν

H1
∂z(H1∂zU1) dz,

where we have used that in the CL region

P0 = U ′′(H1)H2 − σ∂zzH2. (2.15)

Substituting in the previous expression (2.6b), one obtains

P0(+∞) − P0(−∞) = −νI(∓J2(−∞) + Ṙ0 ∓ Ẋ0), (2.16)

where a constant integral I is given by

I =

∫ +∞

−∞

1

H1
∂z

(
∂zH1

H1

)
dz =

1

35(3 +
√

3)
, (2.17)

and can be effectively calculated from (2.6a) (see Appendix A). Formula (2.16) is an analog

of the Gibbs–Thomson boundary condition and shows that the pressure experiences a

jump at the CL region. Note that this is the first considerable difference between the

coarsening dynamics driven by (1.5a)–(1.5b) and (1.1). In contrast to (2.16), as was shown

in [18], the pressure is constant through the CL region in the case of (1.1).

Next, multiplying the first equation in (2.13) by g3 and integrating it on (−∞,+∞) one

obtains

0 = νH1∂zU1

∣∣∣+∞

−∞
+

∫ +∞

−∞
H1∂z(σ∂zzH2 − U ′′(H1)H2) dz.

Integrating further three times by parts and using (2.6b) and (2.15) one arrives at

0 = −ν
∂zH1

H1
(∓J2(−∞) + Ṙ0 ∓ Ẋ0)

∣∣∣+∞

−∞
− H1P0

∣∣∣+∞

−∞

− σ∂zH1∂zH2

∣∣∣+∞

−∞
+ σ∂zzH1H2

∣∣∣+∞

−∞
,
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Using the matching condition (2.5) and in addition

∂zH2 → const as z → −∞,

∂zH1 → ∂xh0, ∂zH2 ∼ ∂xh1 + ∂xxh0z, H1 ∼ h1 + ∂xh0z as z → +∞, (2.18)

one arrives at

(H1P0)
∣∣∣+∞

−∞
= σ∂zH1(+∞)∂zH2(+∞).

The last expression again using (2.5) and (2.18) implies

σ∂xxh0 = −P (+∞),

σ(∂xh0∂xh1)
∣∣∣
X∓R

= P (−∞) − P (+∞)h1(X ∓ R). (2.19)

Note that the first relation in (2.19) is consistent with already derived (2.9)–(2.10), whereas

the second one is new.

2.3 Corrector system in the DC region

Finally, let us consider the system for the first-order corrections h1, u1 in the DC region

which has the form

0 = ν∂x(h0∂xu1) + σh0∂xxxh1 − u1/β, (2.20a)

∂h0

∂R
Ṙ0 − ∂h0

∂x
Ẋ0 = −∂x(h0u1). (2.20b)

Similarly, we again introduce a linear operator

L
[
h

u

]
=

[
ν∂x(h0∂xu1) + σh0∂xxxh1 − u1/β

−∂x(h0u1)

]
.

The formal adjoint operator to L is given by

L∗
[
g

v

]
=

[
ν∂x(h0∂xg) − g

β
+ h0∂xv

−σ∂xxx(h0g)

]
.

The following two linear independent functions lie in the kernel of the operator L∗:

[
g1

v1

]
:=

[
0

1

]
,

[
g2

v2

]
:=

[
1∫ x

X
dτ
βh0

]
. (2.21)

To derive the necessary Fredholm-type solvability conditions for the system (2.20a)–(2.20b)

we multiply (2.20b) by v1, integrate it and using the matching condition (2.8) obtain

Ṙ0 = 0. (2.22)
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In turn, multiplying the right-hand side of the second equation in (2.13) by v2 and

integrating it by (X − R, X + R), one obtains

0 = −Ẋ0

∫ X+R

X−R

∂h0

∂x
v2 dx +

∫ X+R

X−R

∂x(h0u1)v2 dx = h0u1v2

∣∣∣X+R

X−R
−

∫ X+R

X−R

h0u1∂xv2 dx

− Ẋ0

∫ X+R

X−R

∂h0

∂x
v2 dx = Ẋ0(h0v2)

∣∣∣X+R

X−R
− 2Ẋ0R

β
− 1

β

∫ X+R

X−R

u1 dx

= −2Ẋ0R

β
− 1

β

∫ X+R

X−R

u1 dx.

In the last equality we used that h0 ∼ O(R − |x − X|) and v2 ∼ log(R − |x − X|) as

x → X ∓ R. Next, using (2.20a) and integrating three times by parts, one arrives at

2Ẋ0R

β
= − 1

β

∫ X+R

X−R

u1 dx =

∫ X+R

X−R

ν∂x(h0∂xu1) + σh0∂xxxh1 dx

= [νh0∂xu1 + σh0∂xxh1 − σ∂xh0∂xh1 + σ∂xxh0h1]
∣∣∣X+R

X−R
. (2.23)

Let us note that from (2.20a)–(2.20b) and (2.22) and (2.8) it follows that

u1 ≡ Ẋ0, (2.24a)

∂xxxh1 =
Ẋ0

βσh0
. (2.24b)

Hence, by (2.24a) the first term in the square brackets in (2.23) vanishes. By (2.24b) one

has ∂xxh1 ∼ log(R − |x − X|) as x → X ± R. Due to this and (2.8)–(2.9) the second term

in the square brackets in (2.23) also vanishes. In turn, due to the matching condition

h1(X ∓ R) = H1(0) (2.25)

and (2.9), the fourth fourth term in the square brackets in (2.23) vanishes. Therefore,

relation (2.23) reduces to

2Ẋ0R

β
= − [σ∂xh0∂xh1]

∣∣∣X+R

X−R
. (2.26)

2.4 The final form of the reduced ODE system

At this moment let us introduce back the droplet subscript i = 1, . . . , N − 1. In this section

as in (2.2), the first subscript points out to the droplet label whereas the second one points

to the corresponding term in the asymptotic expansion. Denote by Ji the flux j2 in the

PL region between i − 1th and ith droplets. Combining (2.12) with (2.16) and (2.22) one

obtains that Ji is constant and satisfies

Ji = β
Pi − Pi−1 − 2νJiI − νI(Ẋi,0 + Ẋi−1,0)

di
. (2.27)
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In the last formula we introduced two more notations: the constant leading order pressure

inside ith droplet

Pi =
1

Ri

√
3σ

(2.28)

according to (2.10), and the distance between the neighbouring DC regions

di = Xi − Xi−1 − Ri − Ri−1.

From (2.27) one obtains an explicit expression for Ji:

Ji = β
Pi − Pi−1 − νI(Ẋi,0 + Ẋi−1,0)

di + 2νIβ
, i = 1, . . . , N. (2.29)

Next, from (2.26), the matching conditions (2.19) and (2.25) and equations (2.16) and

(2.22) one obtains the leading order equation for ith droplet position evolution

Ẋi,0 = − Iβν

2Ri + 2Iβν
(Ji+1 + Ji).

Substituting in the last expression the flux representation (2.29), denoting

d̃i =
di

Iνβ
, (2.30)

and using (2.28) one obtains

Ẋi,0 = − Pi

2/(
√

3σβ) + 2IνPi

(
(Pi+1 − Pi) − Iν(Ẋi+1 + Ẋi)

d̃i+1 + 2
+

(Pi − Pi−1) − Iν(Ẋi + Ẋi−1)

d̃i + 2

)
,

for i = 1, . . . , N − 1. (2.31)

In turn by (2.22) and definition (2.28) one has

Ṗi,0 = 0, for i = 0, . . . , N.

The derived ODE system describing the leading order in ε evolution of pressures and

positions of N + 1 droplets will be closed if we additionally prescribe that the first and

the last droplet do not move, i.e

Ẋ0,0 = ẊN,0 = 0, X0 = 0, XN = L. (2.32)

The condition (2.32) corresponds to the situation when one extends the array on N + 1

droplets from interval (0, L) to an infinite array on the whole real line � by reflection

around the points x = 0 and x = L. It also stays in agreement with boundary conditions

(1.10) and (1.11).

Let us point out that the evolution of pressures is slower than one of the positions and

proceeds on the order ε. One can potentially obtain it by going further in the expansion of

the solution to (1.5a)–(1.5b), while an easier way is to derive it from the conservation of

droplet volume as was done in [16,18] for the case of equation (1.1). Namely, the volume
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of the ith droplet Vi is changing due to the difference of the fluxes in the PL regions

surrounding it. Using (2.9) and (2.28), one obtains

V̇i,0 = ε
4

3
(√

3σP
)3

Ṗi,1 = ε2(Ji+1 − Ji). (2.33)

Substituting in the last expression the flux representation (2.29) and denoting

Ci = ε
3
(√

3σP
)3

4
,

one obtains

εṖi,1 =
Ci

Iν

(
Pi+1 − Pi

d̃i+1 + 2
− Pi − Pi−1

d̃i + 2

)
− Ci

(
Ẋi+1 − Ẋi

d̃i+1 + 2
− Ẋi − Ẋi−1

d̃i + 2

)
, i = 1, . . . , N − 1.

Finally, combining the last expression with (2.31) and (2.32) and omitting higher order

terms in ε, the closed ODE system for the leading order evolution of positions and

pressures in array of N + 1 droplets takes the following form:

Ẋi = − Pi

2/(
√

3σβ) + 2IνPi

(
(Pi+1 − Pi) − Iν(Ẋi+1 + Ẋi)

d̃i+1 + 2
+

(Pi − Pi−1) − Iν(Ẋi + Ẋi−1)

d̃i + 2

)
,

Ṗi =
Ci

Iν

(
Pi+1 − Pi

d̃i+1 + 2
− Pi − Pi−1

d̃i + 2

)
− Ci

(
Ẋi+1 − Ẋi

d̃i+1 + 2
− Ẋi − Ẋi−1

d̃i + 2

)
,

i = 1, . . . , N − 1; (2.34)

and

Ṗ1 + 2C1
Ẋ2

d̃1 + 2
= 2

C1

Iν

P2 − P1

d̃1 + 2
, Ẋ1 = 0,

ṖN − 2CN

Ẋ2

d̃N−1 + 2
= −2

CN

Iν

PN − PN−1

d̃N−1 + 2
, ẊN = 0. (2.35)

Let us consider certain limiting cases for (2.34)–(2.35). In the case β → ∞, the limiting

system for the evolution of pressures and positions has the form

2Ṗi + Ci(Ẋi+1 − Ẋi−1) =
Ci

Iν
(Pi+1 − 2Pi + Pi−1),

Ẋi+1 − 2Ẋi + Ẋi−1 =
Pi+1 − Pi−1

νI
, for i = 1, . . . , N − 1; (2.36)

and

Ṗ1 + C1Ẋ2 =
C1

Iν
(P2 − P1), Ẋ1 = 0,

ṖN − CNẊN−1 = −CN

Iν
(PN − PN−1), ẊN = 0. (2.37)
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Next, rescaling the time by βν and proceeding to the limit β → 0, the limiting system for

the evolution of pressures and positions takes the form

Ṗi = Ci

(
Pi+1 − Pi

di+1
− Pi − Pi−1

di

)
,

Ẋi = −Pi

√
3σI

2

(
Pi+1 − Pi

di+1
+

Pi − Pi−1

di

)
, for i = 1, . . . , N − 1; (2.38)

and

Ṗ1 = 2C1
P2 − P1

d1
, Ẋ1 = 0,

ṖN = −2CN

PN − PN−1

dN
, ẊN = 0. (2.39)

Note that the last system coincides with the one derived in [16] for the intermediate-slip

equation (1.9) in the one-dimensional case. This stays in agreement with the fact that (1.9)

is the limiting case of (1.5a)–(1.5b) as β → 0 as was shown in [22, 32]. Finally, note that

after time rescaling by βν and taking limits ν → ∞ or ν → 0 results again in (2.36)–(2.37)

and (2.38)–(2.39), respectively. This is also natural because (1.8a)–(1.8b) and (1.9) are the

limiting cases of (1.5a)–(1.5b) and ν → ∞ or ν → 0, respectively.

Let us summarize the algorithm for the simulation of coarsening dynamics in large

arrays of droplets using the derived reduced ODE models. Starting with an array of N+1

droplets after each subsequent coarsening event (i.e collapse of one droplet or collision

of two droplets) one can model the coarsening process further by reducing the dimension

of the model by two and solving the reduced ODE model with the updated initial data.

Practically, as in [19], we say that a collapse event occurs when pressure of one droplet

increases a certain threshold, namely when

P > 0.5Pmax(ε).

Note, that Pmax introduced in (1.3) provides the pressure threshold at which droplet

stationary solutions cease to exists [18,24]. Then we take the final pressures and positions

of the remaining droplets from the previous run of the reduced ODE model as initial

conditions for the next one. In the case of a collision in [19] it was suggested that the

coarsening event occurs when the distance between two colliding ith and i + 1th droplets

becomes smaller than a certain threshold δ = O(ε), i.e. when

di � δ. (2.40)

After the collision we calculate the position and pressure of a newly formed droplet by

the following formulas:

Xi,new = 1/2(Xi+1 + Ri+1 + Xi − Ri),

Pi,new =

(
1

P 2
i

+
1

P 2
i+1

)−1/2

, (2.41)

i.e. the position of it is at the midpoint between the outer contact lines of old two droplets,
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while the formula for its pressure is a direct consequence of the total volume conservation

and (2.33). The last formula for Pi,new is based on the observation that the mass of the new

droplet is of the leading order in ε given by the sum of the masses of the collided droplets.

In Section 5.1 we compare solutions of the derived reduced ODE model (2.34)–(2.35) with

those of the initial PDE system (1.5a)–(1.5b) and show that the former ones provide high

accuracy O(ε) also after subsequent coarsening events.

3 An exactly solvable collisions/absorption model

Let us consider the limiting case of infinite slip length β = ∞, namely the ODE system

(2.36)–(2.37) describing coarsening in free films. As pressure evolution proceeds on a

slower time-scale than that of one of the positions as ε → 0, let us consider only the

migration of droplets. Namely, we investigate the zero-order system

Ẋ0 = ẊN = Ṗi = 0, for i = 0, . . . , N,

Ẋi+1 − 2Ẋi + Ẋi−1 =
Pi+1 − Pi−1

νI
, for i = 2, . . . , N − 1. (3.1)

As will be justified numerically in Section 5.1 for given ε, T > 0, one can initial choose

data with sufficiently small Pi(0) � 1, i = 0, 1, . . . , N such that the difference between

solutions to (3.1) and (2.36)–(2.37) stays uniformly O(ε) for all times t ∈ (0, T ]. Note that

for such initial data there is no other constraint on the location of Xi(0) other than that

di(0) should be larger than the collision threshold δ introduced in (2.40).

Moreover, for certain initial data one can solve (3.1) explicitly. Indeed, if

Pi(0) = p, for i = 0, 1, . . . , N − 1 and PN(0) = p̄ with 1 � p > p̄, (3.2)

then the solution to (3.1) is given by

Xi(t) = Xi(0) +
Bi

N
t, for i = 1, . . . , N − 1; X0 = 0, XN = L, where B =

p − p̄

νI
. (3.3)

Let us recall the notation for the distances between droplets

di(t) = Xi(t) − Xi−1(t) for i = 1, . . . , N − 1 and dN(t) = L − XN−1(t) − RN(t) − RN−1(t),

where we have slightly modified it now for the last droplet, and call below di(t) the

distance of the ith droplet at time t. Using this notation one can rewrite the solution (3.3)

in the following form:

di(t) = di(0) +
B

N
t, for i = 1, . . . , N − 1,

dN(t) = dN(0) − B(N − 1)

N
t for t ∈ (0, Tc), where Tc =

dN(0)N

(N − 1)B
. (3.4)

Note that Tc denotes the time proceeding until the (N − 1)th droplet collides with the

largest last one. Iterating (3.4), one observes that the first N − 1 droplets collide one after

another with the last one. Due to (3.3) all droplets except the first and the last ones
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55

x0 dk−1 dkd1

h

ε

Figure 4. Example of an initial profile with k = 3 families of droplets as defined in (3.7).

move to the right. The last droplet consequently absorbs the neighbour droplet, while the

distance between them is uniformly distributed between the remaining droplets. Therefore,

the distances of the remaining droplets at the collision time Tc are given by

di(Tc) = di(0) + dN(0)/(N − 1), i = 1, . . . , N − 1. (3.5)

Writing the solution to (3.1) in the form (3.4) is convenient because one can substitute

di(Tc) as the initial distances for the modelling of the next collision event.

Note that due to (3.5) distance monotonicity is preserved in time for solutions (3.4),

i.e. if dl(0) > dm(0) for some l, m ∈ 1, . . . , N, then dl(t) > dm(t) for all times t > 0. This

property allows us, based only on a given initial distribution of the distances in the array

of droplets, to derive the coarsening laws analytically for solutions to (3.1) considered

with (3.2) and additional assumption

1 � p � p̄. (3.6)

This assumption prescribes that the last droplet is much larger than others and allows us

to simplify further the dynamics by assuming that its pressure PN(t) remains to be the

leading order constant in time and equal to p̄. In turn, this implies that the coarsening

dynamics in this case depends solely on the evolution of droplet positions without change

of their pressures after subsequent collisions.

Indeed, for a given set of initial distances, let us divide it into k � N families (subsets)

such that there are im distances in mth family (1 � m � k), all of them are equal to dm and

d1 � d2 � . . . � dk, i1 + i2 + · · · + ik = N (3.7)

holds. In addition, let us allocate these k families in the initial configuration so that the

distances between droplets non-increase coming from the first to the last droplet (see

Figure 4). Then due to the distance monotonicity property, this ordering will be preserved

in time, i.e. first the members of the family k will be absorbed by the last droplet, then

those of (k − 1)th family etc. Moreover, distances in each family will stay equal for all
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t > 0. This implies that for the initial data satisfying (3.2), (3.6) and (3.7) all collision times

are uniquely determined having given k and the set {dm, im}, m = 1, . . . , k. Therefore, using

the explicit solution (3.4) holding between subsequent collision events, the corresponding

coarsening law can be derived analytically by a recursive procedure.

Indeed, let us fix an index 1 � m � k and look at the moment when all families with

the indexes m + 1, . . . , k and also l − 1 members of the mth family have been absorbed

for some given 1 � l � im. Let us calculate time t(n) needed for the absorption of the lth

member with n denoting the remaining number of droplets after the latter event. Using

(3.4), one can easily calculate by recursion that

t(n) =
n + 1

nB

(
d̃m +

l−1∑
r=1

t(n + r)B

n + r + 1

)
=

(n + l)d̃m
nB

, (3.8)

where by d̃m we denote the distance in the mth family at the time when (m + 1)th family

has been absorbed. From (3.8) one can obtain the total time needed for the mth family to

be absorbed, Tm, in the form

Tm =
d̃m

B

⎛⎝N −
k∑

p=m+1

ip

⎞⎠ ip∑
r=1

1

N −
∑k

p=m+1 ip − r
. (3.9)

In turn, using again (3.4), one recursively finds

d̃m =

k∑
p=m+1

d̃pip

N −
∑k

p′=p ip
=

∑k
p=m+1 dpip

N −
∑k

p′=p ip
+ dm.

Substituting the last expression in (3.9) one obtains

Tm =
1

B

(
Ndm +

k∑
p=m

(dp − dm)ip

)
im∑
r=1

1

N −
∑k

p=m+1 ip − r
.

Therefore, the total time needed for all families up to mth to be absorbed is given by

T (dm) =

k∑
p=m

1

B

⎛⎝Ndp +

k∑
p′=p

(d′
p − dp)i

′
p

⎞⎠ ip∑
r=1

1

N −
∑k

p′=p+1 i
′
p − r

. (3.10)

Let us now derive the continuum version for the discrete coarsening law in (3.10),

proceeding to the limits N → ∞ and k → ∞. Suppose we are given a probability density

function f(d) on (0,+∞), i.e.∫ +∞

0

f(x) dx = 1, f(d) � 0 and f(d) = 0 if d � 0.

Defining di = iΔd for i ∈ � ∪{0} and a fixed Δd � 1, we approximate f(d) by a piece-wise

constant function fa(d) as follows:

fa(d) = f(di+1) for d ∈ [di, di+1) and fa(d) = 0 if d � 0.
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Accordingly to this approximation, suppose we are given an array of N + 1 droplets with

N � 1 such that the number of droplets with the distances lying in the interval [di, di+1)

is equal to [Nf(di+1)Δd]. As before, we suppose that droplets are allocated so that the

distances between them are non-increasing and (3.2) and (3.6) hold. Then using (3.10) one

obtains

TΔd,N(dm) =

m∑
p=0

1

B

⎛⎝Ndp +

k∑
p′=p

(d′
p − dp)Nf(d′

p)Δd

⎞⎠
Nf(dp)Δd∑

r=1

1

N −
∑k

p′=p+1 Nf(d′
p)Δd − r

+ O(Δd, 1/N)

=

m∑
p=0

1

B

⎛⎝dp +

k∑
p′=p

(d′
p − dp)f(d′

p)Δd

⎞⎠
Nf(dp)Δd∑

r=1

1

1 −
∑k

p′=p+1 f(d′
p)Δd − r/N

+ O(Δd, 1/N)

=

m∑
p=0

N

B

⎛⎝dp +

k∑
p′=p

(d′
p − dp)f(d′

p)Δd

⎞⎠
f(dp)Δd∑
s=1/N

Δs

1 −
∑k

p′=p+1 f(d′
p)Δd − s

+ O(Δd, 1/N).

Taking the limit N → +∞ in the last expression and introducing

TΔd(d) = lim
N→+∞

T (d)Δd,N
N

,

one obtains

TΔd(d) =

m∑
p=0

N

B

⎛⎝dp +

k∑
p′=p

(d′
p − dp)f(d′

p)Δd

⎞⎠∫ f(dp)Δd

s=0

ds

1 −
∑k

p′=p+1 f(d′
p)Δd − s

+ O(Δd).

(3.11)

Applying the Taylor expansion to the last integral in (3.11), one finds

∫ f(dp)Δd

s=0

ds

1 −
∑k

p′=p+1 f(d′
p)Δd − s

=
f(dp)Δd

1 −
∑k

p′=p f(d′
p)Δd

+ O(Δd2).

Inserting this into (3.11), one obtains

TΔd(d) =
1

B

m∑
p=0

⎛⎝dp +

k∑
p′=p

(d′
p − dp)f(d′

p)Δd

⎞⎠ f(dp)Δd

1 −
∑k

p′=p f(d′
p)Δd

+ O(Δd).
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Finally, taking the limit Δd → 0 and introducing

T (d) = lim
Δd→0

TΔd(d)

N
,

one arrives at

T (d) =
1

B

∫ d

0

(
x +

∫ x

0

(y − x)f(y) dy

)
f(x)

1 −
∫ x

0 f(y) dy
dx. (3.12)

Introducing function n(d) as the relative number of droplets with initial distances larger

or equal to d, i.e. as

n(d) = 1 −
∫ d

0

f(x) dx, (3.13)

one obtains from (3.12) that

T (d) =
1

B

∫ d

0

(
−x +

∫ x

0

(y − x)n′(y) dy

)
n′(x)

1 −
∫ x

0 n(y) dy
dx

=
1

B

∫ d

0

n(x) ln

[
n(x)

n(d)

]
dx. (3.14)

The last expression provides an exact coarsening law, i.e. it tells what time T (d) will pass

until all droplets having initially distances smaller then d are absorbed by the last large

droplet.

In Appendix B, we show that the discrete coarsening law (3.10) can be recovered back

from (3.14) if the initial distribution f(x) has the form

f(d) =

k∑
m=1

i′mδ(d − dm), (3.15)

i.e. it is represented by k ∈ � families as in (3.7), while the number of droplets N → ∞.

Moreover, in Section 5.2 we justify numerically the connection between (3.14), (3.10) and

the starting ODE system (3.1).

4 Examples of coarsening rates

Example 1. We consider an explicit family of initial distributions f(x) and show that

depending on their decay as x → +∞ the coarsening rates reproduce all possible algebraic

decays. Moreover, there is a certain threshold after which the decay becomes exponential.

Namely, let us consider

f(x) =
1

x1+α

/∫ +∞

A

dx

x1+α
=

Aα

x1+α
with α, A > 0. (4.1)

From (3.13) it follows that

n(x) =

(
A

x

)α

. (4.2)
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Substituting this in (3.14) one obtains

T (d) =
αA

B(α − 1)

(
1

α − 1

[(
d

A

)1−α

− 1

]
+ α ln

[
d

A

])
if α� 1, (4.3a)

T (d) =
A

B

([
ln

(
d

A

)]2

/2 + ln

(
d

A

))
if α = 1. (4.3b)

Combining (4.3b) and (4.2) one obtains the exact coarsening law for the case α = 1,

n(t) = exp
[
1 −

√
1 + 2Bt/A

]
. (4.4)

In the case α� 1 one obtains from (4.3a) and (4.2)

T (n) =
αA

B(α − 1)

(
1

1 − α

[
n

α−1
α − 1

]
+ ln(n)

)
.

For the latter exact law one obtains the following asymptotics

n(t) ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
tB(α − 1)2

αA

) α
α−1

, if α < 1

exp

{
− tB(α − 1)

αA

}
, if α > 1

as t → ∞. (4.5)

Therefore, from (4.4)–(4.5) one finds out that for 0 < α < 1 the coarsening rates are

algebraic at least for large times, while at α = 1 they become exponential and stay so for

α ∈ (1, +∞).

Example 2. Consider f(x) = exp(−x). Substituting it in (3.13) and (3.14), consequently,

one obtains the exact law

T (n) =
1

B
(n − 1 − ln(n)).

Thus, in this case the following asymptotics holds

n(t) ∼ exp(−Bt) as t → ∞. (4.6)

Example 3. Consider a Gaussian distribution f(x) = 2/
√

π exp(−x2). In this case by

(3.13) one has n(x) = erfc(x). Substituting it in (3.14) one obtains

T (d) =
1

B

∫ d

0

[∫ x

0

n(y) dy

]
n′(x)

n(x)
dx

=
1

B
√

π

∫ d

0

(
(1 − exp(−x2)) exp(−x2)∫ +∞

x
exp(−x2) dt

− 2x exp(−x2)

)
dx

=
1

B
√

π

(
−C + O

(
exp(−d2)

)
+

∫ d

0

exp(−x2)∫ +∞
x

exp(−x2) dt
dx

)

=
1

B
√

π
(−C − ln(n(d))) + O(exp(−d2)),
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Figure 5. Initial distributions in Example 4 (left), and Example 5 with α = 2 (right).

where constant C ≈ 0.74. Therefore, the following asymptotics holds:

n(t) ∼ exp{−C − B
√

πt} as t → ∞, (4.7)

and the coarsening rates show an exponential decay as in the example 2.

Example 4. Finally, let us show that the coarsening rates for large times depend only

on how fast the initial distribution f(x) decays as x → +∞ and not on its behaviour

for moderate x. In this and the next example we consider non-monotone distributions

having a local maximum at x > 0. Consider f(x) = (1 − x)2 exp(−x) (see Figure 5) with
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n(x) = (1 + x2) exp(−x) correspondingly. By (3.14) one obtains

BT (d) =

∫ d

0

(1 + x2) exp(−x) ln(1 + x2) dx −
∫ d

0

x(1 + x2) exp(−x) dx

− (ln(1 + d2) − d)

∫ d

0

(1 + x2) exp(−x) dx

=

∫ d

0

(1 + x2) exp(−x) ln(1 + x2) dx − 7 + 3(d − ln(1 + d2)) + O(exp(−d)). (4.8)

The first integral in the last expression can be estimated as follows:∫ d

0

(1 + x2) exp(−x) ln(1 + x2) dx � ln(1 + d2)

∫ d

0

(1 + x2) exp(−x) dx

= ln(1 + d2)(3 + O(exp −d)).

Combining this with (4.8) one obtains

T (d) =
3d

B
+ o(d),

and hence the following asymptotics holds:

n(t) ∼
(

1 +
9

B2
t2
)

exp(−Bt) as t → ∞.

Therefore, the coarsening rates show an exponential decay as in Example 2.

Example 5. Consider distributions

α

α + 1

[
(1 − x)2 exp(−x) + 1/(1 + x)1+α

]
with α > 0, α� 1. (4.9)

These have a local maximum at x > 0 and a decay ∼1/x1+α as x → ∞ (see Figure 5).

Correspondingly, one has

n(x) =
1

1 + α

[
(1 + x)−α + α exp −x(1 + x2)

]
.

Substituting it in (3.14) one obtains

BT (d) =

∫ d

0

[∫ x

0

n(y) dy

]
n′(x)

n(x)
dx

=

∫ d

0

[
1

1 − α

(
(1 + x)1−α − 1

)
+ α (3 − exp(−d)(3 + d(2 + d)))

]
× (1 − x)2 exp(−x) + (1 + x)−1−α

(1 + x)−α + α exp(−x)(1 + x2)
dx.

The last integral can be bounded from below and above by integrals of the following type

I∗ =

∫ d

0

[
1

1 − α

(
(1 + x)1−α − 1

)
+ C1

]
C2 exp(−x/2) + (1 + x)−1

1 + C3
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with some non-negative constants Ci, i = 1, 2, 3. Integrals in (4) have the following

asymptotics:

I∗ = C3

(
1

1 − α

[
(d + 1)1−α − 1

]
− C4 ln(d + 1)

)
+ O(1) as d → ∞

with some positive constants C3, C4. Therefore, using

n(d) ∼ 1

1 + α
(1 + d)−α as d → ∞ (4.10)

one obtains that the asymptotics of the coarsening law for (4.9) coincides up to multi-

plicative constants with (4.3a) already obtained in Example 1 for monotone distributions.

Consequently, we conclude that as in Example 1 the coarsening rates are algebraic with

power α/(α − 1) for α < 1 and exponential for α > 1.

A more simple but rather formal proof of this fact is as follows. Let us fix a large

number A such that asymptotics (4.10) holds for all d > A with a good precision. Then

one has

BT (d) =

∫ A

0

n(x) ln

[
n(x)

n(d)

]
dx +

∫ d

A

n(x) ln

[
n(x)

n(d)

]
dx

∼ O(1) + α ln(d + 1) × O(1) +

∫ d

A

n(x) ln

[
n(x)

n(d)

]
dx.

The last integral in view of (4.10) is of the type considered already in Example 1. Therefore,

the term O(1) + α ln(d + 1) × O(1) produces no change in the asymptotics of T (d), and

consequently the coarsening law coincides up to multiplicative constants with (4.3a).

5 Numerics

In the last two sections starting from system (1.5a)–(1.5b) we first derived a closed ODE

model (2.34)–(2.35) describing coarsening dynamics in an array of initial N+1 metastable

droplets. Then we looked at its limiting case β → ∞ described by (2.36)–(2.37) and more

precisely on its zero-order version as ε → 0 given by (3.1). Next, we found out that for

a special initial data satisfying (3.2) one can obtain the explicit solution to (3.1) given

by (3.4). Assuming additionally (3.6) and that the distances in the array are ordered

non-increasingly, we derived the explicit coarsening law (3.10). Finally, we obtained its

continuous counterpart (3.14). In this section we systematically compare numerically the

solutions of subsequent models in the derived model hierarchy and check coarsening laws

(3.10) and (3.14).

5.1 Comparison between models

Here we compare solutions to the full ODE system (2.34)–(2.35) with those of the strong-

slip system (1.5a)–(1.5b) and its limiting cases (1.9) and (1.8a)–(1.8b) as β → 0 and β →
+∞, respectively. For the solution of PDE systems we used a fully implicit finite difference
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Figure 6. Initial profile of four droplets used for numerical simulations in Figures 7 and 8.
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Figure 7. Comparison of droplet position evolution obtained from the ODE model (dots) and

the lubrication model (solid line) in the strong-slip case with ε = 0.025, Re = 1, σ = 1, ν = 4 and

β = 10. Initial profile of four droplets shown in Figure 6 was used. Left plot: Subsequent collisions

of the second and the third droplets with the first one are shown. Right plot: The corresponding

deviations between the results of the ODE model and the lubrication model for the positions of the

second and the third droplets, respectively, are shown.

scheme derived and applied already to (1.5a)–(1.5b) and its limiting cases in [21,30,32,35].

The numerical solutions for (2.34)–(2.35) were obtained applying the fourth-order adaptive

time-step Runge–Kutta method and using updating rules (1.3)–(2.41) after each subsequent

coarsening event. In the case of the PDE system, the corresponding pressure evolution

was calculated using finite-difference discretization of the term Πε(h) − ∂xxh.

In Figure 7 starting from an array of four droplets we compare evolution of positions

resulting from PDE and ODE models for two subsequent collisions. Figure 7 shows that

the absolute deviation between results stays uniformly O(ε) also after subsequent collision

events.
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Figure 8. Comparison of droplet evolution obtained from the ODE model (dots) and the lubrication

model (solid line) in the strong-slip case with ε = 0.025, Re = 1, σ = 1, ν = 4 and different β. Initial

profile of four droplets shown in Figure 6 was used. Upper row: Pressure and position evolution

in the intermediate-slip case (β = 0) until collapse of the second droplet. Starting from the same

initial profile, pressure and position evolution until the collision of the second droplet with the first

one for β = 5 (second row) and β = ∞ (bottom row) are shown.

In Figure 8 starting from the same array of four droplets we compare solutions for

different slip lengths β. In the cases β = 0 and β = ∞ we compared solutions to (1.9) and

(1.8a)–(1.8b) with those of (2.38)–(2.39) and (2.36)–(2.37), respectively. Again for all β the

absolute deviation between PDE and ODE results is O(ε). Figure 8 demonstrates the fact
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Figure 9. Comparison of droplet position evolution obtained from the ODE model (2.36)–(2.37)

(dots) with ε = 0.025, σ = 1, ν = 4 and its zero-order subsystem (3.1) (solid line). Left plot: The

initial profile of five droplets. Pressures of the first four and the last droplets are 0.01 and 0.001,

respectively. Right plot: Collision of the fourth droplet with the largest last one.

already pointed in [17, 24] that in the intermediate-slip case the coarsening dynamics is

mostly governed by collapse mechanism, while in the strong-slip case with moderate and

large β it is governed by collisions.

Finally, Figure 9 shows that for arrays being taken initially with sufficiently small

pressures, the migration subsystem (3.1) approximates with high accuracy (at least O(ε))

the full ODE system (2.36)–(2.37) describing the case β = ∞. Note that the migration

path of the fourth droplet in Figure 9 is considerably large, ≈50. Hence, the reduction

from (2.36)–(2.37) to (3.1) does not constrain the initial distances to be small.

5.2 Coarsening rates

Here using the explicit solution (3.4) for the system (3.1) we check numerically the discrete

and continuous coarsening laws (3.10) and (3.14). In Figure 10 we take k = 20 families of

initial distances as prescribed in (3.7) with the corresponding pressures satisfying (3.2) and

(3.6) and order them non-increasingly in space. Next, we compare the subsequent times

for each mth family (1 � m � k) to be absorbed given, on the one hand, by the analytical

law (3.10), and on the other, by the iterative calculation using (3.4) and (3.5) between

subsequent collisions. Naturally, one finds out the exact coincidence between them. As

each collision comprises an absorption by the largest droplet of a smaller, one does not

need to update the position and pressure of the former one. This is because its position

is fixed due to (2.32) to x = L, and the pressure to the leading order does not change due

to (3.6).

In Figure 11 we show numerical results for continuous coarsening rates for three initial

distributions taken from the family (4.1) with different α and one Gaussian distribution

considered in Examples 1 and 3 of Section 4, respectively. To obtain the coarsening rates

numerically we first sampled N � 1 distances according to the given initial distribution.

After ordering them non-increasingly in the initial configuration we substitute them as

initial data into (3.1) and solve the latter one iteratively using (3.4)–(3.5). Note that due
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Figure 10. Comparison of subsequent collision/absorption times for each mth family (1 � m � 20)

given by the discrete coarsening law (3.10) (dots) and iterative calculation using the solution (3.4)

(solid line). Left plot: a part of a typical initial profile under consideration. Right plot: plot of the

absorption times versus the family number.

to an extremal simplicity of (3.5) one can effectively model numerically a huge number of

droplets N ≈ 107 just using capabilities of a personal computer.

Figure 11 shows that thus obtained numerical coarsening rates coincide for large times

very well with the analytical ones prescribed by law (3.14) and found out in Examples

1 and 3 of Section 4. In the case of (4.1) with α = 1 one has the exact coarsening law

(4.4) and therefore a good coincidence for all times. In the case of (4.1) with α � 1 we

compared our numerical results with the asymptotic law (4.5), and for the Gaussian initial

distribution we compared with (4.7). Note that a certain deviation between numerics and

analytical laws starting at the very end of the considered time interval is caused by a

numerical error increase in sampling of large distances according to initial probability

distributions.

6 Conclusions and discussion

In this paper we started from the high-order lubrication system (1.5a)–(1.5b) describing

dewetting process in nanometric polymer film interacting on a hydrophobically coated

solid substrate in the presence of large slippage at the liquid/solid interface. This system

describes a distinguished and important regime within a lubrication scaling. In particular,

it incorporates as a limiting case of infinite slip length the well-known model of free

films (1.8a)–(1.8b) studied intensively in applications [13, 20]. Note that a system similar

to (1.8a)–(1.8b) system appears in the study of viscoelastic threads for which coarsening

dynamics of interacting droplets was also observed in the experiments, see e.g. [9].

Motivated by this we derived the reduced ODE models (2.34)–(2.39) describing coarsen-

ing dynamics of droplets governed by (1.5a)–(1.5b) and its limiting cases. In the limiting

case β = ∞ we observed that the migration subsystem (3.1) can be solved explicitly

for special initial data satisfying (3.2) and (3.6). By (3.4)–(3.5) the dynamics of droplets
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Figure 11. Comparison of numerical coarsening rates using sampling of initial data with N � 1

and subsequent iterative calculation using (3.4)–(3.5) (solid line) with those provided by the analytical

law (3.14) (dots). Upper row: log-log and semi-log plots for the initial distribution (4.1) with α = 1/2

(left) and α = 1 (right), respectively. Lower row: semi-log plots for (4.1) with α = 20 (left) and for

the Gaussian initial distribution (right). According to (4.5) and (4.7) in the chosen axis scales the

dots reproduce linear functions except for the upper-right plot where they represent law (4.4)

consists of sequential collisions of smaller ones with the largest one, while the distance

between them is distributed uniformly between the remaining drops.

Similar models were suggested for collapse/collision dynamics of breath figures by

Derrida et al. [12] based on heuristic arguments. There authors considered the ‘cut-in-

two’ and ‘past-all’ models where the distance of the smallest droplet was divided between

two neighbours or pasted as a whole to one of them. Later the breath figures of [12]

found interesting analogs in the reduced coarsening models arising from the Allen–Cahn

and Ginzburg–Landau equations, see e.g. a review paper [5]. A recent generalization of

these models and rigorous analysis of their self-similar solutions can be found in [27].

Note that (3.1) can be classified due to (3.5) as a ‘cut uniformly between all’ type model.

We are not aware if any heuristic or rigorous analog of it was considered so far in the

literature.

Remarkably, our model (3.1) appears as a reduction of a complicated dynamics gov-

erned by a high-order lubrication system (1.8a)–(1.8b). Moreover, in contrast to the
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stochastic models of [12] if the initial distances in (3.1) are ordered non-increasingly,

then they coarsen in a deterministic and exactly solvable scenario. For the latter case we

derived the coarsening laws (3.10) and (3.14) analytically and confirmed them numerically.

Interestingly, the derived law (3.14) has a form similar to Shannon’s entropy with respect

to a certain normalization of the droplet number function n(x). The explanation of this

fact from the statistical point of view will be presented elsewhere.

Surprisingly, in contrast to the coarsening dynamics governed by reduced ODE models

arising from (1.1) which always obey law (1.12), our simple model (3.1) can reproduce

any algebraic coarsening rates between zero and infinity as well as exponential ones.

Moreover, for a family of initial distributions (4.1) we showed existence of a threshold

for their decay at infinity at which the corresponding coarsening rates switch from

algebraic to exponential ones. Note that a similar situation was accounted recently for

self-similar solutions to the Smoluchowski coagulation equation with certain kernels,

see [28, 29].

In view of above observations it would be natural to extend our deterministic col-

lision/absorption model to its stochastic variant withdrawing the non-increasing initial

ordering of distances and thus allowing collisions of random droplets with the largest one.

As in [12], one could probably look for self-similar solutions of mean-field approximations

for thus arising stochastic collision models. A further generalization of the model could

be a withdrawal of constraints on the initial data (3.2), (3.6) and thus allowing droplets

to collide and collapse inside of the domain. Note that then an additional difficulty to

handle the pressure and position update according to coarsening rules (1.3)–(2.41) would

appear. It would also be interesting to analyse the coarsening rates of full ODE model

(2.34)–(2.35) considered with moderate slip-lengths 0 < β < ∞. Also, the limiting case of

very large Reynolds numbers which violate balance in (2.4) may imply new interesting

effects on coarsening dynamics and slopes (see [21, chapter 2]), although physical validity

of such regime should be justified first.

Finally, it could be possible to derive two-dimensional analogs of reduced ODE models

(2.34)–(2.39) describing physically coarsening of three-dimensional droplets on a plane

substrate. The two-dimensional reduced ODE models arising from (1.1) were derived

in [16, 17]. In [16] a mean-filed approximation for the fluxes between droplets was

suggested under an assumption of well separation of droplets that is unfortunately not

suitable for the modelling of droplet collisions because the distance between them then

tends to zero. In this case one should face a problem of solving a Laplace equation

(counterpart to equation (2.12) in two dimensions) in a complex domain between droplets

occupied by the PL region. We expect the same problem to appear for the two-dimensional

reduced ODE models corresponding to (1.5a)–(1.5b).
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Appendix A Integral I

Here we show that integral I defined in (2.17) converges and integrates explicitly. Changing

variable in (2.17) according to the explicit solution (2.6a) in the CL region, and using

matching conditions (2.5) one obtains

I =

∫ +∞

−∞

1

H1
∂z

(
∂zH1

H1

)
dz =

∫ +∞

1

[
U ′(H)

H2
− 2(U(H) − U(1))

H3

]
dH√

2(U(H) − U(1))

=

∫ +∞

1

−5/3 + 2H − 1/3H3√
2/3 − H + H3/3H9/2

dH.

Let us make a further change of variables t = 1/H and integrate I explicitly as follows.

I =

∫ 1

0

−5/3t4 + 2t3 − 1/3√
2/3t3 − t2 + 1/3

dt =

∫ 1

0

5t3 − t2 − t√
6t + 3

dt =
1

35(3 +
√

3)
.

Appendix B Connection between discrete and continuous coarsening laws

Here we show that the discrete coarsening law (3.10) can be recovered back from (3.14) if

the initial distribution f(x) has the form (3.15), i.e. if it is represented by k ∈ � families

as in (3.7), where we denote

i′m = lim
N→∞

im

N
.

In this case (3.13) implies

n(d) = 1 −
k∑

p=m

i′m if d ∈ [dm, dm−1).

Substituting the last expression in (3.14) implies

BT (dm) = dk ln

[
1

1 −
∑k

p=m i′m

]
+ (dk−1 − dk) ln

[
1 − i′k

1 −
∑k

p=m i′m

]
+ · · ·

+ (dm+1 − dm) ln

[
1 −

∑k
p=m+1 i

′
m

1 −
∑k

p=m i′m

]
= BT (hm+1)

+

(
Ndm +

k∑
p=m

(dp − dm)ip

)
ln

[
1 −

∑k
p=m+1 i

′
m

1 −
∑k

p=m i′m

]
.

Therefore, one obtains recursively that

T (dm) =

k∑
p=m

1

B

⎛⎝Ndp +

k∑
p′=p

(d′
p − dp)i

′
p

⎞⎠ ln

[
1 −

∑k
p=m+1 i

′
m

1 −
∑k

p=m i′m

]
. (B 1)

On the other hand, dividing (3.10) by N and proceeding to the limit N → ∞ with k fixed,

one obtains exactly (B 1).
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