Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-06T14:19:47.307Z Has data issue: false hasContentIssue false

Analyticity for a class of non-linear evolutionary pseudo-differential equations

Published online by Cambridge University Press:  02 September 2014

XENAKIS IOAKIM
Affiliation:
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus emails: xioaki01@ucy.ac.cy, smyrlis@ucy.ac.cy
YIORGOS-SOKRATIS SMYRLIS
Affiliation:
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus emails: xioaki01@ucy.ac.cy, smyrlis@ucy.ac.cy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the analyticity properties of solutions for a class of non-linear evolutionary pseudo-differential equations possessing global attractors. In order to do this we utilise an analyticity criterion for spatially periodic functions, which involves the rate of growth of a suitable norm of the nth derivative of the solution, with respect to the spatial variable, as n tends to infinity. This criterion can be used to a wide class of dissipative-dispersive partial differential equations, provided they possess global attractors. Using this criterion and the spectral method developed in Akrivis et al. [1] we have improved previous results.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

References

[1]Akrivis, G., Papageorgiou, D. T. & Smyrlis, Y.-S. (2013) On the analyticity of certain dissipative-dispersive systems Bull. Lond. Math. Soc. 45, 5260.Google Scholar
[2]Benney, D. J. (1966) Long waves on liquid films J. Math. and Phys. 45, 150155.Google Scholar
[3]Cohen, B. I., Krommes, J. A., Tang, W. M. & Rosenbluth, M. N. (1976) Non-linear saturation of the dissipative trapped ion mode by mode coupling. Nucl. Fusion 16, 971992.Google Scholar
[4]Collet, P., Eckmann, J.-P., Epstein, H. & Stubbe, J. (1993) Analyticity for the Kuramoto-Sivashinsky equation. Phys. D 67, 321326.Google Scholar
[5]Coward, A. V., Papageorgiou, D. T. & Smyrlis, Y.-S. (1995) Nonlinear stability of oscillatory core-annular flow. A generalized Kuramoto-Sivashinsky equation with time periodic coefficients. Z. Angew. Math. Phys. 46, 139.Google Scholar
[6]Frankel, M. & Roytburd, V. (2008) Dissipative dynamics for a class of nonlinear pseudo-differential equations. J. Evol. Equ. 8, 491512.CrossRefGoogle Scholar
[7]Gonzalez, A. & Castellanos, A. (1996) Nonlinear electrohydrodynamic waves on films falling down an inclined plane Phys. Rev. E 53 (4), 35733578.Google Scholar
[8]Goodman, J. (1994) Stability of the Kuramoto-Sivashinsky and related systems. Comm. Pure Appl. Math. 47, 293306.Google Scholar
[9]Hooper, A. P. & Grimshaw, R. (1985) Nonlinear instability at the interface between two fluids. Phys. Fluids 28, 3745.CrossRefGoogle Scholar
[10]Ioakim, X., & Smyrlis, Y.-S. (2014) Investigation of the analyticity of dissipative-dispersive systems via a semigroup method. J. Math. Anal. Appl. 420 (2), 11161128. [DOI: 10.1016/j.jmaa.2014.06.023]CrossRefGoogle Scholar
[11]Ioakim, X. & Smyrlis, Y.-S.Analyticity for Kuramoto–Sivashinsky type equations in two spatial dimensions, submitted for publication.Google Scholar
[12]Kawahara, T. (1983) Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation. Phys. Rev. Lett. 51, 381382.Google Scholar
[13]Kawahara, T. & Toh, S. (1985) Nonlinear dispersive waves in the presence of instability and damping. Phys. Fluids 28, 16361638.CrossRefGoogle Scholar
[14]Kuramoto, Y. (1978) Diffusion-induced chaos in reaction systems. Progr. Theoret. Phys. Suppl. 64, 346367.Google Scholar
[15]Kuramoto, Y. & Tsuzuki, T. (1975) On the formation of dissipative structures in reaction diffusion systems. Progr. Theoret. Phys. 54, 687699.Google Scholar
[16]Kuramoto, Y. & Tsuzuki, T. (1976) Persistent propagation of concentration waves in dissipative media far f rom thermal equilibrium. Progr. Theoret. Phys. 55, 356369.Google Scholar
[17]Manneville, P. (1985) Liapounov exponents for the Kuramoto-Sivashinsky equation. In: Frisch, U. & Keller, J. B. (editors), Macroscopic Modelling of Turbulent Flows, Lecture Notes in Physics No. 230, Springer-Verlag, Berlin-New York, pp. 319326.Google Scholar
[18]Papageorgiou, D. T., Maldarelli, C. & Rumschitzki, D. S. (1990) Nonlinear interfacial stability of cone-annular film flow. Phys. Fluids A2, 340352.CrossRefGoogle Scholar
[19]Shlang, T. & Sivashinsky, G. I. (1982) Irregular flow of a liquid film down a vertical column. J. de Physique 43, 459466.CrossRefGoogle Scholar
[20]Sivashinsky, G. I. (1977) Nonlinear analysis of hydrodynamic instability in laminar flames, part 1. Acta Astronaut. 4, 11761206.Google Scholar
[21]Sivashinsky, G. I. (1983) Instabilites, pattern formation, and turbulence in flames. Ann. Rev. Fluid Mech. 15, 179199.Google Scholar
[22]Sivashinsky, G. I. & Michelson, D. M. (1980) On irregular wavy flow of a liquid film down a vertical plane. Progr. Theoret. Phys. 63, 21122114.Google Scholar
[23]Tadmor, E. (1986) The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 17, 884893.Google Scholar
[24]Tilley, B. S., Davis, S. H. & Bankoff, S. G. (1994) Nonlinear long-wave stability of superposed fluids in an inclined chanel. J. Fluid Mech. 277, 5583.Google Scholar
[25]Tseluiko, D. & Papageorgiou, D. T. (2006) Wave evolution on electrified falling films. J. Fluid Mech. 556, 361386.Google Scholar