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We study the analyticity properties of solutions for a class of non-linear evolutionary pseudo-

differential equations possessing global attractors. In order to do this we utilise an analyticity

criterion for spatially periodic functions, which involves the rate of growth of a suitable

norm of the nth derivative of the solution, with respect to the spatial variable, as n tends to

infinity. This criterion can be used to a wide class of dissipative-dispersive partial differential

equations, provided they possess global attractors. Using this criterion and the spectral method

developed in Akrivis et al. [1] we have improved previous results.
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1 Introduction

In this work, we present analyticity properties of zero mean, spatially 2π-periodic solutions

of partial differential equations of the form

ut + uux + Pu = 0, (1.1)

possessing a global attractor. Here, P is a linear pseudo-differential operator defined by

its symbol in Fourier space, that is,

(
bPw

)
k

= λk ŵk, k ∈ �, (1.2)

whenever w(x) =
∑

k∈� ŵk eikx, and with the eigenvalues λk satisfying the condition

Re λk � c1|k|γ for all |k| � k0, (1.3)

for some positive constants c1, γ and k0 a sufficiently large positive integer. Global

existence of solutions of (1.1) has been established for γ > 3/2 (see [23]); when γ � 2, it

can be deduced from [6] that equation (1.1) possesses a global attractor compact in every

Sobolev norm. Analyticity of solutions of (1.1) is established when γ > 5/2, in [1]. In this

work, we shall prove that the solutions of (1.1) are analytic even when γ > 2.
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A special case of equation (1.1) is the dispersively modified Kuramoto-Sivashinsky (KS)

equation

ut + uux + uxx + νuxxxx + Du = 0, (1.4)

with ν > 0 and D a linear antisymmetric pseudo-differential operator; in Fourier space

(bDw)k = idkŵk, d−k = −dk ∈ �,

that is, D is dispersive. If D ≡ 0 in (1.4), we obtain the usual KS equation on 2π-periodic

domains, which arises in a variety of applications and describes the asymptotic behaviour

of many physical systems. It occurs in free surface film flows [2, 9, 19, 22], in two-phase

flows in cylindrical and plane geometries [5, 18, 24], flame-front instabilities and reaction

diffusion combustion dynamics [20,21], chemical physics for propagation of concentration

waves [14–16] and plasma physics [3]. In (1.4) when dk = −k3, we obtain the Kawahara

equation [12,13]; another application that emerges from the dynamics of two-phase core-

annular flows yields dk in terms of modified Bessel functions of the first kind [18]. Another

special case of equation (1.1) is the Hilbert transform equation

ut + uux ± uxx + νuxxxx + μH[u]xxx = 0, (1.5)

with ν > 0, μ � 0 and H the Hilbert transform operator defined by

H[f](x) =
1

π
PV

∫ ∞

−∞

f(ξ)

x − ξ
dξ,

where the integral is understood in the sense of a Cauchy principal value; in Fourier space

(1H[w])k = −i sgn(Re k)ŵk.

This equation was first derived by Gonzales and Castellanos [7] and recently by Tseluiko

and Papageorgiou [25] using formal asymptotics. A plus sign in front of the uxx term

corresponds to the linearly unstable hydrodynamic regime (the modified KS equation)

and a minus sign to the stable one (the modified damped KS equation). It can be deduced

from [6] that the 2π-periodic solutions of (1.1) possess a global attractor, bounded in

every Sobolev norm; in fact, such proofs are possible for γ � 2 in (1.3). This Sobolev

norm boundedness is used in our analyticity estimates to obtain a lower bound on the

band of analyticity.

The analyticity of solutions of the L-periodic KS equation,

ut + uux + uxx + uxxxx = 0,

which is a special case of (1.4) with D ≡ 0, is established in [4]. In particular, it is shown

that at large times the solution is analytic in a strip of size

γL � cL
−16/25

around the real axis, where c is a positive constant independent of L. This provides the
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following estimate for the spectral density at high wavenumbers,

lim sup
t→∞

|û(j, t)| = O(e−c L−16/25q|j|),

where û(j, t) is the jth Fourier coefficient of u(·, t) and q = 2π/L.

For comparison purposes with our 2π-periodic solutions, we have repeated the analysis

of Collet et al. [4] to cast the results in terms of ν and ν, μ, respectively, for (1.4) and

(1.5) with the plus sign in front of the uxx term. We find, respectively, for (1.4) and (1.5)

with the plus sign in front of the uxx term, that the width of the strip of analyticity, βν
say, satisfies

βν � b ν41/50,

where b is a positive constant, and δν,μ say, satisfies

δν,μ � d

(
ν

μ

)41/25

,

where d is a positive constant (see [10]).

Another case of equation (1.1) is the Burgers-Sivashinsky (BS) equation [8]

ut + uux − u − uxx = 0,

which superficially seems to have much in common with the KS equation. It too has

low wave number instability, high wave number damping, and nonlinear stabilization

via energy transfer. Despite the similarity between KS and BS, when L is large their

solutions have different qualitative behaviour. KS solutions are observed to have high

dimensional chaos (see [17]) while BS solutions just approach time independent steady

states as t → ∞.

2 An analyticity criterion

A real analytic and periodic function f : � → � extends holomorphically in a neigh-

bourhood

Ωβ = {x + iy : x, y ∈ � and |y| < β}
for some β > 0. The maximum such β∈ (0,∞] is called the band of analyticity of f. For

completeness, we say that the band of analyticity of f is zero if and only if f is not real

analytic. Next, we state an analyticity criterion for periodic functions which involves the

rate of growth of suitable norms of f.

Lemma 2.1 (Analyticity criterion) Let f : � → � be an L-periodic C∞ function, p ∈ [1,∞]

and

μ = lim sup
s→∞

‖f‖1/s
p,s

s
,

where

‖f‖p,s =

(∑
k∈�

|k|ps|f̂k|p
)1/p

,
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with f̂k = 1
L

∫ L

0
f(x) e−ikqxdx and q = 2π/L. Then the band of analyticity β of f is given

by

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if μ = 0,

1

eμ
if μ∈ (0,∞),

0 if μ = ∞.

Proof. See Appendix.

3 Analyticity of certain dissipative evolutionary systems

We shall apply our analyticity criterion to 2π-periodic solutions (with zero spatial mean)

of (1.1), where P is a linear pseudo-differential operator with a symbol in Fourier space

given by (1.2). Well-posedness and global existence (in time) of solutions of (1.1) is

established in [23]. Existence of a global attractor X can be derived from the results

in [6]. In fact, when t > 0, every solution of (1.1) becomes C∞ with respect to x. In

particular, for every n∈ �, there exists an Rn, depending on P, but independent of the

initial data u0, such that

lim sup
t→∞

‖∂n
xu(·, t)‖ � Rn.

We follow now the approach of Akrivis et al. from [1]. Expressing u(x, t) =
∑

k∈� ûk(t) eikx,

equation (1.1) is transformed into the following infinite dimensional dynamical system

d

dt
ûk = −λkûk − ikϕ̂k, k ∈ �, (3.1)

with

ϕ̂k(t) =
1

2π

∫ 2π

0

1

2
u2(x, t) e−ikx dx =

1

2

k−1∑
j=1

ûj(t)ûk−j(t) +

∞∑
j=1

û−j(t)ûk+j(t). (3.2)

Clearly, (3.1) implies that

ûk(t) = e−λktûk(0) − ik

∫ t

0

e−λk(t−s)ϕ̂k(s) ds,

and consequently

lim sup
t→∞

|ûk(t)| �
|k|

Re λk
lim sup

t→∞
|ϕ̂k(t)|, (3.3)

whenever Re λk > 0. We next define for p > 2

hp(s) = lim sup
t→∞

( ∞∑
k=1

kps|ûk(t)|p
)1/p

, s ∈ �.
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Note that, if n∈� and n � s, then

2
1/p

hp(s) = lim sup
t→∞

(∑
k∈�

|k|ps|ûk(t)|p
)1/p

� lim sup
t→∞

(∑
k∈�

|k|pn|ûk(t)|p
)1/p

= lim sup
t→∞

‖u(·, t)‖p,n.

Also,

lim sup
t→∞

|ûm(t)| �
hp(s)

|m|s for all m ∈ � � {0} . (3.4)

Our target is to show the following claim.

Claim I. There exist positive constants M and a, such that, for every s � 0,

hp(s) � M(as)s. (3.5)

This result in turn implies that

lim sup
s→∞

(
1

s
lim sup

t→∞
‖u(·, t)‖1/s

p,s

)
= lim sup

s→∞

2
1/(ps)

h
1/s
p (s)

s
� lim sup

s→∞

2
1/(ps)

M
1/s

as

s
� a.

By using our analyticity criterion, we shall consequently obtain a lower bound for the

band of analyticity β of solutions u in the attractor, namely

β �
1

ea
.

The claim will be proved by the following inductive method. First, we pick M, a > 0,

so that

hp(s) � M(as)s, for every s∈ [0, 2].

Suitable values are, for example,

M � 2
1/2

R2 � 2
1/2

lim sup
t→∞

‖uxx(·, t)‖ and a � 1.

Indeed, noting that

(as)s � e−1/(ea) >
1

2
, for all a � 1 and s � 0,

we obtain

M(as)s >
M

2
�

1√
2

lim sup
t→∞

‖uxx(·, t)‖ = lim sup
t→∞

( ∞∑
k=1

k4|ûk(t)|2
)1/2

= lim sup
t→∞

( ∞∑
k=1

(
k2|ûk(t)|

)2

)1/2

� lim sup
t→∞

( ∞∑
k=1

(
k2|ûk(t)|

)p)1/p

= hp(2) � hp(s),

for all s∈ [0, 2], since p > 2. Next we shall prove (by selecting a possibly larger a) that

(3.5) holds for every s ∈ [σ, σ + 1], provided that the same inequality holds for every
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s∈ [0, σ] and σ � 2. This in turn establishes that (3.5) holds for every s � 0. It suffices to

show the following claim.

Claim II. If (3.5) holds for every s∈ [0, σ] and σ � 1, then it also holds for s = σ+ σ1,

where σ1 ∈ (0, γ − 2p+1
p

).

Proof of Claim II. For every j = 1, . . . , k − 1, we have, by virtue of (3.4),

lim sup
t→∞

|ûj(t)| �
hp

(
σj
k

)
j

σj
k

�
M

(
aσj

k

) σj
k

j
σj
k

,

and thus, the first sum on the right-hand side of (3.2) is estimated as follows:

lim sup
t→∞

k−1∑
j=1

|ûj(t)| |ûk−j(t)| �
k−1∑
j=1

hp
(
σj
k

)
j

σj
k

·
hp

(
σ(k−j)

k

)
(k − j)

σ(k−j)
k

�
k−1∑
j=1

M
(
aσj

k

) σj
k

j
σj
k

·
M

(
aσ(k−j)

k

) σ(k−j)
k

(k − j)
σ(k−j)

k

=
(k − 1)M2(aσ)σ

kσ
�

M2(aσ)σ

kσ−1
. (3.6)

For the second sum in the right-hand side of (3.2), using inequality (3.4) and the fact that

|û−j(t)| = |ûj(t)|, we obtain that

lim sup
t→∞

∞∑
j=1

|ûj(t)| |ûk+j(t)| � lim sup
t→∞

⎛
⎝ ∞∑

j=1

|ûj(t)|p
⎞
⎠

1/p

lim sup
t→∞

⎛
⎝ ∞∑

j=1

|ûk+j(t)|q
⎞
⎠

1/q

� hp(0)

⎛
⎝ ∞∑

j=1

hqp(σ)

(k + j)qσ

⎞
⎠

1/q

� M hp(σ)

(∫ ∞

0

dx

(x + k)qσ

)1/q

�M2(aσ)σ
(

1

qσ − 1
· 1

kqσ−1

)1/q

=
M2(aσ)σ

(qσ − 1)1/qkσ−(1/q)
�

M2(aσ)σ

(q − 1)1/qkσ−1
, (3.7)

assuming that p, q∈ (1,∞) with
1

p
+

1

q
= 1. In arriving at the result above, we have used

the fact

lim sup
t→∞

∞∑
j=1

|ûk+j(t)|q �
∞∑
j=1

lim sup
t→∞

|ûk+j(t)|q �
∞∑
j=1

hqp(σ)

(k + j)qσ
,

along with (3.4). Also, we note that

∫ ∞

0

dx

(x + k)qσ
= lim

t→∞

∫ t

0

(x + k)−qσdx =
1

(qσ − 1)kqσ−1
,
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since qσ � q > 1. Finally, notice that

qσ−1 � q−1 ⇐⇒ (qσ−1)1/q � (q−1)1/q and σ− 1

q
> σ−1 ⇐⇒ kσ−(1/q) > kσ−1.

Now, from (1.3), we have

Re λk � c1k
γ for k � k0. (3.8)

Combination of (3.3), (3.6), (3.7) and (3.8) provides that

lim sup
t→∞

|ûk(t)| �

(
2 + (q − 1)1/q

)
M2(aσ)σ

2c1(q − 1)1/q kσ+γ−2
for k � k0.

Thus,

lim sup
t→∞

∞∑
k=1

kpσ+pσ1 |ûk(t)|p �
∞∑

k=k0

kpσ+pσ1
(
2 + (q − 1)1/q

)p
M2p(aσ)pσ

(2c1)p(q − 1)p/q kpσ+pγ−2p

+ lim sup
t→∞

k0−1∑
k=1

kpσ+pσ1 |ûk(t)|p

�

(
2 + (q − 1)1/q

)p
M2p(aσ)pσ

(2c1)p(q − 1)p/q

∞∑
k=k0

1

kp(γ−2−σ1)
+ (k0 − 1)pσ+pσ1−2p lim sup

t→∞

k0−1∑
k=1

k2p|ûk(t)|p

=

(
2 + (q − 1)1/q

)p
M2p(aσ)pσ

(2c1)p(q − 1)p/q

∞∑
k=k0

1

kp(γ−2−σ1)
+ (k0 − 1)pσ+pσ1−2p

× lim sup
t→∞

k0−1∑
k=1

(
k4|ûk(t)|2

)p/2

�

(
2 + (q − 1)1/q

)p
M2p(aσ)pσ

(2c1)p(q − 1)p/q

∞∑
k=k0

1

kp(γ−2−σ1)
+ (k0 − 1)pσ+pσ1−2p

× lim sup
t→∞

(
k0−1∑
k=1

k4|ûk(t)|2
)p/2

�

(
2 + (q − 1)1/q

)p
M2p(aσ)pσ

(2c1)p(q − 1)p/q

∫ ∞

k0 −1

dx

xp(γ−2−σ1)
+ (k0 − 1)pσ+pσ1−2pR

p
2

=

(
2 + (q − 1)1/q

)p
M2p(aσ)pσ

(2c1)p(q − 1)p/q
1(

p(γ − 2 − σ1) − 1
)
(k0 − 1)p(γ−2−σ1)−1

+ (k0 − 1)pσ+pσ1−2pR
p
2 ,

because of the fact that

p(γ − 2 − σ1) > 1 ⇐⇒ σ1 < γ − 2p + 1

p
.
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Since

hpp(σ + σ1) = lim sup
t→∞

∞∑
k=1

kpσ+pσ1 |ûk(t)|p,

we have

hp(σ + σ1) � CM2(aσ)σ + (k0 − 1)σ+σ1−2M,

where

C =
2 + (q − 1)1/q

2c1(q − 1)1/q
((

p(γ − 2 − σ1) − 1
)
(k0 − 1)p(γ−2−σ1)−1

)1/p
.

In arriving at the result above, we have used the fact

(ϑ + ϕ)1/p � ϑ1/p + ϕ1/p for all ϑ, ϕ > 0 and p � 1.

This inductive step is complete if we can find positive constants M and a satisfying

CM2(aσ)σ + (k0 − 1)σ+σ1−2M � M
(
a(σ + 1)

)σ+1
for every σ � 1. (3.9)

Clearly, for every M > 0, there exists an a0 > 0, such that (3.9) holds for every a � a0.

We have proved the following:

Theorem 3.1 Let X be the global attractor of the equation

ut + uux + Pu = 0,

with 2π-periodic initial data in L2, where P is a linear pseudo-differential operator defined

by its symbol in Fourier space, that is,

(
bPw

)
k

= λk ŵk, k ∈ �,

whenever w(x) =
∑
k∈�

ŵk eikx, and with the eigenvalues λk satisfying the condition

Re λk � c1|k|γ for all |k| � k0,

for some positive constants c1, γ > 2 and k0 a sufficiently large positive integer. Then, every

w∈X extends to a holomorphic function in Ωβ , for a suitable β > 0. �

4 Conclusions

In this work we have established analyticity for 2π−periodic solutions of equation (1.1),

provided that these solutions are attracted by a compact set and that the eigenvalues of

P satisfy condition (1.3), for γ > 2. It is noteworthy that our numerical experiments for a

special model of equation (1.1), namely the equation

ut + uux − |∂x|αu + |∂x|βu = 0, (4.1)
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for spatially 2π-periodic data and β > α � 0, suggest that for β > 3/2 the solutions are

attracted by a compact set and they are analytic with the band of analyticity tending to

zero as β ↘ 3/2. We are currently investigating extensions of the results presented here

to classes of equations such as (4.1) that are characterised by γ � 2. Also, we have been

investigating possible extensions of out theory to multi-dimensional dissipative PDEs,

such as the two–dimensional Kuramoto-Sivashinsky equation

ut + Δ2u + uxx + uux = 0,

on doubly periodic domains [11].

Appendix

Proof of Lemma 2.1

The proof that follows is along the lines of the proof of Theorem 1 in [1]. Clearly, if

1 � p � ∞, then there exist positive constants C1 and C2, such that

C1‖f‖p,n � ‖f(n)‖∞ � C2‖f‖p,n+1, (A.1)

for every n � 1 and f∈C∞(�), which is L-periodic. It is readily seen that (A.1) implies

lim sup
n→∞

‖f‖1/n
p,n

n
= lim sup

n→∞

‖f(n)‖1/n
∞

n
. (A.2)

Formula (A.2) implies that it suffices to show the lemma for the ‖f‖p,∞-norm, instead of

the ‖f‖p,s-norm. Due to Stirling’s formula we have that

lim
n→∞

n

(n!)1/n
= e,

which in combination with (A.2), yields that

μ̃ = lim sup
n→∞

(
‖f‖p,∞
n!

)1/n

= lim sup
n→∞

n

(n!)1/n
· ‖f‖1/n

p,∞

n
= eμ.

Therefore, in order to prove our analyticity criterion it suffices to establish the following

two claims.

Claim I. If μ̃ < ∞ and γ :=

⎧⎨
⎩

∞ if μ̃ = 0,

1

μ̃
if μ̃ > 0,

then f extends holomorphically in Ωγ .

Claim II. If γ∈ (0,∞) and f extends holomorphically in Ωγ , then μ̃ � 1/γ.

Proof of Claim I. It can be readily seen that the function

F(x + iy) =

∞∑
n=0

f(n)(x)

n!
(iy)n

is well defined (cf. nth-root test for series) and differentiable (in fact C∞), with respect to

both x and y, for every (x, y)∈� × (−γ, γ), and satisfies the Cauchy-Riemann equations,
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i.e., Fy = iFx. Therefore, F is holomorphic in Ωγ , and since F(x) = f(x), for x∈�, then

f extends holomorphically in Ωγ .

Proof of Claim II. Assume that F is holomorphic in Ωγ and also that it agrees with f in

�, and let ε∈ (0, γ). Set

Mε = max {|F(x + iy)| : x ∈ [0, L] and |y| � γ − ε}.

We have

Mε = sup
z∈Ωγ−ε

|F(z)|,

since F is L-periodic as well. Also, for every x∈� and n ∈ �, we have

f(n)(x) = F (n)(x) =
n!

2πi

∫
|z−x| = γ−ε

F(z)

(z − x)n+1
dz.

Therefore

|f(n)(x)| �
n!Mε

(γ − ε)n
,

and thus

μ̃ = lim sup
n→∞

(
‖f(n)‖∞

n!

)1/n

�
1

γ − ε

for every ε∈ (0, γ). Consequently, μ̃ � 1/γ. �
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