Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-11T07:02:57.561Z Has data issue: false hasContentIssue false

Topological entropy of semi-dispersing billiards

Published online by Cambridge University Press:  01 August 1998

D. BURAGO
Affiliation:
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA (e-mail: \{burago, ferleger\}@math.psu.edu)
S. FERLEGER
Affiliation:
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA (e-mail: \{burago, ferleger\}@math.psu.edu)
A. KONONENKO
Affiliation:
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA (e-mail: alexko@math.upenn.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we continue to explore the applications of the connections between singular Riemannian geometry and billiard systems that were first used in [6] to prove estimates on the number of collisions in non-degenerate semi-dispersing billiards.

In this paper we show that the topological entropy of a compact non-degenerate semi-dispersing billiard on any manifold of non-positive sectional curvature is finite. Also, we prove exponential estimates on the number of periodic points (for the first return map to the boundary of a simple-connected billiard table) and the number of periodic trajectories (for the billiard flow). In \S5 we prove some estimates for the topological entropy of Lorentz gas.

Type
Research Article
Copyright
© 1998 Cambridge University Press