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Abstract In this paper we continue to explore the applications of the connections between
singular Riemannian geometry and billiard systems that were first uses] to prove
estimates on the number of collisions in non-degenerate semi-dispersing billiards.

In this paper we show that the topological entropy of a compact non-degenerate semi-
dispersing billiard on any manifold of non-positive sectional curvature is finite. Also,
we prove exponential estimates on the number of periodic points (for the first return
map to the boundary of a simple-connected billiard table) and the number of periodic
trajectories (for the billiard flow). If5 we prove some estimates for the topological
entropy of Lorentz gas.

1. Summary of results
The results of this paper rely on the connection between the singular Riemannian
geometry and semi-dispersing billiard systems. Namely, for every billiard trajectory
one can construct a singular Riemannian space such that the trajectory corresponds to a
geodesic in this space. Moreover, the Alexandrov curvature of this space is not bigger
than the curvature of the original billiard manifold. Thus, if we start with a billiard on a
manifold of non-positive curvature, then the corresponding space also has non-positive
curvature. The proof of the finiteness of entropy for semi-dispersing billiards is based
on a singular analog of the following well known for regular manifolds of non-positive
curvature statement: if two geodesics in a simply connected manifold of non-positive
curvature have ‘close’ end points, then they are ‘close’ to each other everywhere, and
not only on the manifold but also in its tangent bundle.

It is interesting to notice that our proof fails immediately if there are any regions of
positive curvature inside the billiard. Moreover, we strongly suspect that if we allow even
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arbitrarily small portions of positive curvature, then it is possible to construct examples
of semi-dispersing billiards with infinite topological entropy.

Let us proceed with the rigorous formulations of our results.

Let M be an arbitrary Riemannian manifold of non-positive bounded sectional
curvature without boundary. Consider a collectionnofjeodesically convex compact
subsets Walls) B; ¢ M, i = 1,...,n, of M, such that their boundaries a@!
submanifolds of codimension one. L&t= M\(J'_, Int(B;)), where IntB;) denotes
the interior of the seB;. The setB c M will be called a billiard table. A semi-dispersing
billiard flow {T*}°2__ acts on a certain subs&tB of full Liouville measure of the unit
tangent bundle taB. To be more preciseﬁ? consists of such pointéx, v) € TM,

x € B, v € TyM, that for everyx € 9B, vectorv is directed ‘strictly inside ofB’,

and the orbit of £, v) is defined for allr € (—o0, c0) (see, for example,5] for the
rigorous definitions). The projections of the orbits of that flow Boare called the
billiard trajectories and correspond to free motions of particles inSideNamely, the
particle moves inside the s#t with unit speed along a geodesic until it reaches one of
the setsB; (collision) where it reflects according to the law ‘the angle of incidence is
equal to the angle of reflection’.

The purpose of this paper is to establish the finiteness of topological entropy for a large
class of semi-dispersing billiards, namely for non-degenerate semi-dispersing billiards,
i.e. billiards on tables that satisfy a certain geometric non-degeneracy condition (see
below). It was shown ind] that this non-degeneracy condition implies the existence of
local uniform estimates on the number of collisions. Estimates like that play an important
role in various questions about billiards. For example, they appear as conditions for
Sinai—-Chernov’s formulas for metric entropy of semi-dispersing billiag&]44].

Note that Sinai—Chernov’s formulas imply the finiteness of the metric entropy of non-
degenerate semi-dispersing billiardsiRi or T" with respect to the Liouville measure.
However, little is known about the topological entropy of general semi-dispersing
billiards. Most of the results known to the authors of this paper are proven only for two-
dimensional semi-dispersing billiards (the connection between the topological entropy
and the number of periodic point§][and the results of12]). The only result about
the topological entropy of billiards of arbitrary dimension, that we are aware of, is the
fact that the topological entropy of polygonal and polyhedral billiards is zero (proved for
the two-dimensional case il]], the proof of the general case is also outlined 14]]
the rigorous proof can be found iA(]; see also §] for the similar result about metric
entropy).

In this paper we prove that the topological entropy of compact non-degenerate semi-
dispersing billiards is finite. Moreover, our results are true not only for billiardR"in
or T" but for billiards on any manifolds of non-positive sectional curvature.

In [17] exponential estimates on the number of periodic points for the first return map
to the boundary, for billiards ifR*, and the number of periodic trajectories for the flow,
for non-degenerate billiards iR?, were proven. Irk4 we prove the analogs of those
results for billiards on arbitrary manifolds of non-positive curvature.

In §5 we prove some estimates for the topological entropy of Lorentz gas. In particular,
we prove the existence of a limit of topological entropy of the Lorentz gas flow when
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the radius of the scatterer approaches zero.
The following non-degeneracy condition for semi-dispersing billiards was introduced
in [6].

Definition 1.1A billiard table B is non-degeneratén a subset/ ¢ M (with constant
C > 0),ifforany’ c {1,...,n} and for anyy € (U B)\(ﬂje, B)),

dist(y. B) c
ket dist(y, (V;e; B)) ~

whenever);.; B; is non-empty.

Roughly speaking, it means that if a pointdsclose to all the walls fronT then it is
d/C-close to their intersection.

We will say thatB is non-degeneratéf there existd > 0 andC > 0 such thatB is
non-degenerate, with constafif in any s-ball.

The following estimate on the number of collisions in non-degenerate semi-dispersing
billiards was proven inf].

PropPosITION1.1. For any non-degenerate semi-dispersing billiard there exists a constant
P such that, for every t, every trajectory of the billiard flow makes no more than- 1)
collisions with the boundary in the time interv@, ].

Recall that there is a standard way to introduce a distance function in the tangent
bundleTM to M (sometimes this distance function is called Sasaki metric). We will
denote this distance function ¥y, (-, -). Now we can use the distaneg (-, ) to
define the topological entropkio(f) of any transformationf of any subset ofl M
(for a rigorous definition of the topological entropy of transformations of a non-compact
space see, for example,d).

Definition 1.2.The topological entropy of the time-one map of the billiard flow will
be called the topological entropy of the billiard.

Notice that the straightforward definition of the topological entropy of the billiard as
the topological entropy of the whole billiard flow is meaningless, because, due to the
discontinuity of the flow, the topological entropy of the whole billiard flow is always
infinite.

We apply methods of singular Riemannian geometry (s&d, 9]) to prove some
estimates on the topological entropy of non-degenerate semi-dispersing billiards. In
particular we will prove the following.

THEOREM 1. The topological entropy of a compact non-degenerate semi-dispersing
billiard on any manifold of non-positive sectional curvature is finite.

Let us call a pointx € TB Z-regular if T?(x) belongs to the interior of B for all
i € Z. For example, almost all points atB areZ-regular with respect to the Liouville
measure. Clearly the restriction of the time-one nidpto the setT Bz of Z-regular
points in B is continuous, and its topological entropy is less or equal to the topological
entropy of 71 on B. Thus, Theorem 1 together with Pesin and Pitskel’d [results
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concerning the variational principle for the continuous maps of non-compact spaces,
yields the following.

CoROLLARY 1.1. Metric entropy, of a compact non-degenerate semi-dispersing billiard
on any manifold of non-positive bounded sectional curvature, with respect to any
T'-invariant probability measurg such thatu(7 Bz) = 1, is finite. In particular, metric
entropy is finite for any measure which is invariant with respect to the wholeZlow

2. Outline of the proof of Theorem 1 for simply conneci¢d
In order to keep the main ideas of the proof of Theorem 1 more transparent we will first
prove Theorem 1 for simply connectdd. At the end of§3 we will show how to adapt
our arguments to the general case. Therefore, from now till the er§8,ofre assume
M to be simply connected.
Before we begin the proof, let us introduce the following.

Definition 2.1.We will say that two trajectorief; andT", are of the sameombinatorial
classif they collide with the same sequence of walls.

Additionally, if I'; andT", have the same lengthe R and for eachr = 1,2, ..., [/]
they experience the same number of collisions by the tinvee will say thatl'; andI',
are of the sametrict combinatorial class

For every piecewise smooth curyein M denote byy (¢) the right derivative ofy at
the pointy (r). For everyl € N ande > 0 we will construct are-net A’(e) T B for the
distanced; (x, y) = max<;< dru(T'x, T'y) and estimate the number of its elements.
The construction of the-net A/(¢) is based on the following lemma which will be
proven in the next section.

LEMMA 2.1. For everye > 0 there exist$ > 0 such that ifl";, I', are
1. of the same strict combinatorial class;

2. have equal lengtlh € N;

3. duy(T1(0),T2(0) < § anddy (I'1(D), Ta()) < §;

thend;(I"'1(0), I'2(0)) < e.

Let us show how to construet!(¢) using Lemma 2.1.

Consider an arbitrans-cover A of the billiard B. Let C be an arbitrary strict
combinatorial class of trajectories. For each pair of €&t € A consider a billiard
trajectory 'y y of classC such thatl'y y(0) € U andT'y vy (/) € V (provided such
a trajectory exists) and setl.(e) = {['yv(0) | U,V € A}. One has Card,) <
CardA)? < K, whereK is a positive constant that depends only on the billigrand
the numbere (clearly it depends only oB and§, but § is determined by). Now
remark that since our billiard is non-degenerate, according to Proposition 1.1 the number
of collisions that may occur in timéis not greater tharP (! + 1). Therefore, there is
no more tham?¢+V+ different strict combinatorial classes of trajectories that contain
trajectories of lengtli. We takeA'(e) = UA’C(e), where the union is taken over all
strict combinatorial classaS. Clearly, A’ (¢) is ane-net with respect to the metri; on
TM, and

Card Al (e)) < KnPU+D+ < gpP+Di+D
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and, therefore,

. — In(Card A’ In(Kn(PHOEHD
hiop(T, €) < lim Tim In(Card 4 (¢)) < lim In(Kn™™™>"7)

e—>0l—00 ) [—00

= (P +1)In(n).

Therefore hiop(T1) < (P + 1) In(n).

3. Proof of Lemma 2.1 and the general case of Theorem 1
To prove Lemma 2.1 we apply the methods of singular Riemannian geometry similar to
the way we did in §].

First of all we have to recall the construction of a singular Riemannian space
corresponding to a given billiard trajectofly which starts at the poinKy, ends at
X;11 and has collision point(, ..., X;. We construct a singular Riemannian space
M in the following way: takej + 1 isometric copiesV;, i = O, ..., j, of M and, for
alli =0,...,j — 1, glue togethetM; and M;,, by the setB;, which containsX; .
Notice that by construction, for each= 0, ..., j — 1 there is a canonical isometric
embeddingE; : M — M, which is an isometry betweeXd andM; and maps the subsets
By, k=1,...,n,in M into the subset®; in M;.

The curveG(T') = | J/_, Ei(X; X;11) € M is a geodesic i corresponding to the
trajectoryl” in M and it has the same length M asT" in M. (Here and in the rest of
the paper, we denote the piece of geodesi#fitonnecting pointsA and B by AB.)

Notice that if two trajectories have the same combinatorial ofasken the singular
Riemannian spaces corresponding to them are naturally isometric. We will denote this
space byMc.

It follows immediately from the construction af/c, the fact thatM is simply
connected, and Reshetnyak’s gluing theoref]([also see Theorem 6.1 ir]) that
M¢ is a singular space of non-positive curvature.

LetT';, ', be as in Lemma 2.1. Consider the geodes6i¢E;)(¢) andG (I'2)(¢), where
t is the time parameter along(I'1) and G(I"2).

Since M is a space of non-positive curvature, the functidty) = dy.(G(I'1)(¢),
G(I'2)(1)) is convex (seed Theorem 14]). Therefore, for any > 0, the fact that
D(0) < § andD(l) < § implies thatD(¢t) < forall 0 < <.

Notice that the distance between the poi6td™;)(r) and G(I'2)(¢) in M¢ is bigger
or equal to the distance between the poini&) andT',(¢) in M.

Thus, we immediately have the following.

LEMMA 3.1. For any s > 0, any semi-dispersing billiard B, any real numbgr if two
billiard trajectoriesI'1(z) and I'>(¢) have

1. the same combinatorial class;

2. the same lengthy;

3. du(1(0), I'2(0)) < & anddy (T'1(t0), I'2(t0)) < 3;

thendy (I'1(¢), T2(t)) < s forall 0 <t < 1.

Now, to finish the proof of Lemma 2.1 it will be enough to prove the following.
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LEMMA 3.2. LetIl'y(¢) andT',(¢), 0 < ¢t < 1, be two trajectories of the same combinatorial
class C. Then for every there existsS¢ > 0 such that ifdy;(I'1(0), I'2(0)) < 8¢ and
dy(T'1(1), T2(1)) < 8¢ thendry (I'1(0), I'2(0)) < e.

Suppose that Lemma 3.2 is proven. Due to Proposition 1.1 there exist no more than
n?F different combinatorial classes containing a trajectory of length one. For a dixed
let § be equal to the minimum of afi- over all possible combinatorial class€s

It follows from Lemma 3.1 that ifl"; and I'> are as in Lemma 2.1 then we can
apply Lemma 3.2 to each of the pairs of segment§'at), i <t <i + 1, andI'x(¢),
i<t<i+1, foralli=0,...,] —1. This immediately implies Lemma 2.1.

Let us prove Lemma 3.2.

Proof. Let us introduce some notation. Lete M, and letT be a linear transformation
of T,M. Let v be any vector, tangent t&, not necessary at point By T (v) we will
denote the vector obtained by the following procedure: first we translptgallel along
a geodesic ta (sinceM is assumed to be simply connected there is a unique geodesic
joining any two points ofM), and then apply the transformatidhat x. Notice that if
T = ld(x), the identity map il M, thenT (v) is the result of the parallel translation of
v to x.

For an arbitrary trajectory of length one and the combinatorial claSsve will use
expanded notatiof (1, y1), . . ., (tn, ¥Ym)), Where each pait, yx), & € [0, 1], yx € M,
k=1,...,m, are the time and the coordinate of tki collision. Lety, = I'(0) and
I'o = I'(0) and lety,,,1 = I'(1). Denote, fork =1, ..., m, Iy = I'(1), i.e. the velocity
vector at the timey.

Let S(y) be the reflection irl;, M with respect to the hyperplane tangentdts;
at the pointy,, whered B;, is the boundary of the wall containing.

Then the billiard motion law for the trajectofy can be written as

Ty = A7) SWis) - - - SGas)) Tt 1)

foranyk,l =0,...m, such thatt +1 < m.

Now, denote byy the uniform pointwise limit of the sequence of trajectories
(@, v, ..., @, vn)) of combinatorial classC. Let (&, yx) € [0, 1] x 9B;x be
an accumulation point of the sequeneg, ;). Also, letyg = y(0), 10 =0, t41 = 1,
andy,,+1 = y(1). (Notice that the timeg, and the pointg; are defined non-uniquely,
except fork = 0 andk = m + 1, i.e. there might be more than one accumulation point
for the sequences( y;’) fork =1,...,m.)

Obviously, there exists & k < m such that the pointg; andy;,1 do not coincide.
Then, denote by, the vector, tangent af, to the geodesic connecting and y1.
Thus y; is defined for some & k < m. Let us definey, for all the otherk. Namely,
we put

v =1d)SWis) - S (%) (2

forall0<! <k and
7 =SW)SWi-1) .. S+ i) 3)

forallm>1> k.
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Consider the closur€ in the metric of uniform pointwise convergenag: (I'y, I'z) =
maXe,1) dm(I1(t), T2(¢)), of the set of all the trajectories of the combinatorial
class C and of length one. (Notice that, due to Lemma 3d5(T1,I2) =
max{dy (I'1(0), T2(0)), dy (I'1(1), T2(1))}.) We claim that ify” € C convergesty € C,
thenyg converges tgy. Fix some choice ofx, y), for k = 1,...,m. Letk be such
thatyx # v+1. Let y" be the part ofy” connectingy;’ andy;’,;, and lety be the part
of y connectingy, and y;41. Theny”, n = 1,2,..., andy are geodesic in, such
that y” converges uniformly tgz. Therefore,y,’ converges toy, and then, due to the
relations (2) and (3)y§ converges tgy. Thus, we have established that the map

L:C—TM:L(y) =
is continuous. It immediately implies that the map

F:CxC—R:F(yy) =dru(L(y), L(y2)

is also continuous.
Let us now introduce the map

Q:C— BxB; Q) =®0),yQ),

which is bicontinuous and injective (both properties are due to the factMgahas
non-positive curvature; see, for exampl8, Theorem 14]). It shows that, sina@ is
compact,C is a compact set. On the other hand, functiors identically equal to zero
on the diagonal(y,y) | y € C} ¢ C x C. It means that for every > 0 there exists
8¢ > 0 such thatdz(y1, y2) < 8¢ implies F(y1, y2) < €. This proves Lemma 3.2 and,
thus, finishes the proof of Theorem 1 for simply connected O

Now, let us show how to modify the proof to include the case wheris not simply
connected.
Denote byH (¢) the number of different homotopy classes that can be represented by
the curves which intersect the compact 8eand have length less or equal#to
We will say that two billiard trajectorie§’; andT", of length/ € R are of the same
homotopic combinatorial clasgrespectively, the samstrict homotopic combinatorial
clasyg if:
1. TI'; and I'; are of the same combinatorial class (respectively, the same strict
combinatorial class);
2. dy(T1(0), T2(0) < rg anddy (I'1(1), T'2(1)) < rg, Wwhererg is the minimum of the
injectivity radius of M over all points ofB;
3. the closed curve formed Hy;, I'; and the two shortest geodesics conneciia¢D)
with I'>(0), andT"y (/) with T'2(/), is homotopically trivial.
(Notice that unlike the relation of being from the same combinatorial class (strict
combinatorial class) the relation of being from the same homotopic combinatorial class
(strict homotopic combinatorial class) is not an equivalency relation of the set of
trajectories, because it does not possess the transitivity property.)
Now, Lemma 3.1 is true if we substitute in its statement ‘homotopic combinatorial
class’ instead of ‘combinatorial class’ and add the condition éhatrg. The proof is
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essentially the same. We consider the universal ca¥eof M and the billiardB in

the pre-image ofB under the covering map. Notice that the getn M is bounded
by all the pre-images of the seB in M, and each connected component of the pre-
image is considered as a separate wall of the billiardThe condition that"; and ",
have the same homotopic combinatorial class guarantees that if theirJiti®d I, in

B are such that/;(I'1(0), T2(0)) < & thenT'; and I', have the same combinatorial
class in B and dM(f“l(to),f“z(to)) < §. Then, exactly as before, we construct the
singular spaceM using the billiard B and the combinatorial clas§ of I'; and I';

in B, and show thatl;; (T1(1), [2(r)) < & for all t € [0, 1o]. This immediately implies
thatdy, (T'1(t), T'2(t)) < § for all ¢ € [0, 1]

Lemma 3.2 is true if we substitute in its statement ‘homotopic combinatorial class’
instead of ‘combinatorial class’. The proof is again very similar to the proof of
Lemma 3.2 for the simply connected case. Let us outline it. Let compact connected
set B’ C B be such thatB’ coversB, that is, every point of8 has a pre-image B’
and, moreover, every geodesic connecting two point® dfas a lift that is contained
in B'. Let C’ be an arbitrary combinatorial class khthat contains pre-images of some
trajectories of clas€ in B, and such that those pre-images start at some poini.of
Consider the seC’ of all trajectories ofB that have length one, start at some point
of B/, and belong to the clasS’. Consider the closur€’ of C’ in the metric of the
uniform convergence for the curves afi. The functionsL’ and F’ on the set<’ and
C’ x C' are defined exactly as the functiofisand F were defined for the set§ and
C x C. The mapQ’ is defined similar to the mag and mapsC’ into a compact set
B’ x B'(1), whereB'(1) is the set of points i/ which are at the distance less or equal
to one from the seB’. In this way, we establish the compactnessCéfand, thus, the
uniform continuity of F’. It means that for every > 0 there exist$z > 0 such that
de(y1, v2) < 8¢ implies F'(y1, y2) < e. o

Choose,é. = minés, where the minimum is taken over all the classesn B
that contain the pre-images of the trajectories of length one of dass B. Let
¢ = mln{a’c, ro}.

Then, if I'; and I', have the same homotopic combinatorial class, are such that
du(T1(0), T2(0)) < 8¢, dy(T1(1), T2(1) < 8¢, and if their lifts, ['; and I'p, in B
are chosen so that; (T'1(0), I'2(0)) < 8¢, thenT; and T, have the same combinatorial
class inB and satisfy the conditiod; ('1(1), ['2(1)) < §¢. Due to the choice ofc we
see that it implies the statement of the non-simply connected version of Lemma 3.2.

Exactly as before the modified versions of Lemmas 3.1 and 3.2 imply Lemma 2.1
with ‘strict combinatorial class’ being changed to ‘strict homotopic combinatorial class’.

Now, the modified version of Lemma 2.1 can be used to construetrat A’ (¢). The
construction is exactly the same as the constructioa’of) in §2, except that instead of
picking for each pair oV andV a single trajectoryl’y v we pick as many trajectories
I}, , as we can in order to satisfy the following conditions:

1. all the trajectoried}, |, satisfy the conditiong’}, ,,(0) € U andT}, , () € V;
2. all the trajectories™;, |, have the same strict combinatorial class
3. no two trajectories amorig;’,yv have the same strict homotopic combinatorial class;
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4. every trajectory” of the strict combinatorial clas€ that satisfies the conditions
'(0) € U andI'(l) € V has the same strict homotopic combinatorial class with at
least one of the trajectoridg, .

Clearly, for each pair ofU and V one can choose at mog#f (2/ + 25) different
trajectoriesI’;, .. In this way, for each strict combinatorial claswe construct a set
Al.(e) that consists of no more thaki H (2! + 25) different points (here, as beforg, is
a constant that depends only Bnande). The unionA’(e) = | AL (¢) over all the strict
combinatorial classes of trajectories of lengtis ane-net with respect to the metrig;

onTM. Thus,
1 1 (P+1)(I+1)
hoo(Th € < im /' In(CarolKA (€))) < lim IN(K'n 1 YH (2 + 28)
= (P+1In(n)+ I|m w
(H ())

= (P+DIn(n)+2 I|m —_—

4. Estimates on the number of periodic points and trajectories
Here we will use our methods to prove some results about periodic points and trajectories
of semi-dispersing billiards. The similar results for billiardsRf (for periodic points)
and R? (for periodic trajectories) were proven inq. The advantage of our method
is that the use of singular Riemannian geometry allows us to include the billiards on
manifolds of variable non-positive curvature and at the same time to avoid a variational
calculation used in1[7].

We say that a periodic trajectorly(¢), 0 < ¢ < [, is of classC if we can choose
the starting poinf"(0) so thatI'(0) € B;,, and thenI" collides with B;, i =iy, ..., i,
corresponding to the clags, and eventuallyi"(0) = I'(/). Also, we will call a curve
v(t) a periodic pseudo-trajectory of cla&sif it is a closed curve that consists of pieces
of geodesics o/ that connect some poing € B;, with some pointx; € B;,, the point
x2 € B;, with some pointxz € B;,, ..., the pointx; € B; with the pointx; € B;,
and at each point;, k = 1, ..., j, the tangent vector to(r) changes according to the
billiard rule with respect toB;,. (The difference with the usual trajectories is that a
geodesic segment of a pseudo-trajectory betwgesmnd ;.1 may intersect some of the
bodiesB;, i = 1,...,n.) Notice that ifT" is any periodic trajectory than any periodic
pseudo-trajectory close enoughTtois a periodic trajectory.

Our main result on periodic trajectories is the following.

THEOREM 2. Let B be a semi-dispersion billiard on a simply connected manifold M of non-
positive sectional curvature. Let C be some combinatorial class of trajectories. (Notice
that, unlike in our previous results, here we do not require B to be compact or non-
degenerate.)

Then, the periodic trajectories of class C all have the same length and form a parallel
family in the following sense. Any two periodic trajectorlesandI", of class C can be
joined by a continuous curvi,, 1 < ¢t < 2, of periodic pseudo-trajectories of type C so
that:
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1. the surfacez;, k = 1, ..., j, formed by the pieces of trajectori€s, 1 < ¢t < 2,
between theth and ¢ + 1)st collisions is a piece oR? isometrically embedded
into M;

2. the intersection/, of the boundary of3;, with the trajectories from the family,,
1 <t < 2, are isometrically embedded intervals of a straight line that connect the
pointI' () B;, with the pointl"; () B;,;

3. inside of each flat surfac&;, k = 1,..., j, the pieces of trajectories frorf,,
1 <t < 2, are parallel to each other.

We immediately have the following.

COROLLARY 4.1. For M and C as in Theorem 2:
1. if the curvature of M is strictly negative, then C contains no more than one periodic

trajectory;

2. if for some periodic trajectonyi” of class C at least one of the seBs, i = iy,
io, ..., Ij, is strictly convex at the poirit (") B;,, thenI" is the only periodic trajectory
in its class.

Let us prove Theorem 2.

Proof. Let I'; and I', be two periodic trajectories of clags. Let x = I';(0) and
y = TI'2(0), andx’ = E;(I'1(0)) andy’ = E;(I'2(0)). Extend the geodesias(I'1) and
G (I',) a little beyond the points, x” andy, y’ correspondingly, to geodesigs andy»,
in such a way thay:, y» belong toB;,, prior to the pointsc andy, and toE;(B;,), after
the pointsx’ andy’ (i.e. so to say extend the geodesics ‘into the walls’). &et y,
q € Bi,,q#x,and letp € y2, p € Bi;, p # y.

Then, sincd™; andT', are periodic trajectories, = E;(g) € y1, andp’ = E;(p) € y»
(provided thaty and p are chosen close enough to thandy, respectively). Therefore,

Lgxy) = L(g'x’y") and L(xyp) = L(x'y'p"). 4)
Thus, the sum of the angles of the geodesic quadrangdly is equal to Z. Therefore,
sinceM¢ has non-positive curvature, the defects of the triangl€s’ andxy’y are both
equal to zero. Also, we see that

L(xy'y) + L(xy'x") = L(yy'x'). (5)

Consider the triangleXX’'Y’ and XY'Y on R? which have a common sid&Y’,
and | XY| = dy, (x, ), |XY'| = dy(x, ), [YY'| = dy (v, ), |XX'| = dy(x, %),
|X'Y'| = dy.(x',y"). Since the defects ofx’y’ and xy'y are both equal to zero,
trianglesxx’y’ andxy’y and trianglesX X'Y’ and X Y'Y have equal corresponding angles.
Due to equations (4) and (5) we see tha@aXYY') + Z(YY'X’) = =m. This, together
with the fact that|XY| = |X'Y’|, shows thatXYY’X’ is a parallelogram. Therefore,
dy.(x,x") = du.(y,y"). Denote this length by.

Consider geodesicg(r) = xy, g'(t) = x'y', t € [0,dy.(x, y)], connectingx with
y, and correspondingly’ with y’. Since M has non-positive curvature the function
f@) =du.(g(), g'(t)) is convex, and sincg (0) = f(du.(x,y)), we see thalf () is
a constant function. Denote this constant/by
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Consider a ruled surfac® (correspondinglyS,) formed by the geodesics connecting
y' with the points of the geodesiey (correspondingly,x with the points of the
geodesic’y’). 1 andS, have non-positive curvature with respect to the metric inherited
from Mc (the result of Aleksandrovl]; see also4, Theorem 9.1]).

For piecewise smooth surfaces there is a well-defined concept of integral curvature
measure, which has many properties similar to the integral curvature for smooth
manifolds (see a reviewlp]), in particular, it satisfies the Gauss—Bonnet formula (see
[15, Theorem 5.3.2]). Applying it to the surfacSsandsS,, we conclude that their integral
curvature is equal to zero everywhere (their defects are equal to zero, and their curvature
measures are non-positive), and, theref@keis isometric to triangleXYY’, and S, is
isometric to triangleX X'Y’. Denote the isometries b¥; and F», correspondingly.

Let S =S1U Sz let F: S — XYY'X’' be defined byF|s, = F1, Fls, = F>. Being a
result of gluing ofS; and S,, the surfaceS also has non-positive curvature.

Let M € XY andM’ € X'Y' be such tha X = M’X’. Considere = F~X(MM')

S. The curvea connectsn = F~1(M) € xy andm’ = F~Y(M’) € x'y’, and its length
is equal to the length oM M’, and thus is equal td. Therefore,« is the geodesic in
M connectingn andm’.

Thus, we can describ& in the following way: surfaces is formed by the geodesics
G, in M connectinggy (¢) with ga(z), for 0 <t < dy.(x, y). Clearly, S is a piecewise
smooth surface. Namely, it consists of the smooth pidges S(\ My, k=1,..., J,
which are glued together in the following wayL, is glued with L;,; along their

common boundanC;,1, whereCy, k = 1, ..., j, are the curves of intersection 6f
with the boundaries oE;(B;,).
The integral curvature measure at the interior pointé gfk = 1, ..., j, is equal to

the smooth measure multiplied by the Gaussian curvatusg and the integral curvature
measure at the points @f, is equal to the length measure 6 multiplied by ¢1 + k2),
wherek; andk; are the oriented curvatures of the cugin L;_; and Ly, respectively.

We already know tha$ has zero integral curvature measure at all points. From the
description above of the integral curvature measuré. pandC; it immediately follows
that each piecd,, k =1,..., j, is flat inside and_, is glued withL,,; along a piece
of C; of a straight line. The other pieces of the boundaniefk =1,..., j, are all
pieces of straight lines, since they are geodesics and belong to the boundary of a flat
surfaceLy.

Rescale the parameteon the curvegi(z), g2(¢) (and, thus, on the familg,) so that
t would vary from 1 to 2. Lel', = E~1(G,), whereE~! is the mapM- — M such that
E(x) = Ek_l(x), forx e My, k =1,...,j. We see that alG, are periodic pseudo-
trajectories of the same length. This finishes the proof of Theorem 2 (WithEk‘l(Ck)
and %, = E; N (Ly)). O

Let us call two periodic trajectories equivalent if they are parallel (in the sense
explained in Theorem 2) and let us call two periodic points for the first return map to
the boundary equivalent if the corresponding periodic billiard trajectories are equivalent.

Denote by P, (P), k € N, the number of (equivalence classes of) periodic points
of period k for the first return map to the boundary of the billiaBJ and by P* (P?),

t € R*, the number of (equivalence classes of) periodic trajectories of the billiard flow
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of length less than or equal to Let for everym € N, x € RT,

0, x <2
O(m,x) =43 m(m—1), 2<x<3
m@m —1)*Ym —2), x>3.

Theorem 2 implies the following.

COROLLARY 4.2. Let B be a semi-dispersing billiard on a simply connected manifold M
of non-positive sectional curvature. Then:
1. if the curvature of M is strictly negative then

Py = P < 6(n, k);
2. ifallthe setsB;,i =1,...,n, are strictly convex then
Py = Py <6(n, k);
3. otherwise, either
Po=P <0 k) or P.<6(nk), P =o0.

For M = R¥, Corollary 4.2 was proven inl[].
Theorem 2 together with Proposition 1.1 implies the following.

COROLLARY 4.3.Let B be a non-degenerate semi-dispersing billiard on a simply
connected manifold M of bounded non-positive sectional curvature. (Notice that here
again we no not require B to be compact, but we do require the non-degeneracy of B.)
Then:

1. if the curvature of M is strictly negative then

P'=P' <0(n, P(t+1));
2. ifallthe setsB;,i =1, ...,n, are strictly convex then
P'=P' <60(n, P(t+1));
3. otherwise, either
P'=P <0, Pt+1) or P <0, P(t+1), P =o0,

where P is the constant from Proposition 1.1.

In [17] Corollary 4.3 was proven foM = R?.

Remark.Notice that our estimates for the number of periodic points as well as for the
topological entropy are applicable to billiards in polygons or polyhedras. However, for
those billiards much finer results are known. In fact, the topological entropy of billiards
in polygons or polyhedras is equal to zet®[11], and the number of periodic points
grows subexponentiallylfl].
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5. Topological entropy of Lorentz gas

The Lorentz gas model is a billiard dif = R¥/Z* with one wall which is a ball of
radius ¥2 > r > 0. In [7] it was proven that the first return map to the boundary of
the Lorentz gas billiard has infinite topological entropy, and that the metric entropy of
the Lorentz gas billiard with respect to the Liouville measure converges to zero, when
r — 0. In contrast to these results, we prove the following.

THEOREM 3. Denote by, (k) the topological entropy of the Lorentz gas billiard described
above. Then:

1. A, (k) is finite;

2. there exislim,_gh, (k) = ho(k), andoo > ho(k) > O;

3. ho(k) < ho(k +1) andho(k) > In(2k — 1).

The first statement of Theorem 3 follows immediately from Theorem 1. Moreover,
for a fixedk, it is easy to see thdt, (k) are uniformly bounded over. Let us denote
some upper bound bg (k).

To prove the second statement let us first introduce some notations. We denote by
B the ball of radiusr centered at the pointm) = (m1,...,my) on R¥, m; € Z,

i = 1,...,k. Denote byF,(n, k) the number of different combinatorial classes of
billiard trajectories of length at most, n € R, in B = R\ (U myezz INt B™) starting at
the ball B?, where(0) = (0, ...,0). Then, exactly as in the proof of Theorem 1, we
see that
I = Tim In F,.(n,k).
n—o00o n

A curvey in R¥ that satisfies the following properties is calledrapseudo-trajectory:

1. y belongs toB, i.e. y does not intersect the interiors of the balig";

2.y consists of several straight edges, with vertices that belong to the Bj#lis

In other wordsy is ‘almost a billiard trajectory’, except that it does not have to satisfy the
‘angle of incidence is equal to the angle of reflection’ law. Denoté&lpg:, k) the number

of different combinatorial classes efpseudo-trajectories of length at mosthat start

at B,(O). Then, clearly,I1,(n, k) > F,(n, k). On the other hand, the shortespseudo-
trajectory in a given clas§ must be a billiard trajectory of length at mas{provided that

C contains any--pseudo-trajectories of length at megt Thus,I1,(n, k) = F,(n, k).

Now, we will show thatIl,(n, k) is ‘almost a decreasing function of. Let y be
an r-pseudo-trajectory of length and with vertices;; € B™", i = 0,..., p, where
(m)o = (0). Then, since the distance between any two bBfl¢" and B is at least
1- 2r, we see thapp > I/(1 — 2r). Without loss of generality we may assume that
r < 1/4. Thenp > 2I. For a fixedr’ < r, let y; be the intersection of the boundary
of the ball B! with the interval of a straight line connecting and (m);. Then the
broken straight ling/’ with verticesy;, i =0, ..., p, is anr’-pseudo-trajectory. Indeed,
if ' intersects with the interior of some ba"’, theny intersects with the interior of
the ball B™, which contradicts the fact that is anr-pseudo-trajectory. Moreover, the
length ofy’ is at mostl + 2(r — ¥ )p < I1(1+ 4(r —r")). Thus,

I, (n, k) < (n(1+ 40 — ")), k).
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Thus, we see that

—_— In Hr ,k - |n Hr’ 1 4 —r 9k
he(k) = lim ¢§ lim (4 = 7)), K)
n— o0 n n—00 n

o o INTL . (n(X + 4(r — 1)), k)
A+ar=r) I = A ar =)

A+ 4(r — r'))h (k).

Thus,
hy (k) = hp(k) < & — (k) < 40 —r)Q(K), i r/ <r. (6)

Equation (6) immediately implies the second statement of Theorem 3, i.e. that there
exists a limit lim_q A, (k).
Moreover, equation (6) also implies that
. . — InTl,(n, k — Indim,_oII.(n, k
ho(k) = lim h, (k) = lim (Ilm (”)) _ fim ndim, oI, (n, ©))

r—0 \n—>o0 n n—00 n

(7)

Denote byIlg(n, k) = lim,_oI1,(n, k). Then it is easy to see th&ty(n, k) is equal
to the number of different broken lines " which start at (0), have length at most
have vertices at the integer points, and such that:
1. the edges do not intersect any integer points, except for the vertices;
2. no three pairwise distinct consecutive vertices belong to one straight line, i.e. no
edge is a continuation of the previous one.
Then, clearly ITg(n, k + 1) > Tp(n, k). Thus, equation (7) implies that

— InTp(n, k+ 1) = Tm InTo(n, k)

n n—00 n

Notice that, for integem, the numberIlg(n, k) can be estimated from below by
the number of the broken lines such that each edge has length one. Therefore,
o(n, k) > (2k — 1)". (Each of the edges can be parallel to one of the coordinate
directions, and the only direction that is inadmissible is the direction that extends the
previous edge.) Thugo(k) > In(2k — 1).

Theorem 3 is proven.

Also, the geometric description of the numbé&rlg(n, k) is useful if we want to obtain
numerical estimates for the numbérg(k). In particular, a computer aided calculation
shows thatio(2) = 1.526.. ..
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