Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-11T07:35:26.966Z Has data issue: false hasContentIssue false

Robustly expansive homoclinic classes

Published online by Cambridge University Press:  22 December 2004

M. J. PACIFICO
Affiliation:
Instituto de Matematica, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, R. J., Brazil (e-mail: pacifico@im.ufrj.br and enrique@im.ufrj.br)
E. R. PUJALS
Affiliation:
Instituto de Matematica, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, R. J., Brazil (e-mail: pacifico@im.ufrj.br and enrique@im.ufrj.br)
J. L. VIEITEZ
Affiliation:
Instituto de Matematica, Facultad de Ingenieria, Universidad de la Republica, CC30, CP 11300, Montevideo, Uruguay (e-mail: jvieitez@fing.edu.uy)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $f: M \to M$ be a diffeomorphism defined in a three-dimensional compact boundary-less manifold M. We prove that for an open dense set, C1-robustly expansive homoclinic classes H(p) for f are hyperbolic. A diffeomorphism f is $\alpha$-expansive on a compact invariant set K if there is $\alpha>0$ such that for all $x,y\in K$, if ${\rm dist}(f^n(x),f^n(y))\leq \alpha$ for all $n\in \mathbb Z$ then x = y. By ‘robustly’ we mean that there is $\alpha>0$ such that for all nearby diffeomorphisms g, the homoclinic class H(pg) of the continuation of p is $\alpha$-expansive.

Type
Research Article
Copyright
2004 Cambridge University Press