Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-11T07:37:49.798Z Has data issue: false hasContentIssue false

On the full periodicity kernel for one-dimensional maps

Published online by Cambridge University Press:  01 February 1999

M. CARME LESEDUARTE
Affiliation:
Departament de Matemàtica Aplicada II, ETSEIT, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain (e-mail: leseduarte@ma2.upc.es)
JAUME LLIBRE
Affiliation:
Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain (e-mail: jllibre@mat.uab.es)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\bpropto$ be the topological space obtained by identifying the points 1 and 2 of the segment $[0,3]$ to a point. Let $\binfty$ be the topological space obtained by identifying the points 0, 1 and 2 of the segment $[0,2]$ to a point. An $\bpropto$ (respectively $\binfty$) map is a continuous self-map of $\bpropto$ (respectively $\binfty$) having the branching point fixed. Set $E\in\{\bpropto,\binfty\}$. Let $f$ be an $E$ map. We denote by $\Per(f)$ the set of periods of all periodic points of $f$. The set $K \subset{\mathbb N}$ is the full periodicity kernel of $E$ if it satisfies the following two conditions: (1) if $f$ is an $E$ map and $K\subset \Per(f)$, then $\Per(f)={\mathbb N}$; (2) for each $k\in K$ there exists an $E$ map $f$ such that $\Per(f)={\mathbb N}\setminus\{ k\}$. In this paper we compute the full periodicity kernel of $\bpropto$ and $\binfty$.

Type
Research Article
Copyright
1999 Cambridge University Press