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Abstract Let « be the topological space obtained by identifying the points 1 and 2 of the
segmeniO0, 3] to a point. Letoo be the topological space obtained by identifying the points
0, 1 and 2 of the segmei®, 2] to a point. Anx (respectivelyoo) map is a continuous
self-map ofx (respectivelyo) having the branching point fixed. SEte {x, oo}. Let f

be anE map. We denote by Pef) the set of periods of all periodic points ¢f The set

K c N is thefull periodicity kernelof E if it satisfies the following two conditions: (1) if
fisanE map andK c Perf), then Petf) = N; (2) for eachk € K there exists arE
map f such that Pe€1f) = N\ {k}. In this paper we compute the full periodicity kernel of

o andoo.

1. Introduction and main results
Let E be a topological space. We shall study some properties of the set of periods for a
class of continuous maps frominto itself. We need some notation.

The sets of natural numbers, real numbers and complex numbers will be denoted by
N, R and C respectively. For a mayf : E — E we use the symbof” to denote
fofo-—-of (ne Ntime9, f° denotes the identity map dt. Then, for a point
x € E we define therbit of x, denoted by Orb(x), asthe setf"(x) :n =0,1,2,...}.

We sayx is afixed pointof f if f(x) = x. We sayx is aperiodic point of f of period

k € N (or simply ak-point) if f¥(x) = x and fi(x) # x for1 < i < k. In this case
we say the orbit ok is aperiodic orbit of periodk (or simply ak-orbit). Note that ifx

is a periodic point of period, then Orly(x) has exactly elements, each of which is a
periodic point of period. We denote by P¢r) the set of periods of all periodic points
of f.

8§ The authors have been partially supported by a DGYCIT grant no. PB96-1153.
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A connected finite regular graptor just agraph for short) is a pair consisting of a
connecteddausdorffspaceFE and a finite subspadeé, whose elements are calledrtices
such that the following conditions hold:

(1) E\Visthe disjoint union of afinite number of open subsats . ., ¢, callededges
where eacla; is homeomorphic to an open interval of the real line;

(2) the boundary, ¢;) \ ¢;, of the edge; consists of two distinct vertices, and the pair
(cl(e;), e;) is homeomorphic to the paff0, 1], (0, 1)).

A vertex which belongs to the boundary of at least three different edges is called a

branching pointof E. A vertex which belongs to a unique edge is callectadpoint

An E mapis a continuous self-map @ having fixed all the branching points &f

We say anE map f hasfull periodicity if Per(f) = N. The setk < N is afull
periodicity kernebf E if it satisfies the following two conditions:

(1) if fisanE mapandK C Perf), then Petf) = N;
(2) foreachk € K there exists ailt map f such that Perf) = N\ {k}.

The above condition (1) says that the gétis sufficient to force full periodicity.
Condition (2) means thak is necessary to have full periodicity. Of course, the Ket
is the minimal set which forces periodic points of all periods. Note that, for a giyeh
there is a full periodicity kernel, then it is unique.

Blokh proved in B] that for every graplE, there exists a natural numbE(E), such
that for any continuous self-mapof E, {1, 2, ..., L(E)} C Pel(f) implies Petf) = N.

This result shows that if there exists the full periodicity kerneEothen it is a finite set.
In fact, then the seftl, 2, ..., L(E)} contains the full periodicity kernel of.

On the other hand, one of the most important questions in one-dimensional
combinatorial dynamics is the problem of describing all possible sets of periods for
maps. There is a kind of conjecture saying that with finitely many different orderings of
the setN it will be possible to control all possible sets of periods formaps, see for
instance 2]. If this conjecture is true, then the full periodicity kernel would contain the
first elements of the different orderings controlling the periodic structuremips. Thus,
the full periodicity kernel contains interesting information about the new orderings which
can appear in the periodic dynamicsibmaps.

Thetopological entropyof a continuous self-map on a graphE is a non-negative real
numberh(f) associated tg- which increases with the complexity gf. For a definition
and main properties seg][ Llibre and Misiurewicz 2] obtained the next result. If is a
continuous map on a graph into itself, then the following two statements are equivalent:
(1) (>0
(2) thereisn € Nsuchthafm -n:n € N} C Pery).

Another proof of this equivalence can be found8h [From this result it follows that iK ¢

is the full periodicity kernel o= andf is anE map, thenKz C Per(f) impliesk(f) > 0.

In other words, if a map has the periods of its full periodicity kernel, then it has positive
topological entropy.

From now on, the topological spadgwill denote one of the following seven spaces

| = {(x,y) e R?:0<x < 1andy = 0},
Y={zeC:z%€[0,1]},
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X={zeC:z*e]0,1]},
O={(x,yeR:x*+(y+1*=1},
o=1UO0O,
x=0U{(x,y) eR?: —1<x <0andy = 0},
co=0U{(x,y) eR?:x?+ (y — 12 =1}.

The spaces, Y, X, O, o, « andoo are called thénterval, the 3od or 3-star, the 4od
or the 4star, thecircle, thesigma thealphaand theeightrespectively.

The space¥, X, o, « andoo have exactly one branching point, namélg Y, 0 € X,
0=(0,0)e0,0=(0,0) € xand0 = (0, 0) € co. We also denote b the (0, 0) € O.

The full periodicity kernel for the interval, the 3-star, the 4-star, the circle and the sigma
are known and presented in the following five theorems.

THEOREM1.1. The sef{3} is the full periodicity kernel of.

THEOREM1.2. The sef{2, 3, 4, 5, 7} is the full periodicity kernel ofy .
THEOREM1.3. The sef2, 3,4, 5,6, 7, 10, 11} is the full periodicity kernel oX.
THEOREM1.4. The sef{1, 2, 3} is the full periodicity kernel ofO.
THEOREM1.5. The sef{2, 3, 4, 5, 7} is the full periodicity kernel ob .

Theorem 1.1 is due to Sharkovskiig] (see also2, 7, 11, 19), Theorem 1.2 was shown
by Mumbi [17] (see also ]), Theorem 1.3 has been proved by Alaeahd Moreno],
Theorem 1.4 is due to Blocl5] (see also 1€]), Theorem 1.5 has been proved by Llibre
etal[13)].

Our goal in this paper is to characterize the full periodicity kernel of the alpha and eight
spaces. Thus, our main results are the following.

THEOREM1.6. The sef2, 3,4, 5, 6, 7, 10, 11} is the full periodicity kernel ofx.
THEOREM1.7. The sef{2, 3, 4,5, 6,7, 8, 10, 11} is the full periodicity kernel obo.

Leseduarte and Llibre compute it the full periodicity kernel for other spaces: the
circle with three whiskers, the circle with four whiskers, the eight with one whiskers, the
eight with two whiskers and the trefoil. Also they compare the upper bound of the full
periodicity kernel of Blokh L (E), with the best upper bound for all proper subgraphs of
the trefoil.

Theorems 1.6 and 1.7 are proved in 888 and 11 respectively. All the other sections
present preliminary definitions and results that are necessary for proving these two main
theorems.

2. Preliminary results
Sharkovskii proved his famous theorem in the 1960s. It characterizes the 6£} Rer
continuous maps on the interval.

The Sharkovskii ordering-; on the selN; = N U {2°} is given by:

https://doi.org/10.1017/50143385799120984 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385799120984

104 M. C. Leseduarte and J. Llibre

3>;5>,7>;+>,283>,25>,27 > >,223>,225>,22.7>( ... >
23> 2" 5> M T > > 2P s> P> 25 285 225 D5 ]

We shall use the symbal; in the natural way. We have to include the symbdl
ensure the existence of supremum of every subset with respect to the orderirkgpr
n € Ny we denoteS(n) = {k e N:n >, k}. S0S(2®°) ={2':i=0,1,2,...}.

THEOREM2.1. (Interval theorem)
(&) If fisaninterval map, theRel(f) = S(n) for somen € N;.
(b) If n € Ny then there exists an interval magpsuch thatPer( f) = S(n).

If we want to get a similar result for the spatewe need two new orderings.
Thegreen ordering>, onN \ {2} is given by:

5>¢8>,4>,11>,14>,7>,17>,20>, 10>, --- >, 3-3>,3-5>,
3. 7>5->,3:2.3>,3:2.5>,3:2:7>5:-->,3-22.3>,3.22.5>,
3.22.7>,-->,3.2%5,3.225,3.2>,3-1>,1.

Thered ordering>, onN\ {2, 4} is given by:

7>,10>,5>,13>,16>,8>,19>,22>, 11>, --->,3-3>,3.-5>,
37>, --->.32.3>,3.2.5>,32.7>,..->,3.22.3>,3.22.5>,3.22.7 >,
©>,3.255,3.225,3.2>,3.1>, 1.

Forn € N\ {2} denoteG(n) = {k € N : n >¢ k}, forn € N\ {2, 4} denote
R(n) = {k € N:n >, k} and additionallyG (3-2°°) = R(3-2%°) = {1}U{3n : n € §(2%)}.
We also denotd, = (N'\ {2}) U {3-2*°} andN, = (N\ {2,4}) U {3- 2°°}.

The following theorem is due to Alsa@t al[1] for Y maps and to Baldwin for arbitrary
continuous self-maps of [4].

THEOREM2.2. (Y theorem)

(@) If fisaY map, therPer ) = S(ny) U G(ng) U R(n,) for somen, € Ny, ng € Ny
andn, € N;,.

(b) Ifny, € Ny,ng € Ny andn, e N,, then there exists & map f such that
Pel(f) = S(ng) U G(ng) U R(n,).

Then-od spacd,, is defined as the set of all complex numbeich that” is in the
interval[0, 1] and the branching point = 0.

Baldwin [4] extends Sharkovskii’'s result to tmeod. Thus, he establishes a conjecture
presented by Alsext al[1] in the affirmative. The set of periods of a continuous self-map
of then-od can be described as a non-empty union of initial segments of some orderings
>, which we are going to state.

We define the partial orderings, for n > 1. The ordering>1 is the ordering>,. If
n > 1, then the ordering,, is defined as follows. Let, k be positive integers.

Case 1:k = 1. Thenk >, mifand only ifm = 1.

Case 2:k is divisible byn. Thenk >, m if and only if eitherm = 1 orm is divisible byn
andk/n >, m/n.

https://doi.org/10.1017/50143385799120984 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385799120984

Full periodicity kernel for one-dimensional maps 105

Case 3:k > 1, k not divisible byn. Thenk >, m if and only if eitherm = 1, m = k, or
m = ik + jn for someintegers > 0, j > 1.

From the definition we have that; is the Sharkovskii ordering. A sét is aninitial
segmenbf >, for p > 0, if wheneverk is an element oZ andk >, m, thenm also
belongs toz.

THEOREM2.3. (z-od theorem)

(@) Let f be a continuous self-map bf. ThenPer f) is a non-empty union of initial
segments of>,: 1 < p < n}.

(b) If Zis a non-empty finite union of initial segments{ef,: 1 < p < n}, thenthereis
a continuous magf : I,, — |, such thatf (0) = O andPer f) = Z.

While Baldwin works with the partial orderings,,, Alseca and Moreno in3] show
that the set of periods of a continuous self-map of #hgtar can be expressed as the
union of ‘initial segments’ of the linear orderings associated to all rationals in the interval
(0, 1) with denominator smaller than or equalktaefined in certain subsets of the natural
numbers. Two of these ordering are exactly the green and the red ordering appearing in
the characterization of maps ®fin [1]. Moreover, in B] the authors show that the full
periodicity kernel of continuous self-maps lof exist and they provide an algorithm for
computing them.

We define theBlock ordering>, onN, = N as the converse of the usual ordering on
N\ {1} and we add the 1 as the smallest element; i.€.,23 >, 4 >, --- >; 1. For
n € Np, we denoteB(n) = {k € N : n >, k}. Sharkovskii Theorem has been generalized
by Block to the circle maps having fixed points &].[

THEOREM2.4. (Circle theorem)

(@) If f is a circle map having fixed points, th&er f) = S(ns) U B(np) for some
ng € Ny andnj € Np.

(b) If ny; € Ny andn, € Ny, then there exists a circle maf having fixed points such
thatPer ) = S(ns) U B(np).

The following theorem describes the set of periodsfonaps. It was proved by Llibre
etal[14].

THEOREM2.5. (0 theorem)

(@) If fis ao map, thenPelf) = S(n,) U G(ng) U R(n,) U B(np) for some
ng € Ny, ng € Ng,n, € N, andny, € Np.

(b) Ifny € Ny,n, € Ng,n, € N, andn;, € Ny, then there exists a map f such that
Pel(f) = S(ny) U G(ng) U R(n;) U B(np).

Furthermore, Leseduarte and Llib@ fpbtained ther theorem for a class of continuous
self-maps of the& more general than the continuous self-maps having the branching point
fixed.

3. Intervals and basic intervals
From now on we shall talk about the whiskers or the circleB of\Ve define these sets as
follows: thecircle of o is O, thewhiskers ofo is |, thecircle of « is O, thewhiskers ofcx
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are the sets whiskegrs) = | and whisker6B) = {(x,y) € «x: —1 < x < 0andy = 0},
and finally the circles ofo are the sets circl@l) = O and circléB) = {(x,y) € oo :
x2+ (y — 1)2 = 1}. Notice that all the above whiskers are homeomorphicand all the
above circles are homeomorphic®

A closed(respectivelyopen half-openor half-closed interval J of E is a subset of
E homeomorphic to the closed interv@, 1] (respectively(0, 1), [0, 1)). Notice that an
interval cannot be a single point.

Let J be a closed interval of, and letk : [0, 1] — J be a homeomorphism. Then
h(0) = a andh(1l) = b are called theendpointsof J. If a andb belong tol, Y, X or a
whiskers ofE, thenJ will be denoted bya, b] or [b, a]. If a andb belong to a circle of
then we write]a, b] to denote the closed interval froemcounter-clockwise té.

Notice that it is possible that two different intervals of a circlebthave the same
endpoints. But two different points of Y, X or the whiskers off always determine a
unique interval.

Now we define a special class of subintervalstof Let 0 = {g1,92,...,49,} be a
finite subset off containing0. For each paig;, g; such thaty; # g; we say that the
interval[g;, ¢ ;1 (respectivelyq;, ¢;1) is basicif, and only if, (¢;, ;)N Q = @ (respectively
(gj,9i) N Q = ¥). The set of all these basic intervals is called $e¢ of basic intervals
associated ta@).

4. Loops andf-graphs

Let f : E — E be anE map. IfK andJ are intervals oz, then we say thak f-covers
JorK — J (orJ < K), ifthereis a closed subintervad of K such thatf (M) = J. If
K does notf-coverJ we write K - J.

A path of lengthm is any sequencdy — J1 — -+ — Ju—1 — J,, where
Jo, J1, ..., J, are closed subintervals df (in general, basic intervals). Furthermore,
if Jo = Ju, then this path is called lmop of lengthmz. Such a loop will be calledion-
repetitiveif there is no integef, 0 < i < m, such thai dividesm andJ;; = J; for all
Jj,0<j <m—i. We say that wadd or we concatenatehe loopJo — J1 — --- —
Jn—1 — Jotothe loopKg — K1 — --- — K,_1 — Ky if they have a common vertex
Jo = Ko and we form the new loogyg — J1 — -+ = Jy—1 —> Ko —> K1 — --- — Jo.

A loop which cannot be formed by adding two loops will be caléeimentary

Let O be a finite subset of containing0. An f-graph of Q is a graph with the basic
intervals associated t@ as vertices, and such thatAf andJ are basic intervals ank
f-covers/J, then there is an arrow froik to J. Note that thef-graph ofQ is unique up to
labeling of the basic intervals. Hence, from now on we shall talk atheuf -graphof Q
(or justthe f-graphfor short). The next three lemmas are well-known in one dimensional
dynamics, see for instancg][ We leave the proofs to the reader.

LEMMA 4.1. Let f be anE map and letK, J, L be closed subintervals &. If L C J
andK f-covers/,thenkK f-coversL.

LEMMA 4.2. Let f be anE map and let/ be a subinterval of' such that/ f-coversJ.
Thenf has a fixed point iry.
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LEMMA 4.3. Let f be anE map and letJp, J1, ..., J,—1 be closed subintervals df
such that/; — Ji;1fori =0,1,...,n —2andJ,_1 — Jo. Then there exists a fixed
pointx of £ in Jo such thatfi(x) e J; fori =1,2,...,n — 1.

Let J be a subset of. As usual In{J) and ClJ) denote the interior and the closure of
J respectively.

PROPOSITION4.4. LetE € {l,Y, X, x, oo} and let f be anE map having- periodic
orbits of periodsks, k2, ..., k.. Let Q be the set formed by the union of the abeve
periodic orbits with the branching point. Consider the set of basic intervals associated
to Q. Suppose that there are points @fin each connected component®f\ {0}. Let

Jo—> J1 —> - = Jy_1 — Jun = Jo be a non-repetitive loop of lengtihh of the
f-graph of Q such that at least ong does not contai®. If m ¢ {2k1, 2k, ..., 2k}, then
m € Pexf).

Proof. By Lemma 4.1Jy f™-coversJy. Then by Lemma 4.2 there exists= Jp such that
f™(x) = x. If x has periodn we are done. So suppose thahas period, 0 < s < m.
Thuss dividesm.

It is not possible thak = 0 because) is a fixed point and somg’(x) e J; with
Ji N {0} = 4.

If x € Int(Jp), then Orp(x) N Q = ¥. So eachf! (x) is exactly in one basic interval,
and consequently the loop is repetitive (because m ands dividesm). Hencex must
be a point ofQ. So Orby (x) C Q. Without loss of generality we can assume that ;.

From Lemma 4.3 it is easy to construct a closed intekiglc Jo such thatc € Kp and
fi(x) e fi(Ko) C Jifori =0,1,...,m. Sincex = f*(x) € f*(Ko) C Jj it follows
that Jp andJ; have a common endpoint

Assume that/op = J;. Both setsKg and f*(Kp) are contained in/o and containx,
an endpoint of/g. ThereforeL = Ko N f*(Kp) is an interval [in fact it is eitheKg or
[*(Ko)]. Clearly f'(L) C f'(Ko) C Ji, f'(L) C f**(Ko) C Js+i, and f'(L) is an
intervalforO<i <s. ThusJ; = Jy4; fori =0,1,...,s — 1.

Repeating this process we get that= J,; fori =0,1,..., m — s. Hence, the loop
is repetitive becausedividesm, in contradiction with the assumptions. $9# J;.

If J, = Jg4s for some 0 < ¢ < m — s, then the above arguments prove that
Jyvi = Jgys4i fori =0,1,...,s — 1. Repeating this process we obtain thiat= J;;
fori =0,1,...,m — s and so the loop is repetitive, a contradiction with the assumptions.
Therefore, we can assume thigt# J,; forO< g <m —s.

Sincex is a periodic point of period, if follows that Jo = Jo; andJ; = J3,. By the
above argumentswe gét, = Jo = Jogs = Jgs = --- andJ; = Jzg = J5y = ---. In
particularm must be even. Furthermorg, = Jo,; for0 <i < 2s — 1. Hence, 2 = 2k;
dividesm. Sincem # 2k1 the loop is repetitive, in contradiction with the hypothese&

5. Q-linear maps
LetT e {l,Y, X}. Itis easy to see that any tr&ehas a metrien such thatifx, y € T and
z € [x, y], thenm(x, y) = m(x, z) + m(z, y), this metric is called theaxicab metric

https://doi.org/10.1017/50143385799120984 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385799120984

108 M. C. Leseduarte and J. Llibre

Let f be anE map and letQ = {¢1, g2, ..., g} be an invariant subset & under f
such tha € Q. We assume that there are points@®fn each connected component of
E\ {0}. Let Eg be the minimal connected subgraphf®tontaining all the basic intervals
associated t@). Clearly Ep is homeomorphic t&£. We say thatf is Q-linear if the
following conditions hold:

(1) Ep = E, in particular the endpoints & are points ofQ;

(2) for any basic interval associated t@, f(J) is a tree formed by the union of basic
intervals ofQ;

@) fly - J — f(J) is linear with respect to the taxicab metric, i.e. for any
x,y,z € J such thatn(x, y) = m(x, z) + m(z, y) we have than(f(x), f(y)) =
m(f(x), (@) +m(f(2), f(¥)).

We say that arE mapyg is a Q-linearizationof f if the following conditions hold:

1) glo = flo;

(2) gis Q-linear;

(3) theg-graph ofQ is a subgraph of th¢-graph ofQ.

In particular, if f is anE map having a periodic orb® such thatP has points in each
connected component &f \ {0} we will talk about theP’-linearization of f in the above
way, whereP’ = P U {0}.

Let J be a basic interval. Id € J, thenJ will be called abranching interval otherwise
J will be called anon-branching interval

In the next lemma and proposition we assume #hat {c, co} and f is an E map
havingr periodic orbits of period&y, k2, ..., k.. Let O be the set formed by the union
of the above- periodic orbits with the branching point. Consider the set of basic intervals
associated t@. Suppose that there are pointg®fn each connected componentfof{0}.

LEMMA 5.1. Let K and J be basic intervals and leg be a Q-linearization of f. If
x € Int(J), g(x) # 0andg(x) € K, thenJ g-coversk.

We leave the proof of the above lemma to the reader. The following proposition is the
converse result of Proposition 4.4 forlinear maps.

PROPOSITIONS.2. Let g be aQ-linearization of f. If g has a periodic point of period
mform ¢ {1,2,3,4,k1, ko, ..., k}, then there exists a non-repetitive loop of length
through theg-graph such that at least one basic interval of the loop does not cofitain

Proof. Let x be a periodic point of periog for g. Then Orly(x) N Q = @, so for each,
0 <i < m, there exists a unique basic intervakontainingg’ (x). Sinceg is Q-linear, by
Lemma5.1Jo > J1 — -+ = Ju—1 — Jn = Jois aloop of theg-graph. First we shall
show that this loop is non-repetitive.

Since g is Q-linear, we can define by backward induction dna collection of
subintervalsK; of J; such thatg : K; — K;;1 is one-to-one and onto, where
Kn = Jn = Jo. Suppose now the loop is repetitive, then there exist3 < s < m,
such thats dividesm andJ; = Jiys for0 < i < m —s. We claim thatk; C K4
for0 < i < m —s. To prove the claim considek,,—y C Ju—s = Ju = K, and by
backward induction, suppogé 1 C Kits+1andkK; ¢ K,4s. So, there is: € K; such
thata ¢ K5, andg(a) € K11 C Kjys+1. SinceK; s — K;1s11, there existd € K;
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(and sab # a) such thatg(b) = g(a). This is a contradiction to the fact thatis Q-linear
andg|, is one-to-one. Hence, the claim is proved.

Thus,g*(Ko) = K; D Ko and by Lemma 4.2¢* has a fixed poiny € Ko. Sincem
is divisible bys, ¢”(y) = y. Note thatx # y because: has periodn, andy has period
s < m. Hence the mag™ : Ko —> K, is linear and has at least two fixed points.
Thereforeg™ |k, must be the identity map and $& = K,, = J» = Jo. Then we get
Ko=K; =Ky, =--- = K, becaus&p C K; C Kp; C --- C K,, = Ko. Now consider
the linear mag® : Ko — K, = Ko which has a fixed point. Denote by id the identity
map. Since’|k, is one-to-one and onto, we have two possibilities.

Case 1 g*|x, = id. Theng®(x) = x butx has periodn > s, a contradiction.

Case 2 g°|x, # 1d amdgzﬂkO =id. Letxg € Ko = Jg be a periodic point of perioki for

f for somek; € {k1, ko, ..., k-} such that Orb(xg) C Q. Theng? (xp) = xo. Moreover
xo is an endpoint 0Ky and sok; = 2s. On the other hand, singg (x) = x andx has
periodm > s we have 2 = m. Sok; = m, a contradiction with the hypotheses. In short
we have proved that the loafp — J1 — -+ — J,—1 — J, = Jp IS non-repetitive.

Suppose that all the basic intervals of the non-repetitive loop of lengtbntain the
branching poin®. Therefore Orb(x) is contained in the branching intervals. Simece- 4,
there is a basic interva} containing at least two points of Orix). Letu, v € Orb, (x)NJ;
such that(0, v) N Orb, (x) = ¥, and(u, v) N Orb,(x) = . Sincem > 1 and the loop is
non-repetitive, there ig; # J; such that/; NOrb, (x) # #. Letz € J;NOrby(x) such that
(z,00 N Q = @. Therefore, there is, 0 < r < m such thate” (u) = z andg™ " (z) = u.
On the other hang" |, q; is lineal and sg"|[,,0) = [z, O]. Furthermorey € (u, 0) and so
g"(v) € (z, 0) in contradiction with the fact that, 0) N Orb, (x) = @. O

COROLLARY 5.3. Let E € {x, 00}. Let f be anE map having a periodic orbit? of
period k, such thatP has points in each connected componentof {0}. Letg be a
P’-linearization of f. If m € Pelg) andm ¢ {2, 3, 4, 2k}, thenm < Pex f).

Proof. Both E mapsf andg have points of periods 1 and If m ¢ {1, 2, 3, 4, k}, then
by Proposition 5.2 there exists a non-repetitive loop ingtggaph of lengthn such that at
least one of its basic intervals does not confaif herefore, since thg-graph of P’ is a
subgraph of thef-graph of P/, by Proposition 4.4f has a periodic point of period. O

Remark 5.4.Suppose thaf is P’-linear. Then each branching intervélcovers exactly
one branching interval, and perhaps some non-branching intervals. Moreover each non-
branching intervalf-covers either zero or two branching intervals.

Now we add a proposition faP’-linear maps which we will use for the computation of
the full periodicity kernel ofx andoo.

PrROPOSITIONS.4. Let E € {I,Y,X, x,00}. Let f be anE map having a periodic
orbit P of periodk. Suppose thaP has points in each component Bf\ {0} and that
f is P’-linear. Assume that each basic interval fscovered by some basic interval
different from itself and that there is a basic intervd such thatJo — Jg. Then
{neN:n>k}\ {2} C Perf).
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Proof. We denote bys the set of basic intervals associated?o Notice that Car@S) =
if Ee{l,Y,X},CardS) =k+ 1if E=cand CardS) =k + 2 if E = 00. Since each
basic interval isf-covered by some basic interval we get thHaE) = E.

SetK; = fi(Jo) fori > 0. Note that eaclk; is a connected set and Cakti N P) > 2.

Case 1:E € {l,Y, X, x}. Fromthe fact thaP is a periodic orbitang'(E) = E, it follows
that there exists an integesuch thako C K1 C --- C K, = Eand CardK;NP) > i+1
fori < r. SinceP has periodk we have that < CardK,_1 N P) < k. Since each
basic interval isf-covered by some basic interval different from itself, for edgke S,
Ji € K; \ K;—1 there exists/;_1 € S, Ji_1 C K;—1 \ K;—2 such that/;_; — J;. By
hypotheses there exisM € S, M # Jp such thatM¥ — Jo. Hence, there is a loop of
lengthl < r + 1 < k + 1 containingJp. By construction, this loop is formed by pairwise
different basic intervals and so is non-repetitive. The above loop of Iértgtether with
the loopJo — Jo give us a non-repetitive loop of lengtifor eactn > k41 containing/o.
We claim that the above loop contains some non-branching inten@k I, then we
are done. So suppose et Jy. SinceJo — Jo, £(0) = 0and f is P’-linear we get that
the basic intervals different fronfy of K1 do not contair0. So the claim is proved. Hence
by Proposition 4.4 the result follows.

Case 2 E = oo. From the facts thaP is a periodic orbitK; is connected and(E) = E,
we have that there exists an integesuch thatko C K1 C --- € K, = E’, where either
E' =oc0corE = o0\ {J1, J2}, with J; andJ> basic intervals contained in different circles
of oo and such thaf; = /.

First we assume that’ = oo \ {J1, J2}. ThenE’ is homeomorphic to some space of
{I,Y,X}. Of course,P C E’. Consider theE’ mapg = f|g . Clearlyg is well-defined
becausef is P’-linear. Thusg is either anl map, a¥Y map or anX map. Moreover,
Per(g) c Per f). Then the result follows as in Case 1.

Finally, we suppose thdt’ = co. We remark that if < k, then the result follows as in
Case 1. So, since Cag) = k + 2, from now on, we can assume that k + 1.

Subcase 2.1Suppose thaflp is a non-branching interval. Lat > 0 be the smaller
integer such thak; containg a branching interval. Let J;_1 € K;_1 be such that
Js—1 — J;. By the minimality ofs, J;_1 is non-branching and from Remark 5/4_;
f-covers two different branching intervals. Again by the minimality @fe get that < k
in contradiction with the assumptions.

Subcase 2.25uppose thafp is a branching interval. From Subcase 2.1 we can assume
that each non-branching interval does rfatover itself. Therefore there exists a non-
branching interval in the same circle a% such that/; f-covers two different branching
intervals, one of each circle b andJ; - Jo. Thus CardK;NP) > s+2in contradiction
with the assumptions. So the result is proved. |

6. The graph of anx map

If we identify the points 1 and 2 of the segmefl@, 3], then we obtain a space
homeomorphic tax. The segmentf, 1] and[2, 3] represents the two whiskers @fand
the segmenitl, 2] with the points 1 and 2 identified to the branching pdinépresent®©.
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3

FIGURE®G.1. The graph of anx map 1.

We represent the cartesian prodocik « as the squarf0, 3] x [0, 3] identifying the
points(1, y) and(2, y) for all y € [0, 3], and the point$x, 1) and(x, 2) for all x € [0, 3].
Thus the graph of aox map f is the subset(x, f(x)) : x € «} of x x o, and it can be
represented as in Figure 6.1. Roughly speaking, we think in the graphefraap like
the graph of an interval mag from [0, 3] into itself with the above identifications. This
allows us to talk about local or absolute maximum or minimum fosamap in the same
way as for interval maps. Thus, for instance in the pojinédq theox map f represented
in Figure 6.1 has a local minimum and maximum with valueand M respectively.

Let f be aP’-linear x map such that each basic interval associate@’taloes not
f-cover itself. Therefore the graph gfdoes not touch the diagonal except at the branching
point. LetV = [a, b] be a closed interval contained in whiskety, whiskergB) or O such
thatg(a) = g(b) € {1, 2}, g(c) # g(a) for all ¢ € (a, b) andg(V) is strictly contained in
O. Then we say thaV is anupper(respectivelylower) subintervalaccording to whether
it contains more local minima (respectively maxima) than local maxima (respectively
minima) of g. Since f is P’-linear these upper and lower subintervals are well-defined.
Thus, for instance, the subinteryal r] is an upper subinterval of the mgjpof Figure 6.1.

7. The unfolding ofx
In this sectionf will be a P’-linear « map such that each basic interval associatedto
does notf-cover itself. Lek be the period ofP. Let K = [a, b] be a closed subinterval
of « such thatf(a) = f(b) = 0, and f(c¢) # Ofor all ¢ € (a, b), then we say thak
f-coversO, or K — O (orO « K). We say that such & is acrossing subinterval

In this section we also assume thathas no crossing subintervalsThen following
ideas of 4] and [15 we define theunfolding of « as follows. Define the graph
o«* = G1 U G2 U G3 where:

G1={(x.y.2)€R®:z=0,y=0—-1<x <1};
Go={(x,y,2) eR3: z=0,x2+ (y + )% = 1};
G3={(x,y,z)ERg:y:Z’x2+(y+1)2:1}_

(See Figure 7.1.)
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FIGURE 7.1. The unfolding ofx.

ClearlyG1 U G2 is homeomorphic tex, so we identifyec with G1 U G2. Consider the
projectionr : o* — o defined byr (x, y, z) = (x, y, 0). We denote by* the unique
point of G3 such thatr (p*) = p.

Since f is P’-linear, f has finitely many local extrema; and consequently finitely
many upper and lower subintervals. Moreover from the fact that there are no crossing
subintervals ofx, it follows that there exists a finite ‘partition’ @k into upper and lower
subintervals. Now for the givest map f we definef* : « — «* as follows. Ifp € «
then f*(p) is either f (p)* if f(p) € O andp belongs to an upper subinterval; 6(p)
otherwise. Clearlyf™* is well-defined. We remark thgt = 7 o f* : x —> . Define
F = f*orm : «* — *. In the rest of this section we shall study the relationship
between the periods gf andF.

LEMMA 7.1. Assume that there are no crossing subintervalg. df oc* is a periodic point
of F of periodn, thenp = 7 (q) is a fixed point off".

Proof. Sinceg = F"(q) = (f*on)"(q) = f*o(wo f*)" Lon(g) = f*(f*L(p)), we
getthatp = 7 (q) = f"(p). O

LEMMA 7.2. Assume that there are no crossing subintervals. Then the following
statements hold:

(@) if p=m(q)isann-pointfor f, thenp = n(F"(q));

(b) if p € G1is ann-pointfor f, thenp is a fixed point of”.

Proof. Statement (a) follows from the equalities
p=m(q) = f"(n(q) = (o fF)'(m(q) =7 o(f om)(g)= (7o F")(g).
If pis a periodic point off of periodn, we have that
p=f"p)=f"@(p) =@@o [ @) =mo(ffom)(p)=(mwoF")(p).

Sincep € G1, we get thatF" (p) = p, and statement (b) is proved. o
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PROPOSITION7.3. Suppose that there are no crossing subintervals. Then the following
statements hold:

(@) if g is ann-pointfor F, thenp = n(g) is ann-point for f;

(b) if pisann-pointfor f andp € G1, thenp is ann-point for F.

Proof. We prove (a). Leyy be ann-point for F. By Lemma 7.1p = 7 (g) is a fixed
point of /. Therefore, there is a divisarof n such thatp is ans-point for f. If s = n,
then we are done. So, assume that n. By Lemma 7.2(a)p = #(F°(g)). Since
s < n, FS(qg) = p’ with p’ # ¢, and of course’ belongs to theF-periodic orbit ofg.
Theng = F"(q) = (f* o 1)"(q) = (f* o) Lo f*((@)) = (f*om)" o f*(p) =
(f*om)" Lo f*((F*(q))) = (f*om)*(F(q)) = F"(p') = p’, which is a contradiction.
Hences = n and (a) is proved.

Now we show (b). Letp be anr-point for f andp € Gi1. By Lemma 7.2(b),
p = F"(p). Again, there is a divisos of n such thatp is ans-point for F. If s = n,
then we are done. So, assume that n. ThenF*(p) = p. By Lemma 7.1, since € G1
we get thatp = f(p), a contradiction. Then the lemma follows. |

PROPOSITION7.4. Assume that there are no crossing subintervals{5]f7} c Perf)
thenN\ {2, 3,4, 6,10, 11} C Per f).

Proof. Since P has elements on each componentof, {0}, by Proposition 7.3(b) we
have thatt € Per(F). Again, from the facts thaP has elements on each component of
« \ {0} and there are no crossing subintervals, we get fat*) is homeomorphic to

Y or X. So, from theY theorem and the@-od theorem we obtain that ¥ = 5, then
N\ {2,3,4,6,7,10,11, 15} c PerF) and ifk = 7, then 15¢ PerF). Now from
Proposition 7.3(a) the result follows. ]

8. The full periodicity kernel ofx

The goal of this section is to prove Theorem 1.6. Siéée homeomorphict(x, y) € o :

y > —1}, in this section we shall consid¥r= {(x, y) € « : y > —1}. Let f be anX map,
we shall extendf to an mapf as follows. We defing (z) = £ (z) if z € X and £ |cieo\x)

is any homeomorphism between(&l\ X) and the unique closed interval X having
f(1, —1) and f(—1, —1) as endpoints such that(1, —1) = f(1, —1) and (-1, —1) =
f(—1, —1). Of course Parf) = Pelf). By Theorem 1.3{2,3,4,5,6,7,10,11} is a
subset of the full periodicity kernel ak. Then, to prove Theorem 1.6 it is sufficient to
show the following proposition.

PROPOSITIONS8.1. Let f be ano map. If {5, 7} c Perf) thenN\ {2,3,4,6, 10,11}
c Per(f).

In the rest of this section we fix thee map f having a periodic orbitP of period
k € {5, 7} and the set of the basic intervals associated’to This fixede map will be
called thestandardx map

LEMMA 8.2. Let f be the standard< map. If the periodic orbitP has no points into each
connected component af\ {0} then Proposition 8.1 holds.
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Proof. Let E’ C « be a union of connected componentsof {0}. Suppose thaP C E’.
Then we define the map: E' — E’ as follows. For; € E/, g(z) = f(2) if f(z) € E;
andg(z) = 0if f(z) € E\ E’. Notice thatg is either anl, ¢ or O map. Clearly
Per(g) C Per f). Hence, from the Interval theorem, theheorem and the Circle theorem
the result follows. ]

Remark 8.3 From Lemma 8.2 we can assume that the periodic @tlhigs points into each
connected component of \ {0}. Furthermore, by Corollary 5.3 in what follows we can
suppose that the standard mapvill be P’-linear.

LEMMA 8.4. Let f be the standard« map. Suppose that there is a basic interyauch
that there are no basic intervalg-coveringJ different from itself. Then Proposition 8.1
holds.

Proof. We claim that each basic interval contained in the whiskers af is f-covered

by some basic interval different from itself. To see this, without loss of generality we can
assume that. C whiskergA). Let p be the endpoint of whiskega), p # 0. Sincef is
P’-linear, we have thgt € P. Moreover, from the fact thdtis a fixed point,f is P’-linear

and f (E) is connected, it follows that each basic interval contained in the whiskexs of

is covered by some basic interval. Suppose that- L, otherwise we are done. Since
[p, 0] = whiskergA) C «, we can consider a total orderirgon whiskergA) such that

0Ois the largest element andthe smallest one. Sét = [p;, pil, with p < p; < px <0.

Now, sincef is P’-linear we can consider two cases.

Case 1:p < f(pj) < pj < prand f(pr) ¢ [p, pr). If there are no basic intervals
K # L suchthatk — L, thenf(PN[p, p;1) C PN[p, pjlwith PN[p, p;]1# @. This
is a contradiction becaugeis a periodic orbit not contained into whiskess.

Case 2:p < f(pr) < pj < prand f(p;) ¢ [p,pr). Thenp, < 0O, and clearly
Fpk, 0D D [f(pr), (O D [f(px),0] D [p;,01 D L. Therefore, there is a basic
interval J1 C [px, 0] which f-coversL andJi # L. Therefore, the claim is proved and so
J cO.

Consider the following mag = flentr) : o\ INt(J) — o<\ Int(J). Clearly g is
well-defined becausg is P’-linear. Moreoveg is either aY map or anX map such that
Perg) = Per(f). Hence, from thef theorem and the-od theorem, Proposition 8.1 holds
and so the lemma follows. a

Remark 8.5From Lemma 8.4 we can assume that each basic intervéldsvered by
some different basic interval.

Remark 8.6 Proposition 5.5 shows that if there exists some basic interval whicavers
itself, then Proposition 8.1 holds. So, from now on we suppose that each basic interval
does notf-cover itself.

Remark 8.7 If there are no closed subintervalsaf f-coveringO, from Proposition 7.4,
Proposition 8.1 holds. So, from now on, we can assume that there is a crossing subinterval
K1 C « such thatk; — O.
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Remark 8.8In a similar way as in Lemma 4.1, K and L are closed subintervals of
suchthat. ¢ O, K — Oand0 e CI(O\ L), thenK — L.

LEMMA 8.9. Let f be anx map having &-orbit P. Suppose thaf is P’-linear. If Jy
is a subinterval ofxx with endpoints which are elements®fand are contained in one of
the whiskers ofx, then there is a loop of lengthin the f-graph containing/o formed by
intervals of «.

Proof. Let Jo = [x, y] with x, y € P’/ and[x, y] contained in one of the whiskers of.

For eachi, 0 < i < k, we defineJ; recursively as the interval with endpoinfé(x) and
f(y) and such that’;_; — J;. ThenJ, = Jo becauselp is contained in a whiskers.
Define the intervalX; for 0 < i < k by backward induction ohas follows. LetK; = Ji,
and if K;1 has been defined and is a subset/ofi, then letK; be a subset of; such
thatK; — K;y1. Then we have the loofp > Ko — K1 — --- — K; = Jo of length

k. Note that in general, the intervals are not basic and the loop can be repetitive or
non-repetitive. |

Since the periodic orbitP has points into each connected componentxpfthere
are exactly four branching intervals denoted dyB, C and D. We shall assume that
A c whiskergA), B c whiskergB) and{C, D} c O. Moreover, sincef is P’-linear and
each basic interval does ngtcover itself, it follows thaD is the unique fixed point of
and from Remark 5.4 each basic intervalaf B, C, D} f-covers a unigue basic interval
of {A, B, C, D} different from itself.

Proof of Proposition 8.1Takek = 5. Let f be the standarck map. Since there is a
crossing subintervak’; (see Remark 8.7) and there are no fixed points different pm
we get thatk; C whiskergA) or K1 C whiskergB). Without loss of generality we
can assume tha1 c whiskergA) and thatk; has endpoints which are elementsRsf
Denote byp, andp; the endpoints of whiske¢d) and whiskeréB) respectively different
fromO0. If f*~1(p,) e whiskergA), then the intervalp,, f*~1(p,)] C whiskergA) has
a fixed point, in contradiction with the assumptions. So we can supposg¢khitp,) ¢
whiskergA) and in the same way*~1(p;,) ¢ whiskergB). Therefore we consider two
cases.

Case 1: f*1(p,) € O. Since0is a fixed point and*~1(p,) € O, we have that there are
two closed subinterval&s, K3 ¢ O f-covering whiskerg4), such thaD € CI(O \ K3)
andO € CI(O \ K3). From Lemma 4.1 and Remark 8.8 we get tkat= K1 = Ks.

First suppose that at least one of these thkealoes not contail®. Then from the
subgraphk, = K1 = K3 we can construct a non-repetitive lodp = K1 — J1 —

- — J, = K1 of lengthn for eachn even containing the interval; such thaD ¢ K;.
By Lemma 4.3 there exists € K such thatf” (x) = x andfi(x) € Jyforl <i <n—1.
Since0 does not belong to some interval &1, K2, K3} and the loop is non-repetitive,
x has perioth. So{2n : n € N} C Perf). On the other hand, by Lemma 8.9 there is a
loop of lengthk containingK; and formed by closed subintervalsef This loop together
with the loopsK, = K1 = K3 give us a non-repetitive loop of lengthfor eachn > k
odd (k¢ = 5). This loop can be chosen in such a way that at least one of its intervals does
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FIGUREB8.1. The graph off whenC =2 A < D andB — A.

not containd. Then{n > k : n odd} C Perf). Hence we get thaf(k) C Perf) and the
result follows.

Finally, suppose thad € K1 N K2 N K3. Therefore we have one of the following
subgraphs:C 2 A < DorC — A = D. Furthermore we can assume that
f(O) c whiskergA); otherwise we can find a subintervil of O such that0 ¢ K;.

By symmetry we can assume that the graplf @ontainsC = A < D. Since each basic
interval of{A, B, C, D} f-covers a unique interval ¢fA, B, C, D} we only need consider
two subcases.

Subcase 1.1:C =2 A <« D andB — A. Suppose that there are no basic
intervals different fromB, C and D f-coveringA. So, by P’-linearity we have that
f(O U whiskergB)) c whiskergA) and f(whiskerg§A)) c O U whiskergB) (see
Figure 8.1). Consequentlymust be even, in contradiction with= 5. Hence, we can
assume that there is a basic interya¢ {A, B, C, D} suchthat/ — A. SoJ - AUM
for someM e {B, C, D}. We claim that there exists a pathof length/ < k — 1 starting
at one of the intervald or C and ending at/ such that at least one of the intervalsyof
does not contai®. Now we prove the claim. Denote §/the set of the basic intervals
associated t@’. Since each basic interval fscovered by some basic interval we get that
f(x) = x. SetK; = fi(AUC) fori > 0. Notice thatk; is a connected set for all
and CardkK1 N P) > 3. SinceP is a periodic orbit ang (x) = «, it follows that there
exists an integer such thatko C K1 € --- € K, = xand CardK; N P) > i + 2 for
i < r. From the fact tha® has period we get that + 1 < CardK,_1 N P) < k, and
sor < k — 1. From the assumptions, for each basic intedvat S, J; C K; \ K;_1 there
isJi—1€8,Ji-1C Ki—1\ K;—2 suchthat/;_1 — J;. Hence, giver/ € S, J ¢ {A, C}
there exists a path of length/ < r < k — 1 starting at one of the intervak or C and
ending at/. Moreover, sinced N C = {0}, A = C and f is P’-linear, we obtain that the
basic intervals oK1 \ (A U C) do not contair0. Then the claim is proved. The path
together with the path$ — A, J — M — A andC = A give us a loop of length for
eachn > k + 1. By construction this loop is non-repetitive and at least one of its intervals
does not contaif. Therefore, by Proposition 44 € N : n > k}\ {2k} C Perf). So the
result follows.
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FIGURES8.2. The graph off whenO € K1 N Ky N K3 N Kg.

Subcase 1.2C = A < D < BorB — C &2 A < D. From the facts thdl is the
unique fixed point off and f(O) c whiskergA), we get thatf*~1(p,) € whiskergA).
Then, sincek; C whiskergA) andK;, — O it follows that there is a basic intervalsuch
that eitherD < J — A,orD < J — B,orC < J — A,orC < J — B (see
Figure 8.1). In a similar way as in Subcase 1.1 we obtain a non-repetitive loop of length
for eachn > k + 2 in the hypotheses of Proposition 4.4. Then the result holds.

Case 2: f*1(p,) € whisker§B). Setn, = Cardwhiskerg§A) N P), n, =
CardwhiskergB) N P) andn, = CardO N P). Since f(0) = 0 and f*1(p,) €
whiskergB), we have that whiske(8) — whiskergA). By Lemma 4.1 there is a closed
subintervalk, ¢ whiskerg§B) such thatk, — K1. Since f¥~1(p,) ¢ whisker§B), we
consider two subcases.

Subcase 2.1:f¥1(p;) € O. Since f(0) = 0, there are two closed subintervals
K3, K4 C O f-covering whisker&B). From Lemma 4.1 we gek3 — Kz < Ka.
By Lemma 8.9 there exists a loop of lengdtlcontainingK.

First assume that at least one of the intenf&s, Ko, K3, K4} does not contaird.
Therefore the loop of length = 5 together with the loopK1 — K3 — K> — K3 and
K1 — K4 — K2 — K3 give us a non-repetitive loop of lengihfor n € N\ {2, 4, 10}.
By Lemma 4.3, there is € K1 such thatf” (x) = x. Since0 does not belong to son¥e;
and the loop is non-repetitive we obtain thabas periodi. Thus the result follows.

Finally assume tha® € K3 N K2 N K3 N K4, there are no closed subinterva(s
of O such thatf (K;) = whiskergB) and0 ¢ K;, and there are no closed subintervals
K; of whiskergB) such thatf(K;) = whiskergA) and0 ¢ K;. Then we have that
f(O) C whiskergB), f(whiskergB)) C whiskergA) and thef-graph contains the paths
C — B < D,B — AandeitherA — C or A — D (see Figure 8.2). By symmetry we
can suppose th@# — A — C — B <« D. Since whiskersd) — O and f is P’-linear,
we get thatz, > 2. On the other hand, sin€éeandD f-coverB, if n, > 2 thenn;, > 2.
Therefore fork = 5 there are two possibilitiest, = 2,n, = 2 andn, = 1; orn, = 3,
np=21andn, =1. Set{q; : i =1, 2,...,5} the 5-orbitP. The basic intervals associated
to P’ areA, B,C, D, E andF.
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FIGURE8.3. The graph of whenn, = 2,n, =2,n, = 1.
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FIGURE8.4. The graph of whenn, =3,n, =1,n, = 1.

Possibility (i):n, = 2,n, = 2andn, = 1. Thenwe takel = [a2, 0], B = [0, a4],C =
[0, a3], D = [a3, 0], E = [a1, a2) andF = [aa, as] (See Figure 8.3). Sincg1(p,) € O,
we have thatf(a3) = as. Moreover f(a2) = a3 because whiskefd) — O. Since
f(whiskergB)) C whiskergA), f({as, as}) = {a1, az}. SinceP has period 5, it follows
that f (as) = aa, f(aa) = a2 andf(a1) = as. So we obtainthe loopg - D — F — E,
E—-B—-A—-C—>F—EandE - D — B— A— C— F — E oflengths
3, 5 and 6 respectively (see again Figure 8.3). ThenPep N\ {2, 4, 10} and the result
follows.

Possibility (ii): n, = 3,n, = 1 andn, = 1. We takeA = [a3,0], B = [0, as],
C = [0,a4]), D = [a4,0], E = [a1,a2] and F = [a2, a3] (see Figure 8.4). Since
F*1(pp) € O we have thatf (as) = as. Moreoverf(a3) = a4 because&k; — O and
f is P’-linear. Sincef*~1(p,) € whiskersB), f(as) = a1. By periodicity f (a1) = a»
and f (a2) = as. Clearly we obtain the loopg -~ A - C - B,B - F - D — B,
B—-E—-F—-D-— BandB - F - A - C — B oflengths 3, 3, 4 and 4
respectively. Consequently R¢p O N\ {2, 10} and the result follows.
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FIGURE8.5. The graph of whenn, = 2, n;, = 2 andn, = 1.

Subcase 2.2f%1(p,) € whiskergA). Since f(0) = 0 we have that whiskefd) —
whiskergB). Thus there exiskK3 C whiskergA) and K4 C whiskergB) such that
K3 2 K4. Furthermore, since whiskérs) — O we can suppose thatz does not contain
0. Moreover we can tak&3 such that its endpoints are element®oBy Lemma 8.9 there
is a loop of lengthk = 5 containingKs. This loop together with the lookis = K4 give us
a non-repetitive loop of length for eachn = 5i + 2 withi > 1, j > 1. By Lemma 4.3
there isx € K3 such thatf”(x) = x. Since the loop is non-repetitive al@d# K3, x has
periodn. Hence Peif) D {n € N:n > 9} \ {10}. Now we need to show that8 Per f).

First, suppose that(p,) ¢ whiskergB) or f(py) ¢ whiskergA). Therefore from the
facts thatf*~1(p,) € whiskergA) and f*~1(p,) € whiskergB) it follows that there are
two closed subintervals of whisk€®) f-covering whisker&A) or two closed subintervals
of whiskergA) f-covering whisker&B). Furthermore, since whisk&rs) = whiskergB)
we have that there are three closed subinteridlse whiskergA), K, € whiskergB)
andKs € whiskergA) or K5 € whiskergB) such thatd ¢ Ks N K; N K, and either
K; = K, = Ksor Ks = K3 = K. Hence, we obtain a non-repetitive loop of length 8
such that at least one of its intervals does not cor@aim a similar way as above we get
that 8¢ Per(f).

Finally, suppose thatf(p,) € whiskergB) and f(py) € whiskergA). Since
whiskergA) — O, whisker§A) — whiskergB) and f is P’-linear we have thai, > 2.
Since{f (pa), ¥ 1(pa)} C whiskergB) andk # 2 we havey, > 2. Furthermorey, > 1
because® NO # @. Then fork = 5 the only possibility isi, = 2,n, = 2 andn, = 1. Set
a;fori =1,2,...,5the 5-orbitP. The basic intervals associatedR6areA, B, C, D, E
and F. TakeA = [a2,0], B = [0,a4], C = [0,a3], D = [a3,0], E = [a1, az] and
F = [ay4, as] (see Figure 8.5). From the facts that whiskdns— O and f is P’-linear,
we get thatf (a2) = as. Sincef*~1(py,) € whiskergA), we have thaif (a1) = as. Notice
that f(as) # aj becaus& # 2. Moreoverf(py) € whiskergA) and sof(as) = ax.
Since f*~1(p,) € whisker§B), f(as) = a1 and thenf (a3) = a4. Therefore we obtain
the non-repetitive loo® - B - E - B - E - B - E — F — E oflength 8
in the hypotheses of Proposition 4.4 (see Figure 8.5). Consequesrtl?&( /) and the
proposition is proved. ]
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FIGURE9.1. The graph of ano map .

9. The graph of amo map

If we identify the points 0, 1 and 2 of the segmd@t 2], then we obtain a space
homeomorphic tao. The segmentf0, 1] and[1, 2] with the endpoints identified to the
branching point represent the two circlesof

We represent the cartesian prodoetx oo as the squarf9, 2] x [0, 2] identifying the
points (0, y), (1, y) and (2, y) for all y € [0, 2], and the pointgx, 0), (x, 1) and (x, 2)
for all x € [0, 2]. Thus, the graph of ano map f is the subsef(x, f(x)) : x € oo}
of oo x 00, and it can be represented as in Figure 9.1. Roughly speaking, we think in the
graph of areo map like the graph of an interval mgdrom [0, 2] into itself with the above
identifications. This allows us to talk about local or absolute maximum or minimum for an
oo map in the same way as for interval maps. Thus, for instance in the poaridg the
oo map f represented in Figure 9.1 has a local minimum and maximum with vai sl
M respectively.

Let f be aP’-linear oo map such that each basic interval associate#’tdoes not
f-cover itself. Therefore, the graph ¢f does not touch the diagonal except at the
branching point. LetV = [a, b] be a closed interval contained @ or in circle(B)
such thatg(a) = g(b) € {0,1, 2}, g(c) # g(a) forall ¢ € (a,b) andg(V) is strictly
contained inO or in circle(B). Then we say thaV is an upper (respectivelylower)
subintervalaccording to whether it contains more local minima (respectively maxima)
than local maxima (respectively minima) gf

10. The unfolding obo
In this sectionf will be a P’-linear co map such that each basic interval associated
to P’ does notf-cover itself, andk will be the period ofP. Let K = [a,b] be a
closed subinterval ofo such thatf ([a, b]) = O, (respectivelyf ([a, b]) = circle(B)),
f(a) = f(b) = 0,and f(c) # 0forall ¢ € (a,b), then we say thak f-coversO
(respectively circleB)), or K — O (or O < K). Moreover,K will be called anO-
crossing(respectively circléB)-crossing subinterval

From now on in this section, we also assume that there a®-t00ssing subintervals
Again following ideas of 14] and [15] we define theunfoldingof oo as follows. Define
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FIGURE 10.1. The unfolding obo.

the graphpo™ = G1 U G2 U G3 where:

Glz{(x,y,Z)€R3:Z:O’x2+(y_1)2:1};
GZZ{(X,y,Z)ERs:zzo’xz_i_(y_,_l)Z:l};
Ga={(x,y,20eR®: y=z,x24+(y+1?=1}.

(See Figure 10.1.)

ClearlyG1 U G» is homeomorphic teo, so we identifyoo with G1 U G». Consider the
projectionn : co* —> oo defined byr (x, y, z) = (x, y, 0). We denote by* the unique
point of G3 such thatr (p*) = p.

Since f is P’-linear, f has finitely many local extrema; and consequently finitely
many upper and lower subintervals. Moreover, from the fact that there aPearossing
subintervals, it follows that there exists a finite ‘partition’ &f into upper and lower
subintervals. Now for the givetso map f we definef* : co — oo™ as follows. If
p € oo then f*(p) is either f(p)* if f(p) € O andp belongs to an upper subinterval; or
f(p) otherwise. Clearlyf* is well-defined. Sincef has noO-crossing subintervals and
P has elements on each componensof, {0}, f*(o0) is homeomorphic te or <. We
remarkthatf =7 o f*: 00 —> o0. DefineF = f*om : 00* —> 00™.

PROPOSITION10.1. Suppose that there are n@-crossing subintervals. Then the
following statements hold:

(@) if g is ann-pointfor F, thenp = n(g) is ann-point for f;

(b) if pisann-pointfor f andp € G1, thenp is ann-point for F.

Proof. The proof follows as Proposition 7.3. |

PROPOSITION10.2. Suppose that there are n@-crossing subintervals. [f5,7} C
Per f) thenN \ {2, 3, 4, 6, 8,10, 11} C Per(f).
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Proof. By Proposition 10.1 we have thate Pel(F). SinceP has elements into each
circle of oo and there are n@-crossing intervals, we get that(oco*) is homeomaorphic to
o or «. So, from thes theorem and Proposition 8.1 the result follows. o

11. The full periodicity kernel oéo

The goal in this section is to prove Theorem 1.7. Siecis homeomorphic td(x, y) €

oo : y < 1}, inthis section we shall consider= {(x, y) e oo : y <1} C oc. Let f bean

o« map, we shall extend to aco map f as follows. We defing (z) = f(z) if z €  and
7|Cl(oo\o<) is any homeomorphism between(& \ «) and the unique interval iex having
f(1,1) and f(—1, 1) as endpoints such that(1, 1) = f(1, 1) and (-1, 1) = f(-1,1).

Of course Perf) = Per(f). By Theorem 1.6{2, 3, 4, 5, 6, 7, 10, 11} is a subset of the full
periodicity kernel ofoo. Then, to prove Theorem 1.7 it is sufficient to show the following
two propositions.

PrROPOSITION11.1. Let f be anco map. If{5, 7} € Perf) thenN\ {2, 3, 4, 6, 8, 10,
11} C Pex(f).

PrROPOSITION11.2. There exists ampo mapg such thatPerg) = N\ {8}.

In the rest of this section we fix th® map f having a periodic orbitP of period
k € {5,7} and the seftS of basic intervals associated 8. This fixedoo map will be
called thestandardoo map

LEMMA 11.3. Let f be the standarcbo map. If P ¢ O or P C circle(B), then
Proposition 11.1 holds.

Proof. Without loss of generality we can assume tRat O. Then we define th® map
g: 0 — Oasfollows. Forz € O, g(z) = f(2) If f(z) € O;andg(z) =0if f(z) ¢ O.
Clearly Petg) c Per(f). Hence, from the Circle theorem the result holds. O

Remark 11.4From Lemma 11.3 we can assume tifahas points into each circle eb.
Furthermore, by Corollary 5.3 we can suppose that the standardhp f is P’-linear.

LEMMA 11.5. Let f the standardo map. Suppose that thereJdse S such that there are
no basic intervals of \ {J} f-coveringJ. Then Proposition 11.1 holds.

Proof. Considerthe map = f|oo\Int(s) : 0\INt(J) — oo\Int(J). From the assumptions
it follows that g is well-defined. Clearlyg is either ac map or anx map such that
Per(g) = Per f). Hence, from the theorem and Proposition 8.1 the result follows.O

Remark 11.6From Lemma 11.5 we can assume that each S is f-covered by some
basic interval ofS \ {J}.

LEMMA 11.7. Let f be the standardo map. Let/ and K be basic intervals such that
J f™-coversk, for somem > 1. EventuallyJ = K. Then there is a path of lengih
starting atJ and ending ak .

Proof. If m = 1 itis trivial. So suppose that > 1. For 1< i < m, givenJ; € S,
Ji C fi(J), sincef is P’-linear, we can select_1 € S such that/;_; ¢ f~1(J) and
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Ji—1 — J;. Then, by induction assumption, the pah=J — J1 —» -+ —> Jyu_1 —
Jm = K proves the lemma. O

LEMMA 11.8. Let f be the standardo map. Let/, K € S. Then at least one of the
following statements holds:

(& N\{23,4,6,8,10 11} C Per f);

(b) thereis a path of lengt for somel < m < k + 1 starting atJ and ending ak .

Proof. From Remark 11.6 each basic intervaficovered by some basic interval different
from itself. Then we get thaf (co) = co. SetK; = fi(J) fori > 0. Moreover, since?
is a periodic orbit, there is an integer- 1 such that/_,K; = UZgK; = E' # U3 K.
Notice thatE \ E’ is either@, or formed by exactly two basic intervalg and.J, such that
J1 € O, Jo C circle(B) andJ1 = J». Therefore, eitheE’ = oo or E’ is homeomorphic
to some space di, Y, X}. Since CardS) = k + 2, we get that < k + 1. Notice that
P CE.

First, suppose thak’ is homeomorphic td, Y or X. Then we define th&” map
g = flg : E' — E'. SinceU_yK; = U13K; = E', g is well-defined. Of course is
a periodic orbit of period for g. Then from thd theorem.Y theorem and-od theorem,
statement (a) holds.

Finally, suppose thak” = co. Therefore,J f™-coversk, for some 1< m < k + 1.
Thus by Lemma 11.7 there is a path of lengtlstarting at/ and ending ak . |

Proof of Proposition 11.1From Proposition 5.5 wittk € {5, 7}, if there exists some
basic interval whichf-covers itself, then Proposition 11.1 holds. So from now on we can
suppose thal -~ J foranyJ € S.

If there are no O-crossing subintervals obo, then from Proposition 10.2,
Proposition 11.1 holds. By using similar arguments, if there are no ¢Bglerossing
subintervals, then Proposition 11.1 follows. So from now on we can assume that there are
two crossing subintervalk;, Ko C oo such thatk; — O andK2 — circle(B). Since
fis P’-linear andJ - J for anyJ € S, we get thaQ is the unique fixed point of .
ThereforeK, C circle(B) andK> C O. Moreover, from the fact thak1 = Ko, there is
x € K1 such thatf(x) € Ko and f2(x) = x. LetL ¢ Ko andM C K; be the basic
intervals containingf (x) andx respectively. By the linearity of we get thatl. = M.

First we suppose thdtor M f*-coversitself. Without loss of generality we can assume
that L f*-coversL. Then, by Lemma 11.7 there exists a loop of lengitontainingL.
Therefore the above loop of lengthtogether with the loog. = M give us a loop of
lengthn for eachrn > k odd and each > 2k + 2 even. Notice that the loop of length
is non-repetitive becaugeis not multiple of 2. We claim that we can construct the above
loop of lengthn in such a way that at least one of its basic intervals does not cabitain
Now we prove the claim. 10 ¢ L or0 ¢ M, then we are done. So suppose hat LN M.
Sincek is not multiple of 2, the loop of lengthis not a repetition of. = M. Furthermore,
since0 € L N M it follows that the only branching intervalé-covered byL. andM areL
andM (see Remark 5.4). Hence the loop of lengtbontains somd € S with 0 ¢ J and
the claim is proved. By Proposition 4.4 we get th&at {2, 3, 4, 6, 8, 10} C Per f) and
Proposition 11.1 holds.
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Now we can assume thdt and M do not f¥-cover themselves. Thus, sinéehas
periodk, we get thatl. f*-coversJ for eachJ € S with J ¢ O andM f*-coversJ for
eachJ € S with J c circle(B).

Without loss of generality we have three possibilities for the basic inteivaisd M:
eitherOe LN M;or0e Land0O¢ M;or0O¢ LU M. If 0 e L N M, then without loss
of generality we can assume that there is a basic intddyalc circle(B) \ Int(M) such
thatL — Mj. Moreover, sincef is P’-linear,0 ¢ M;. If 0 € L andO ¢ M, then since
f(0) =0andL — M, we have that there is a basic inter#&l C circle(B) \ Int(M) such
thatL — Mj. Finally, sincek > 4,if 0 ¢ L U M, then again we can suppose that there is
a basic intervaM; C circle(B) \ Int(M) such thatL. — M.

In short, we get that there &1 € § such thatM1 C circle(B) \ Int(M), L — M1
and0 ¢ M or 0 ¢ Mi. Therefore,M f*-coversMi. From Lemma 11.7 there is a
pathM — ... — Mz of lengthk. From Lemma 11.8, if statement (a) holds, then
Proposition 11.1 follows; otherwise, from statement (b) we can assume that there is a
pathM; — --- — M of lengthm < k 4+ 1 andm is the shortest length of all the paths
from M1 to M. Concatenating the path of lengthtogether with the path® — L — M1
and the patl — - .. — M; of lengthk we obtain two loops of lengths + 2 andk + m.
Notice that both loops contai¥ andM1. We takek = 5.

First suppose that: is odd. Som < k. TheloopM - L - M} —» --- > M
of lengthm + 2 and the loopM = L allow us to construct a non-repetitive loop of
lengthn for eachn > k + 2 odd, containing and M;. On the other hand, the loops
M- .--— My — ---— M oflengthk + m and the loopf = L allow us to construct
a non-repetitive loop of length for eachn > 2k + 2 even containing/ and M. Since
0¢ M or0 ¢ M, by Proposition 4.4 we have that\ {2, 3, 4, 6, 8, 10} C Pexrf).

Finally, suppose that is even. The loogd - L — M; — --- — M of length
m + 2 and the loopf = L give us a non-repetitive loop of lengthfor eachn > k + 3
even containing/ and M;. Moreover, the loop — .- - M; — ... — M of
lengthk + m < 2k + 1 and the loopM = L give us a non-repetitive loop of length
n for eachn > 2k + 1 odd containing and M1. SinceO ¢ M or 0 ¢ M;, from
Proposition 4.4 we have that \ {2,3,4,6,7,9} c Per(f). Now we will prove that
9 € Per(f). Notice that ifm < k + 1, thenm < k — 1 because: is even. Hence, the loop
M- ..-— M — ---— M oflengthk +m < 2k — 1 odd and the loop/ = L give
us a non-repetitive loop of lengthk2- 1 = 9, and we are done. So, from now on, we can
assume that: = k + 1 and that there are no non-repetitive loops of length 9 containing
some non-branching interval; and we will to obtain a contradiction.

LetJo=M1 — J1 — -+ = Jy_1 — J» = M be the above path of length = 6.

By the minimality ofm, all basic intervals of this path are different. S,_1 = L. From

the facts thai f*-coversJ, for eachJ e S with J c circle(B) andL f*-coversJ, for
eachJ € S with J ¢ O and since there are no non-repetitive loops of length 9 containing
some non-branching interval, it follows thig;, J3} C circle(B) and{J>, J4} C O.

If there is a uniqueD-crossing subinterval, sincé - J for any J € S it follows
that L is f-covered by an odd number of basic intervals. This is a contradiction with
the facts that/y — L <« M and the minimality ofm. Otherwise, there are at least
two O-crossing subintervals. Therefore, there exiStse § with N C circle(B) and
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N # M such thatN — L. SinceM f*-coversN, we obtain a non-repetitive loop
M—-...—> N—>L—> M— L — M oflength 9 containing some non-branching
interval, in contradiction with the assumptions. So the proposition is proved. o

Proof of Proposition 11.2We need to construct a® mapg such that Peg) = N\ {8}.

Let {a1,az,...,a4} and {b1,bo, ..., bs} be periodic orbits of periods 4 and 5
respectively such that(a;) = a;41 fori = 1,2,3 andg(aa) = a1, g(b;) = b;41 for
i =1,23,4andg(bs) = b1. Let Q be the union of two above periodic orbits with
the branching point. Define the basic intervdlsassociated t@ fori = 1,2,...,11
as follows. The intervals/; ¢ O fori € {1,3,4,5,8,10} and J; C circle(B) for
i € {2,6,7,9,11) whereJ1 = [a1,0], Jo = [0,a2], J3 = [0,a3] Ja = [a4,a1],
Js = [b1, a4l, Je = [b2, 01, J7 = [az, b3, Jg = [as, bal, Jg = [b3, bs], J10 = [b4, b1] and
J11 = [bs, b2].

Now define aQ-linear oo mapg such that the only elementary loops in tharaph
are the following: J1 — Jo — J3 — Ji, J1 — Jo — J3 — Js — J1,
Jo—> Jz3—> Js— Jo, 05 > Jg— J7 — Jg — Jg — Ji0—~ J11— Js, J7 = Jgand
J7—> Jg —> Jog — Jiog— J11— J7.

By construction{4, 5} c Pel(g). The loopsJ; = Jg, J» — J3 — J4 — J2 and
Jo - J3 > J1 > J» — J3 — Js — Jo, have lengths 23 and 6 respectively,
are non-repetitive and at least one interval in each loop does not cdhtaiSince
{2, 3,6} N {8, 10} = @, from Proposition 4.4 we have thgf, 3, 6} C Pel(g).

In a analogous way, concatenating the lodps= Jg andJ7; — Jg — J9 — Ji0 —
J11 — J7 of lengths 2 and 5 respectively, we obtain that(Per> {n € N:n > 5, n odd}
and Pe¢f) D {n e N:n > 12 n even.

Now we prove that 1& Per( f). We note thaY is homeomorphictd,UJoUJ3UJs C
oo and so we shall identifff = J; U J> U J3 U Js. SinceY is an invariant set for the
map g, we can consider th¥ maph = g|y. Of course,{as, az, as, as} is a periodic
orbit of period 4 forh and theh-graph is a subgraph of thegraph. Using the loop
J1—> o> J3—> Jg—> J1—> Jo > J3—> J1 — Jo —> J3 — Jpoflength 10 in
Proposition 4.4, we get 18 Per(f).

On the other hand, since there are no non-repetitive loops of length 8 grdghaph,
from Proposition 5.2 we get that8Per(g). |
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