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Abstract. Let∝ be the topological space obtained by identifying the points 1 and 2 of the
segment[0, 3] to a point. Let∞ be the topological space obtained by identifying the points
0, 1 and 2 of the segment[0, 2] to a point. An∝ (respectively∞) map is a continuous
self-map of∝ (respectively∞) having the branching point fixed. SetE ∈ {∝,∞}. Let f
be anE map. We denote by Per(f ) the set of periods of all periodic points off . The set
K ⊂ N is thefull periodicity kernelof E if it satisfies the following two conditions: (1) if
f is anE map andK ⊂ Per(f ), then Per(f ) = N; (2) for eachk ∈ K there exists anE
mapf such that Per(f ) = N \ {k}. In this paper we compute the full periodicity kernel of
∝ and∞.

1. Introduction and main results
Let E be a topological space. We shall study some properties of the set of periods for a
class of continuous maps fromE into itself. We need some notation.

The sets of natural numbers, real numbers and complex numbers will be denoted by
N,R andC respectively. For a mapf : E → E we use the symbolf n to denote
f ◦ f ◦ · · · ◦ f (n ∈ N times), f 0 denotes the identity map ofE. Then, for a point
x ∈ E we define theorbit of x, denoted by Orbf (x), as the set{f n(x) : n = 0, 1, 2, . . . }.
We sayx is afixed pointof f if f (x) = x. We sayx is aperiodic point off of period
k ∈ N (or simply ak-point) if f k(x) = x andf i(x) 6= x for 1 ≤ i < k. In this case
we say the orbit ofx is a periodic orbit of periodk (or simply ak-orbit). Note that ifx
is a periodic point of periodk, then Orbf (x) has exactlyk elements, each of which is a
periodic point of periodk. We denote by Per(f ) the set of periods of all periodic points
of f .
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102 M. C. Leseduarte and J. Llibre

A connected finite regular graph(or just agraph for short) is a pair consisting of a
connectedHausdorffspaceE and a finite subspaceV , whose elements are calledvertices,
such that the following conditions hold:
(1) E\V is the disjoint union of a finite number of open subsetse1, . . . , ek, callededges,

where eachei is homeomorphic to an open interval of the real line;
(2) the boundary, cl(ei) \ ei , of the edgeei consists of two distinct vertices, and the pair

(cl(ei), ei) is homeomorphic to the pair([0, 1], (0, 1)).
A vertex which belongs to the boundary of at least three different edges is called a
branching pointof E. A vertex which belongs to a unique edge is called anendpoint.

An E mapis a continuous self-map ofE having fixed all the branching points ofE.
We say anE mapf has full periodicity if Per(f ) = N. The setK ⊂ N is a full

periodicity kernelof E if it satisfies the following two conditions:
(1) if f is anE map andK ⊂ Per(f ), then Per(f ) = N;
(2) for eachk ∈ K there exists anE mapf such that Per(f ) = N \ {k}.

The above condition (1) says that the setK is sufficient to force full periodicity.
Condition (2) means thatK is necessary to have full periodicity. Of course, the setK

is the minimal set which forces periodic points of all periods. Note that, for a givenE, if
there is a full periodicity kernel, then it is unique.

Blokh proved in [8] that for every graphE, there exists a natural numberL(E), such
that for any continuous self-mapf of E, {1, 2, . . . , L(E)} ⊂ Per(f ) implies Per(f ) = N.
This result shows that if there exists the full periodicity kernel ofE, then it is a finite set.
In fact, then the set{1, 2, . . . , L(E)} contains the full periodicity kernel ofE.

On the other hand, one of the most important questions in one-dimensional
combinatorial dynamics is the problem of describing all possible sets of periods forE

maps. There is a kind of conjecture saying that with finitely many different orderings of
the setN it will be possible to control all possible sets of periods forE maps, see for
instance [2]. If this conjecture is true, then the full periodicity kernel would contain the
first elements of the different orderings controlling the periodic structure ofE maps. Thus,
the full periodicity kernel contains interesting information about the new orderings which
can appear in the periodic dynamics ofE maps.

Thetopological entropyof a continuous self-mapf on a graphE is a non-negative real
numberh(f ) associated tof which increases with the complexity off . For a definition
and main properties see [2]. Llibre and Misiurewicz [12] obtained the next result. Iff is a
continuous map on a graph into itself, then the following two statements are equivalent:
(1) h(f ) > 0;
(2) there ism ∈ N such that{m · n : n ∈ N} ⊂ Per(f ).
Another proof of this equivalence can be found in [8]. From this result it follows that ifKE

is the full periodicity kernel ofE andf is anE map, thenKE ⊂ Per(f ) impliesh(f ) > 0.
In other words, if a map has the periods of its full periodicity kernel, then it has positive
topological entropy.

From now on, the topological spaceE will denote one of the following seven spaces:

I = {(x, y) ∈ R2 : 0 ≤ x ≤ 1 andy = 0},
Y = {z ∈ C : z3 ∈ [0, 1]},
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X = {z ∈ C : z4 ∈ [0, 1]},
O = {(x, y) ∈ R2 : x2+ (y + 1)2 = 1},
σ = I ∪O,

∝ = σ ∪ {(x, y) ∈ R2 : −1≤ x ≤ 0 andy = 0},
∞ = O ∪ {(x, y) ∈ R2 : x2+ (y − 1)2 = 1}.

The spacesI , Y, X, O, σ ,∝ and∞ are called theinterval, the 3-od or 3-star, the 4-od
or the 4-star, thecircle, thesigma, thealphaand theeightrespectively.

The spacesY, X, σ ,∝ and∞ have exactly one branching point, namely0 ∈ Y, 0 ∈ X,
0= (0, 0) ∈ σ , 0= (0, 0) ∈ ∝ and0= (0, 0) ∈∞. We also denote by0 the(0, 0) ∈ O.

The full periodicity kernel for the interval, the 3-star, the 4-star, the circle and the sigma
are known and presented in the following five theorems.

THEOREM 1.1. The set{3} is the full periodicity kernel ofI .

THEOREM 1.2. The set{2, 3, 4, 5, 7} is the full periodicity kernel ofY.

THEOREM 1.3. The set{2, 3, 4, 5, 6, 7, 10, 11} is the full periodicity kernel ofX.

THEOREM 1.4. The set{1, 2, 3} is the full periodicity kernel ofO.

THEOREM 1.5. The set{2, 3, 4, 5, 7} is the full periodicity kernel ofσ .

Theorem 1.1 is due to Sharkovskii [18] (see also [2, 7, 11, 19]), Theorem 1.2 was shown
by Mumbrú [17] (see also [1]), Theorem 1.3 has been proved by Alsed`a and Moreno [3],
Theorem 1.4 is due to Block [5] (see also [16]), Theorem 1.5 has been proved by Llibre
et al [13].

Our goal in this paper is to characterize the full periodicity kernel of the alpha and eight
spaces. Thus, our main results are the following.

THEOREM 1.6. The set{2, 3, 4, 5, 6, 7, 10, 11} is the full periodicity kernel of∝.

THEOREM 1.7. The set{2, 3, 4, 5, 6, 7, 8, 10, 11} is the full periodicity kernel of∞.

Leseduarte and Llibre compute in [10] the full periodicity kernel for other spaces: the
circle with three whiskers, the circle with four whiskers, the eight with one whiskers, the
eight with two whiskers and the trefoil. Also they compare the upper bound of the full
periodicity kernel of Blokh,L(E), with the best upper bound for all proper subgraphs of
the trefoil.

Theorems 1.6 and 1.7 are proved in §§8 and 11 respectively. All the other sections
present preliminary definitions and results that are necessary for proving these two main
theorems.

2. Preliminary results
Sharkovskii proved his famous theorem in the 1960s. It characterizes the set Per(f ) for
continuous maps on the interval.

TheSharkovskii ordering>s on the setNs = N ∪ {2∞} is given by:

https://doi.org/10.1017/S0143385799120984 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385799120984


104 M. C. Leseduarte and J. Llibre

3 >s 5 >s 7 >s · · · >s 2·3 >s 2·5 >s 2·7 >s · · · >s 22·3 >s 22·5 >s 22·7 >s · · · >s

2n·3 >s 2n·5 >s 2n·7 >s · · · >s 2∞ >s · · · >s 2n >s · · · >s 24 >s 23 >s 22 >s 2 >s 1.

We shall use the symbol≥s in the natural way. We have to include the symbol 2∞ to
ensure the existence of supremum of every subset with respect to the ordering>s . For
n ∈ Ns we denoteS(n) = {k ∈ N : n ≥s k}. SoS(2∞) = {2i : i = 0, 1, 2, . . . }.
THEOREM 2.1. (Interval theorem)
(a) If f is an interval map, thenPer(f ) = S(n) for somen ∈ Ns .
(b) If n ∈ Ns then there exists an interval mapf such thatPer(f ) = S(n).

If we want to get a similar result for the spaceY, we need two new orderings.
Thegreen ordering>g onN \ {2} is given by:

5 >g 8 >g 4 >g 11 >g 14 >g 7 >g 17 >g 20 >g 10 >g · · · >g 3 · 3 >g 3 · 5 >g

3 · 7 >g · · · >g 3 · 2 · 3 >g 3 · 2 · 5 >g 3 · 2 · 7 >g · · · >g 3 · 22 · 3 >g 3 · 22 · 5 >g

3 · 22 · 7 >g · · · >g 3 · 23 >g 3 · 22 >g 3 · 2 >g 3 · 1 >g 1.

Thered ordering>r onN \ {2, 4} is given by:

7 >r 10 >r 5 >r 13 >r 16 >r 8 >r 19 >r 22 >r 11 >r · · · >r 3 · 3 >r 3 · 5 >r

3·7 >r · · · >r 3·2·3 >r 3·2·5 >r 3·2·7 >r · · · >r 3·22 ·3 >r 3·22 ·5 >r 3·22 ·7 >r

· · · >r 3 · 23 >r 3 · 22 >r 3 · 2 >r 3 · 1 >r 1.

For n ∈ N \ {2} denoteG(n) = {k ∈ N : n ≥g k}, for n ∈ N \ {2, 4} denote
R(n) = {k ∈ N : n ≥r k} and additionallyG(3·2∞) = R(3·2∞) = {1}∪{3n : n ∈ S(2∞)}.
We also denoteNg = (N \ {2}) ∪ {3 · 2∞} andNr = (N \ {2, 4}) ∪ {3 · 2∞}.

The following theorem is due to Alsed`aet al [1] for Y maps and to Baldwin for arbitrary
continuous self-maps ofY [4].

THEOREM 2.2. (Y theorem)
(a) If f is a Y map, thenPer(f ) = S(ns) ∪G(ng) ∪ R(nr) for somens ∈ Ns, ng ∈ Ng

andnr ∈ Nr .
(b) If ns ∈ Ns, ng ∈ Ng and nr ∈ Nr , then there exists aY map f such that

Per(f ) = S(ns) ∪G(ng) ∪ R(nr).

Then-od spaceIn is defined as the set of all complex numbersz such thatzn is in the
interval[0, 1] and the branching point is0= 0.

Baldwin [4] extends Sharkovskii’s result to then-od. Thus, he establishes a conjecture
presented by Alsed`aet al [1] in the affirmative. The set of periods of a continuous self-map
of then-od can be described as a non-empty union of initial segments of some orderings
≥n which we are going to state.

We define the partial orderings≥n for n ≥ 1. The ordering≥1 is the ordering≥s . If
n > 1, then the ordering≥n is defined as follows. Letm, k be positive integers.

Case 1:k = 1. Thenk ≥n m if and only if m = 1.

Case 2:k is divisible byn. Thenk ≥n m if and only if eitherm = 1 orm is divisible byn

andk/n ≥s m/n.
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Case 3:k > 1, k not divisible byn. Thenk ≥n m if and only if eitherm = 1, m = k, or
m = ik + jn for some integersi ≥ 0, j ≥ 1.

From the definition we have that>2 is the Sharkovskii ordering. A setZ is an initial
segmentof ≥p for p ≥ 0, if wheneverk is an element ofZ andk ≥p m, thenm also
belongs toZ.

THEOREM 2.3. (n-od theorem)
(a) Let f be a continuous self-map ofIn. ThenPer(f ) is a non-empty union of initial

segments of{≥p: 1 ≤ p ≤ n}.
(b) If Z is a non-empty finite union of initial segments of{≥p: 1 ≤ p ≤ n}, then there is

a continuous mapf : In −→ In such thatf (0) = 0 andPer(f ) = Z.

While Baldwin works with the partial orderings≥n, Alsedà and Moreno in [3] show
that the set of periods of a continuous self-map of then-star can be expressed as the
union of ‘initial segments’ of the linear orderings associated to all rationals in the interval
(0, 1) with denominator smaller than or equal ton defined in certain subsets of the natural
numbers. Two of these ordering are exactly the green and the red ordering appearing in
the characterization of maps ofY in [1]. Moreover, in [3] the authors show that the full
periodicity kernel of continuous self-maps ofIn exist and they provide an algorithm for
computing them.

We define theBlock ordering>b onNb = N as the converse of the usual ordering on
N \ {1} and we add the 1 as the smallest element; i.e. 2>b 3 >b 4 >b · · · >b 1. For
n ∈ Nb, we denoteB(n) = {k ∈ N : n ≥b k}. Sharkovskii Theorem has been generalized
by Block to the circle maps having fixed points in [6].

THEOREM 2.4. (Circle theorem)
(a) If f is a circle map having fixed points, thenPer(f ) = S(ns) ∪ B(nb) for some

ns ∈ Ns andnb ∈ Nb.
(b) If ns ∈ Ns andnb ∈ Nb, then there exists a circle mapf having fixed points such

thatPer(f ) = S(ns) ∪ B(nb).

The following theorem describes the set of periods forσ maps. It was proved by Llibre
et al [14].

THEOREM 2.5. (σ theorem)
(a) If f is a σ map, thenPer(f ) = S(ns) ∪ G(ng) ∪ R(nr) ∪ B(nb) for some

ns ∈ Ns , ng ∈ Ng, nr ∈ Nr andnb ∈ Nb.
(b) If ns ∈ Ns , ng ∈ Ng, nr ∈ Nr andnb ∈ Nb, then there exists aσ mapf such that

Per(f ) = S(ns) ∪G(ng) ∪ R(nr) ∪ B(nb).

Furthermore, Leseduarte and Llibre [9] obtained theσ theorem for a class of continuous
self-maps of theσ more general than the continuous self-maps having the branching point
fixed.

3. Intervals and basic intervals
From now on we shall talk about the whiskers or the circles ofE. We define these sets as
follows: thecircle of σ is O, thewhiskers ofσ is I , thecircle of ∝ is O, thewhiskers of∝
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are the sets whiskers(A) = I and whiskers(B) = {(x, y) ∈ ∝ : −1 ≤ x ≤ 0 andy = 0},
and finally the circles of∞ are the sets circle(A) = O and circle(B) = {(x, y) ∈ ∞ :
x2+ (y − 1)2 = 1}. Notice that all the above whiskers are homeomorphic toI and all the
above circles are homeomorphic toO.

A closed(respectivelyopen, half-openor half-closed) interval J of E is a subset of
E homeomorphic to the closed interval[0, 1] (respectively(0, 1), [0, 1)). Notice that an
interval cannot be a single point.

Let J be a closed interval ofE, and leth : [0, 1] −→ J be a homeomorphism. Then
h(0) = a andh(1) = b are called theendpointsof J . If a andb belong toI , Y, X or a
whiskers ofE, thenJ will be denoted by[a, b] or [b, a]. If a andb belong to a circle ofE
then we write[a, b] to denote the closed interval froma counter-clockwise tob.

Notice that it is possible that two different intervals of a circle ofE have the same
endpoints. But two different points ofI , Y, X or the whiskers ofE always determine a
unique interval.

Now we define a special class of subintervals ofE. Let Q = {q1, q2, . . . , qn} be a
finite subset ofE containing0. For each pairqi, qj such thatqi 6= qj we say that the
interval[qi, qj ] (respectively[qj , qi]) is basicif, and only if,(qi, qj )∩Q = ∅ (respectively
(qj , qi) ∩ Q = ∅). The set of all these basic intervals is called theset of basic intervals
associated toQ.

4. Loops andf -graphs
Let f : E → E be anE map. IfK andJ are intervals ofE, then we say thatK f -covers
J or K → J (or J ← K), if there is a closed subintervalM of K such thatf (M) = J . If
K does notf -coverJ we writeK 9 J .

A path of lengthm is any sequenceJ0 → J1 → · · · → Jm−1 → Jm, where
J0, J1, . . . , Jm are closed subintervals ofE (in general, basic intervals). Furthermore,
if J0 = Jm, then this path is called aloop of lengthm. Such a loop will be callednon-
repetitiveif there is no integeri, 0 < i < m, such thati dividesm andJj+i = Jj for all
j , 0 ≤ j ≤ m − i. We say that weaddor weconcatenatethe loopJ0 → J1 → · · · →
Jm−1 → J0 to the loopK0 → K1 → · · · → Kn−1 → K0 if they have a common vertex
J0 = K0 and we form the new loopJ0→ J1→ · · · → Jm−1→ K0→ K1→ · · · → J0.
A loop which cannot be formed by adding two loops will be calledelementary.

Let Q be a finite subset ofE containing0. An f -graph of Q is a graph with the basic
intervals associated toQ as vertices, and such that ifK andJ are basic intervals andK
f -coversJ , then there is an arrow fromK to J . Note that thef -graph ofQ is unique up to
labeling of the basic intervals. Hence, from now on we shall talk aboutthef -graphof Q

(or justthef -graphfor short). The next three lemmas are well-known in one dimensional
dynamics, see for instance [2]. We leave the proofs to the reader.

LEMMA 4.1. Let f be anE map and letK, J,L be closed subintervals ofE. If L ⊂ J

andK f -coversJ , thenK f -covers L.

LEMMA 4.2. Letf be anE map and letJ be a subinterval ofE such thatJ f -coversJ .
Thenf has a fixed point inJ .
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LEMMA 4.3. Let f be anE map and letJ0, J1, . . . , Jn−1 be closed subintervals ofE
such thatJi → Ji+1 for i = 0, 1, . . . , n − 2 andJn−1 → J0. Then there exists a fixed
pointx of f n in J0 such thatf i(x) ∈ Ji for i = 1, 2, . . . , n− 1.

Let J be a subset ofE. As usual Int(J ) and Cl(J ) denote the interior and the closure of
J respectively.

PROPOSITION4.4. Let E ∈ {I , Y, X,∝,∞} and letf be anE map havingr periodic
orbits of periodsk1, k2, . . . , kr . Let Q be the set formed by the union of the abover

periodic orbits with the branching point. Consider the set of basic intervals associated
to Q. Suppose that there are points ofQ in each connected component ofE \ {0}. Let
J0 → J1 → · · · → Jm−1 → Jm = J0 be a non-repetitive loop of lengthm of the
f -graph ofQ such that at least oneJi does not contain0. If m /∈ {2k1, 2k2, . . . , 2kr}, then
m ∈ Per(f ).

Proof. By Lemma 4.1J0 f m-coversJ0. Then by Lemma 4.2 there existsx ∈ J0 such that
f m(x) = x. If x has periodm we are done. So suppose thatx has periods, 0 < s < m.
Thuss dividesm.

It is not possible thatx = 0 because0 is a fixed point and somef i(x) ∈ Ji with
Ji ∩ {0} = ∅.

If x ∈ Int(J0), then Orbf (x) ∩Q = ∅. So eachf i(x) is exactly in one basic interval,
and consequently the loop is repetitive (becauses < m ands dividesm). Hence,x must
be a point ofQ. So Orbf (x) ⊂ Q. Without loss of generality we can assume thats = k1.

From Lemma 4.3 it is easy to construct a closed intervalK0 ⊂ J0 such thatx ∈ K0 and
f i(x) ∈ f i(K0) ⊂ Ji for i = 0, 1, . . . ,m. Sincex = f s(x) ∈ f s(K0) ⊂ Js it follows
thatJ0 andJs have a common endpointx.

Assume thatJ0 = Js . Both setsK0 andf s(K0) are contained inJ0 and containx,
an endpoint ofJ0. ThereforeL = K0 ∩ f s(K0) is an interval [in fact it is eitherK0 or
f s(K0)]. Clearly f i(L) ⊂ f i(K0) ⊂ Ji , f i(L) ⊂ f s+i (K0) ⊂ Js+i , andf i(L) is an
interval for 0≤ i ≤ s. ThusJi = Js+i for i = 0, 1, . . . , s − 1.

Repeating this process we get thatJi = Js+i for i = 0, 1, . . . ,m − s. Hence, the loop
is repetitive becauses dividesm, in contradiction with the assumptions. SoJ0 6= Js .

If Jq = Jq+s for some 0 < q < m − s, then the above arguments prove that
Jq+i = Jq+s+i for i = 0, 1, . . . , s − 1. Repeating this process we obtain thatJi = Js+i

for i = 0, 1, . . . ,m− s and so the loop is repetitive, a contradiction with the assumptions.
Therefore, we can assume thatJq 6= Jq+s for 0≤ q < m− s.

Sincex is a periodic point of periods, if follows thatJ0 = J2s andJs = J3s . By the
above arguments we getJm = J0 = J2s = J4s = · · · andJs = J3s = J5s = · · · . In
particularm must be even. Furthermore,Ji = J2s+i for 0≤ i ≤ 2s − 1. Hence, 2s = 2k1

dividesm. Sincem 6= 2k1 the loop is repetitive, in contradiction with the hypotheses.2

5. Q-linear maps

Let T ∈ {I , Y, X}. It is easy to see that any treeT has a metricm such that ifx, y ∈ T and
z ∈ [x, y], thenm(x, y) = m(x, z)+m(z, y), this metric is called thetaxicab metric.
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Let f be anE map and letQ = {q1, q2, . . . , qm} be an invariant subset ofE underf
such that0 ∈ Q. We assume that there are points ofQ in each connected component of
E \ {0}. LetEQ be the minimal connected subgraph ofE containing all the basic intervals
associated toQ. Clearly EQ is homeomorphic toE. We say thatf is Q-linear if the
following conditions hold:
(1) EQ = E, in particular the endpoints ofE are points ofQ;
(2) for any basic intervalJ associated toQ, f (J ) is a tree formed by the union of basic

intervals ofQ;
(3) f |J : J −→ f (J ) is linear with respect to the taxicab metric, i.e. for any

x, y, z ∈ J such thatm(x, y) = m(x, z) + m(z, y) we have thatm(f (x), f (y)) =
m(f (x), f (z))+m(f (z), f (y)).

We say that anE mapg is aQ-linearizationof f if the following conditions hold:
(1) g|Q = f |Q;
(2) g is Q-linear;
(3) theg-graph ofQ is a subgraph of thef -graph ofQ.

In particular, iff is anE map having a periodic orbitP such thatP has points in each
connected component ofE \ {0} we will talk about theP ′-linearization off in the above
way, whereP ′ = P ∪ {0}.

Let J be a basic interval. If0 ∈ J , thenJ will be called abranching interval; otherwise
J will be called anon-branching interval.

In the next lemma and proposition we assume thatE ∈ {∝,∞} andf is anE map
havingr periodic orbits of periodsk1, k2, . . . , kr . Let Q be the set formed by the union
of the abover periodic orbits with the branching point. Consider the set of basic intervals
associated toQ. Suppose that there are points ofQ in each connected component ofE\{0}.
LEMMA 5.1. Let K and J be basic intervals and letg be a Q-linearization off . If
x ∈ Int(J ), g(x) 6= 0 andg(x) ∈ K, thenJ g-coversK.

We leave the proof of the above lemma to the reader. The following proposition is the
converse result of Proposition 4.4 forQ-linear maps.

PROPOSITION5.2. Let g be aQ-linearization off . If g has a periodic point of period
m for m /∈ {1, 2, 3, 4, k1, k2, . . . , kr}, then there exists a non-repetitive loop of lengthm

through theg-graph such that at least one basic interval of the loop does not contain0.

Proof. Let x be a periodic point of periodm for g. Then Orbg(x) ∩Q = ∅, so for eachi,
0≤ i < m, there exists a unique basic intervalJi containinggi(x). Sinceg is Q-linear, by
Lemma 5.1,J0→ J1→ · · · → Jm−1→ Jm = J0 is a loop of theg-graph. First we shall
show that this loop is non-repetitive.

Since g is Q-linear, we can define by backward induction oni, a collection of
subintervalsKi of Ji such thatg : Ki −→ Ki+1 is one-to-one and onto, where
Km = Jm = J0. Suppose now the loop is repetitive, then there existss, 0 < s < m,
such thats dividesm andJi = Ji+s for 0 ≤ i ≤ m − s. We claim thatKi ⊂ Ki+s

for 0 ≤ i ≤ m − s. To prove the claim considerKm−s ⊂ Jm−s = Jm = Km and by
backward induction, supposeKi+1 ⊂ Ki+s+1 andKi * Ki+s . So, there isa ∈ Ki such
thata /∈ Ki+s , andg(a) ∈ Ki+1 ⊂ Ki+s+1. SinceKi+s → Ki+s+1, there existsb ∈ Ki+s
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(and sob 6= a) such thatg(b) = g(a). This is a contradiction to the fact thatg is Q-linear
andg|Ji is one-to-one. Hence, the claim is proved.

Thus,gs(K0) = Ks ⊃ K0 and by Lemma 4.2,gs has a fixed pointy ∈ K0. Sincem

is divisible bys, gm(y) = y. Note thatx 6= y becausex has periodm, andy has period
s < m. Hence the mapgm : K0 −→ Km is linear and has at least two fixed points.
Thereforegm|K0 must be the identity map and soK0 = Km = Jm = J0. Then we get
K0 = Ks = K2s = · · · = Km becauseK0 ⊂ Ks ⊂ K2s ⊂ · · · ⊂ Km = K0. Now consider
the linear mapgs : K0 −→ Ks = K0 which has a fixed point. Denote by id the identity
map. Sincegs |K0 is one-to-one and onto, we have two possibilities.

Case 1: gs |K0 = id. Thengs(x) = x butx has periodm > s, a contradiction.

Case 2: gs |K0 6= id andg2s |K0 = id. Let x0 ∈ K0 = J0 be a periodic point of periodki for
f for someki ∈ {k1, k2, . . . , kr } such that Orbf (x0) ⊂ Q. Theng2s(x0) = x0. Moreover
x0 is an endpoint ofK0 and soki = 2s. On the other hand, sinceg2s (x) = x andx has
periodm > s we have 2s = m. Soki = m, a contradiction with the hypotheses. In short
we have proved that the loopJ0→ J1→ · · · → Jm−1→ Jm = J0 is non-repetitive.

Suppose that all the basic intervals of the non-repetitive loop of lengthm contain the
branching point0. Therefore Orbg(x) is contained in the branching intervals. Sincem > 4,
there is a basic intervalJi containing at least two points of Orbg(x). Letu, v ∈ Orbg(x)∩Ji

such that(0, v) ∩ Orbg(x) = ∅, and(u, v) ∩ Orbg(x) = ∅. Sincem > 1 and the loop is
non-repetitive, there isJj 6= Ji such thatJj ∩Orbg(x) 6= ∅. Letz ∈ Jj ∩Orbf (x) such that
(z, 0) ∩Q = ∅. Therefore, there isr, 0 < r < m such thatgr(u) = z andgm−r (z) = u.
On the other handgr |[u,0] is lineal and sogr |[u,0] = [z, 0]. Furthermore,v ∈ (u, 0) and so
gr(v) ∈ (z, 0) in contradiction with the fact that(z, 0) ∩Orbg(x) = ∅. 2

COROLLARY 5.3. Let E ∈ {∝,∞}. Let f be anE map having a periodic orbitP of
period k, such thatP has points in each connected component ofE \ {0}. Let g be a
P ′-linearization off . If m ∈ Per(g) andm /∈ {2, 3, 4, 2k}, thenm ∈ Per(f ).

Proof. Both E mapsf andg have points of periods 1 andk. If m /∈ {1, 2, 3, 4, k}, then
by Proposition 5.2 there exists a non-repetitive loop in theg-graph of lengthm such that at
least one of its basic intervals does not contain0. Therefore, since theg-graph ofP ′ is a
subgraph of thef -graph ofP ′, by Proposition 4.4,f has a periodic point of periodm. 2

Remark 5.4.Suppose thatf is P ′-linear. Then each branching intervalf -covers exactly
one branching interval, and perhaps some non-branching intervals. Moreover each non-
branching intervalf -covers either zero or two branching intervals.

Now we add a proposition forP ′-linear maps which we will use for the computation of
the full periodicity kernel of∝ and∞.

PROPOSITION5.4. Let E ∈ {I , Y, X,∝,∞}. Let f be anE map having a periodic
orbit P of periodk. Suppose thatP has points in each component ofE \ {0} and that
f is P ′-linear. Assume that each basic interval isf -covered by some basic interval
different from itself and that there is a basic intervalJ0 such thatJ0 → J0. Then
{n ∈ N : n ≥ k} \ {2k} ⊂ Per(f ).
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Proof. We denote byS the set of basic intervals associated toP ′. Notice that Card(S) = k

if E ∈ {I , Y, X}, Card(S) = k + 1 if E = ∝ and Card(S) = k + 2 if E =∞. Since each
basic interval isf -covered by some basic interval we get thatf (E) = E.

SetKi = f i(J0) for i ≥ 0. Note that eachKi is a connected set and Card(K1∩P) ≥ 2.

Case 1:E ∈ {I , Y, X,∝}. From the fact thatP is a periodic orbit andf (E) = E, it follows
that there exists an integerr such thatK0 ( K1 ( · · · ( Kr = E and Card(Ki∩P) ≥ i+1
for i < r. SinceP has periodk we have thatr ≤ Card(Kr−1 ∩ P) ≤ k. Since each
basic interval isf -covered by some basic interval different from itself, for eachJi ∈ S,
Ji ⊂ Ki \ Ki−1 there existsJi−1 ∈ S, Ji−1 ⊂ Ki−1 \ Ki−2 such thatJi−1 → Ji . By
hypotheses there existsM ∈ S, M 6= J0 such thatM → J0. Hence, there is a loop of
lengthl ≤ r + 1 ≤ k + 1 containingJ0. By construction, this loop is formed by pairwise
different basic intervals and so is non-repetitive. The above loop of lengthl together with
the loopJ0→ J0 give us a non-repetitive loop of lengthn for eachn ≥ k+1 containingJ0.

We claim that the above loop contains some non-branching interval. If0 /∈ J0, then we
are done. So suppose that0 ∈ J0. SinceJ0→ J0, f (0) = 0 andf is P ′-linear we get that
the basic intervals different fromJ0 of K1 do not contain0. So the claim is proved. Hence
by Proposition 4.4 the result follows.

Case 2: E =∞. From the facts thatP is a periodic orbit,Ki is connected andf (E) = E,
we have that there exists an integerr such thatK0 ( K1 ( · · · ( Kr = E′, where either
E′ =∞ or E′ =∞ \ {J1, J2}, with J1 andJ2 basic intervals contained in different circles
of∞ and such thatJ1� J2.

First we assume thatE′ = ∞ \ {J1, J2}. ThenE′ is homeomorphic to some space of
{I , Y, X}. Of course,P ⊂ E′. Consider theE′ mapg = f |E′ . Clearlyg is well-defined
becausef is P ′-linear. Thusg is either anI map, aY map or anX map. Moreover,
Per(g) ⊂ Per(f ). Then the result follows as in Case 1.

Finally, we suppose thatE′ =∞. We remark that ifr ≤ k, then the result follows as in
Case 1. So, since Card(S) = k + 2, from now on, we can assume thatr = k + 1.

Subcase 2.1.Suppose thatJ0 is a non-branching interval. Lets > 0 be the smaller
integer such thatKs containg a branching intervalJs . Let Js−1 ∈ Ks−1 be such that
Js−1 → Js . By the minimality ofs, Js−1 is non-branching and from Remark 5.4Js−1

f -covers two different branching intervals. Again by the minimality ofs we get thatr ≤ k

in contradiction with the assumptions.
Subcase 2.2.Suppose thatJ0 is a branching interval. From Subcase 2.1 we can assume

that each non-branching interval does notf -cover itself. Therefore there exists a non-
branching intervalJs in the same circle asJ0 such thatJs f -covers two different branching
intervals, one of each circle of∞ andJs 9 J0. Thus Card(Ks∩P) ≥ s+2 in contradiction
with the assumptions. So the result is proved. 2

6. The graph of an∝map

If we identify the points 1 and 2 of the segment[0, 3], then we obtain a space
homeomorphic to∝. The segments[0, 1] and[2, 3] represents the two whiskers of∝ and
the segment[1, 2] with the points 1 and 2 identified to the branching point0 representsO.
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FIGURE 6.1. The graph of an∝mapf .

We represent the cartesian product∝ × ∝ as the square[0, 3] × [0, 3] identifying the
points(1, y) and(2, y) for all y ∈ [0, 3], and the points(x, 1) and(x, 2) for all x ∈ [0, 3].
Thus the graph of an∝ mapf is the subset{(x, f (x)) : x ∈ ∝} of ∝ × ∝, and it can be
represented as in Figure 6.1. Roughly speaking, we think in the graph of an∝ map like
the graph of an interval mapg from [0, 3] into itself with the above identifications. This
allows us to talk about local or absolute maximum or minimum for an∝ map in the same
way as for interval maps. Thus, for instance in the pointsp andq the∝mapf represented
in Figure 6.1 has a local minimum and maximum with valuesm andM respectively.

Let f be aP ′-linear∝ map such that each basic interval associated toP ′ does not
f -cover itself. Therefore the graph off does not touch the diagonal except at the branching
point. LetV = [a, b] be a closed interval contained in whiskers(A), whiskers(B) orO such
thatg(a) = g(b) ∈ {1, 2}, g(c) 6= g(a) for all c ∈ (a, b) andg(V ) is strictly contained in
O. Then we say thatV is anupper(respectivelylower) subintervalaccording to whether
it contains more local minima (respectively maxima) than local maxima (respectively
minima) ofg. Sincef is P ′-linear these upper and lower subintervals are well-defined.
Thus, for instance, the subinterval[1, r] is an upper subinterval of the mapf of Figure 6.1.

7. The unfolding of∝
In this sectionf will be a P ′-linear∝ map such that each basic interval associated toP ′
does notf -cover itself. Letk be the period ofP . Let K = [a, b] be a closed subinterval
of ∝ such thatf (a) = f (b) = 0, andf (c) 6= 0 for all c ∈ (a, b), then we say thatK
f -coversO, or K → O (or O← K). We say that such aK is acrossing subinterval.

In this section we also assume that∝ has no crossing subintervals. Then following
ideas of [14] and [15] we define theunfolding of ∝ as follows. Define the graph
∝∗ = G1 ∪G2 ∪G3 where:

G1 = {(x, y, z) ∈ R3 : z = 0, y = 0,−1 ≤ x ≤ 1};
G2 = {(x, y, z) ∈ R3 : z = 0, x2+ (y + 1)2 = 1};
G3 = {(x, y, z) ∈ R3 : y = z, x2+ (y + 1)2 = 1}.

(See Figure 7.1.)
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FIGURE 7.1. The unfolding of∝.

ClearlyG1 ∪G2 is homeomorphic to∝, so we identify∝ with G1 ∪G2. Consider the
projectionπ : ∝∗ −→ ∝ defined byπ(x, y, z) = (x, y, 0). We denote byp∗ the unique
point ofG3 such thatπ(p∗) = p.

Sincef is P ′-linear, f has finitely many local extrema; and consequently finitely
many upper and lower subintervals. Moreover from the fact that there are no crossing
subintervals of∝, it follows that there exists a finite ‘partition’ of∝ into upper and lower
subintervals. Now for the given∝ mapf we definef ∗ : ∝ −→ ∝∗ as follows. Ifp ∈ ∝
thenf ∗(p) is eitherf (p)∗ if f (p) ∈ O andp belongs to an upper subinterval; orf (p)

otherwise. Clearlyf ∗ is well-defined. We remark thatf = π ◦ f ∗ : ∝ −→ ∝. Define
F = f ∗ ◦ π : ∝∗ −→ ∝∗. In the rest of this section we shall study the relationship
between the periods off andF .

LEMMA 7.1. Assume that there are no crossing subintervals. Ifq ∈ ∝∗ is a periodic point
of F of periodn, thenp = π(q) is a fixed point off n.

Proof. Sinceq = Fn(q) = (f ∗ ◦ π)n(q) = f ∗ ◦ (π ◦ f ∗)n−1 ◦ π(q) = f ∗(f n−1(p)), we
get thatp = π(q) = f n(p). 2

LEMMA 7.2. Assume that there are no crossing subintervals. Then the following
statements hold:
(a) if p = π(q) is ann-point forf , thenp = π(Fn(q));
(b) if p ∈ G1 is ann-point forf , thenp is a fixed point ofFn.

Proof. Statement (a) follows from the equalities

p = π(q) = f n(π(q)) = (π ◦ f ∗)n(π(q)) = π ◦ (f ∗ ◦ π)n(q) = (π ◦ Fn)(q).

If p is a periodic point off of periodn, we have that

p = f n(p) = f n(π(p)) = (π ◦ f ∗)n(π(p)) = π ◦ (f ∗ ◦ π)n(p) = (π ◦ Fn)(p).

Sincep ∈ G1, we get thatFn(p) = p, and statement (b) is proved. 2
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PROPOSITION7.3. Suppose that there are no crossing subintervals. Then the following
statements hold:
(a) if q is ann-point forF , thenp = π(q) is ann-point forf ;
(b) if p is ann-point forf andp ∈ G1, thenp is ann-point forF .

Proof. We prove (a). Letq be ann-point for F . By Lemma 7.1,p = π(q) is a fixed
point of f n. Therefore, there is a divisors of n such thatp is ans-point forf . If s = n,
then we are done. So, assume thats < n. By Lemma 7.2(a),p = π(F s(q)). Since
s < n, F s(q) = p′ with p′ 6= q, and of coursep′ belongs to theF -periodic orbit ofq.
Thenq = Fn(q) = (f ∗ ◦ π)n(q) = (f ∗ ◦ π)n−1 ◦ f ∗(π(q)) = (f ∗ ◦ π)n−1 ◦ f ∗(p) =
(f ∗◦π)n−1◦f ∗(π(F s(q))) = (f ∗◦π)n(F s(q)) = Fn(p′) = p′, which is a contradiction.
Hences = n and (a) is proved.

Now we show (b). Letp be ann-point for f and p ∈ G1. By Lemma 7.2(b),
p = Fn(p). Again, there is a divisors of n such thatp is ans-point for F . If s = n,
then we are done. So, assume thats < n. ThenFs(p) = p. By Lemma 7.1, sincep ∈ G1

we get thatp = f s(p), a contradiction. Then the lemma follows. 2

PROPOSITION7.4. Assume that there are no crossing subintervals. If{5, 7} ⊂ Per(f )

thenN \ {2, 3, 4, 6, 10, 11} ⊂ Per(f ).

Proof. SinceP has elements on each component of∝ \ {0}, by Proposition 7.3(b) we
have thatk ∈ Per(F ). Again, from the facts thatP has elements on each component of
∝ \ {0} and there are no crossing subintervals, we get thatF(∝∗) is homeomorphic to
Y or X. So, from theY theorem and then-od theorem we obtain that ifk = 5, then
N \ {2, 3, 4, 6, 7, 10, 11, 15} ⊂ Per(F ) and if k = 7, then 15∈ Per(F ). Now from
Proposition 7.3(a) the result follows. 2

8. The full periodicity kernel of∝
The goal of this section is to prove Theorem 1.6. SinceX is homeomorphic to{(x, y) ∈ ∝ :
y ≥ −1}, in this section we shall considerX = {(x, y) ∈ ∝ : y ≥ −1}. Letf be anX map,
we shall extendf to an∝mapf as follows. We definef (z) = f (z) if z ∈ X andf |Cl(∝\X)

is any homeomorphism between Cl(∝ \ X) and the unique closed interval inX having
f (1,−1) andf (−1,−1) as endpoints such thatf (1,−1) = f (1,−1) andf (−1,−1) =
f (−1,−1). Of course Per(f ) = Per(f ). By Theorem 1.3,{2, 3, 4, 5, 6, 7, 10, 11} is a
subset of the full periodicity kernel of∝. Then, to prove Theorem 1.6 it is sufficient to
show the following proposition.

PROPOSITION8.1. Let f be an∝ map. If {5, 7} ⊂ Per(f ) thenN \ {2, 3, 4, 6, 10, 11}
⊂ Per(f ).

In the rest of this section we fix the∝ map f having a periodic orbitP of period
k ∈ {5, 7} and the set of the basic intervals associated toP ′. This fixed∝ map will be
called thestandard∝map.

LEMMA 8.2. Letf be the standard∝map. If the periodic orbitP has no points into each
connected component of∝ \ {0} then Proposition 8.1 holds.
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Proof. Let E′ ⊂ ∝ be a union of connected components of∝ \ {0}. Suppose thatP ⊂ E′.
Then we define the mapg : E′ −→ E′ as follows. Forz ∈ E′, g(z) = f (z) if f (z) ∈ E′;
and g(z) = 0 if f (z) ∈ E \ E′. Notice thatg is either anI , σ or O map. Clearly
Per(g) ⊂ Per(f ). Hence, from the Interval theorem, theσ theorem and the Circle theorem
the result follows. 2

Remark 8.3.From Lemma 8.2 we can assume that the periodic orbitP has points into each
connected component of∝ \ {0}. Furthermore, by Corollary 5.3 in what follows we can
suppose that the standard mapf will be P ′-linear.

LEMMA 8.4. Letf be the standard∝ map. Suppose that there is a basic intervalJ such
that there are no basic intervalsf -coveringJ different from itself. Then Proposition 8.1
holds.

Proof. We claim that each basic intervalL contained in the whiskers of∝ is f -covered
by some basic interval different from itself. To see this, without loss of generality we can
assume thatL ⊂ whiskers(A). Let p be the endpoint of whiskers(A), p 6= 0. Sincef is
P ′-linear, we have thatp ∈ P . Moreover, from the fact that0 is a fixed point,f isP ′-linear
andf (E) is connected, it follows that each basic interval contained in the whiskers of∝
is covered by some basic interval. Suppose thatL → L, otherwise we are done. Since
[p, 0] = whiskers(A) ⊂ ∝, we can consider a total ordering< on whiskers(A) such that
0 is the largest element andp the smallest one. SetL = [pj , pk], with p ≤ pj < pk ≤ 0.
Now, sincef is P ′-linear we can consider two cases.

Case 1: p ≤ f (pj ) < pj < pk andf (pk) /∈ [p,pk). If there are no basic intervals
K 6= L such thatK → L, thenf (P ∩ [p,pj ]) ⊂ P ∩ [p,pj ] with P ∩ [p,pj ] 6= ∅. This
is a contradiction becauseP is a periodic orbit not contained into whiskers(A).

Case 2: p ≤ f (pk) ≤ pj < pk and f (pj ) /∈ [p,pk). Thenpk < 0, and clearly
f ([pk, 0]) ⊃ [f (pk), f (0)] ⊃ [f (pk), 0] ⊃ [pj , 0] ⊃ L. Therefore, there is a basic
intervalJ1 ⊂ [pk, 0] whichf -coversL andJ1 6= L. Therefore, the claim is proved and so
J ⊂ O.

Consider the following mapg = f |∝\Int(J ) : ∝ \ Int(J ) −→ ∝ \ Int(J ). Clearlyg is
well-defined becausef is P ′-linear. Moreoverg is either aY map or anX map such that
Per(g) = Per(f ). Hence, from theY theorem and then-od theorem, Proposition 8.1 holds
and so the lemma follows. 2

Remark 8.5.From Lemma 8.4 we can assume that each basic interval isf -covered by
some different basic interval.

Remark 8.6.Proposition 5.5 shows that if there exists some basic interval whichf -covers
itself, then Proposition 8.1 holds. So, from now on we suppose that each basic interval
does notf -cover itself.

Remark 8.7.If there are no closed subintervals of∝ f -coveringO, from Proposition 7.4,
Proposition 8.1 holds. So, from now on, we can assume that there is a crossing subinterval
K1 ⊂ ∝ such thatK1→ O.
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Remark 8.8.In a similar way as in Lemma 4.1, ifK andL are closed subintervals of∝
such thatL ⊂ O, K → O and0 ∈ Cl(O \ L), thenK → L.

LEMMA 8.9. Let f be an∝ map having ak-orbit P . Suppose thatf is P ′-linear. If J0

is a subinterval of∝ with endpoints which are elements ofP ′ and are contained in one of
the whiskers of∝, then there is a loop of lengthk in thef -graph containingJ0 formed by
intervals of∝.

Proof. Let J0 = [x, y] with x, y ∈ P ′ and[x, y] contained in one of the whiskers of∝.
For eachi, 0 < i ≤ k, we defineJi recursively as the interval with endpointsf i(x) and
f i(y) and such thatJi−1 → Ji . ThenJk = J0 becauseJ0 is contained in a whiskers.
Define the intervalsKi for 0≤ i ≤ k by backward induction oni as follows. LetKk = Jk,
and if Ki+1 has been defined and is a subset ofJi+1, then letKi be a subset ofJi such
thatKi → Ki+1. Then we have the loopJ0 ⊃ K0 → K1 → · · · → Kk = J0 of length
k. Note that in general, the intervalsJi are not basic and the loop can be repetitive or
non-repetitive. 2

Since the periodic orbitP has points into each connected component of∝, there
are exactly four branching intervals denoted byA,B,C and D. We shall assume that
A ⊂ whiskers(A), B ⊂ whiskers(B) and{C,D} ⊂ O. Moreover, sincef is P ′-linear and
each basic interval does notf -cover itself, it follows that0 is the unique fixed point off
and from Remark 5.4 each basic interval of{A,B,C,D} f -covers a unique basic interval
of {A,B,C,D} different from itself.

Proof of Proposition 8.1.Takek = 5. Let f be the standard∝ map. Since there is a
crossing subintervalK1 (see Remark 8.7) and there are no fixed points different from0,
we get thatK1 ⊂ whiskers(A) or K1 ⊂ whiskers(B). Without loss of generality we
can assume thatK1 ⊂ whiskers(A) and thatK1 has endpoints which are elements ofP ′.
Denote bypa andpb the endpoints of whiskers(A) and whiskers(B) respectively different
from 0. If f k−1(pa) ∈ whiskers(A), then the interval[pa, f

k−1(pa)] ⊂ whiskers(A) has
a fixed point, in contradiction with the assumptions. So we can suppose thatf k−1(pa) /∈
whiskers(A) and in the same wayf k−1(pb) /∈ whiskers(B). Therefore we consider two
cases.

Case 1:f k−1(pa) ∈ O. Since0 is a fixed point andf k−1(pa) ∈ O, we have that there are
two closed subintervalsK2,K3 ⊂ O f -covering whiskers(A), such that0 ∈ Cl(O \ K2)

and0 ∈ Cl(O \K3). From Lemma 4.1 and Remark 8.8 we get thatK2� K1� K3.
First suppose that at least one of these threeKi does not contain0. Then from the

subgraphK2 � K1 � K3 we can construct a non-repetitive loopJ0 = K1 → J1 →
· · · → Jn = K1 of lengthn for eachn even containing the intervalKi such that0 /∈ Ki .
By Lemma 4.3 there existsx ∈ K1 such thatf n(x) = x andf i(x) ∈ Ji for 1≤ i ≤ n−1.
Since0 does not belong to some interval of{K1,K2,K3} and the loop is non-repetitive,
x has periodn. So{2n : n ∈ N} ⊂ Per(f ). On the other hand, by Lemma 8.9 there is a
loop of lengthk containingK1 and formed by closed subintervals of∝. This loop together
with the loopsK2 � K1 � K3 give us a non-repetitive loop of lengthn for eachn > k

odd (k = 5). This loop can be chosen in such a way that at least one of its intervals does

https://doi.org/10.1017/S0143385799120984 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385799120984


116 M. C. Leseduarte and J. Llibre

FIGURE 8.1. The graph off whenC � A← D andB → A.

not contain0. Then{n ≥ k : n odd} ⊂ Per(f ). Hence we get thatS(k) ⊂ Per(f ) and the
result follows.

Finally, suppose that0 ∈ K1 ∩ K2 ∩ K3. Therefore we have one of the following
subgraphs:C � A ← D or C → A � D. Furthermore we can assume that
f (O) ⊂ whiskers(A); otherwise we can find a subintervalKi of O such that0 /∈ Ki .
By symmetry we can assume that the graph off containsC � A← D. Since each basic
interval of{A,B,C,D} f -covers a unique interval of{A,B,C,D} we only need consider
two subcases.

Subcase 1.1:C � A ← D and B → A. Suppose that there are no basic
intervals different fromB,C and D f -coveringA. So, byP ′-linearity we have that
f (O ∪ whiskers(B)) ⊂ whiskers(A) and f (whiskers(A)) ⊂ O ∪ whiskers(B) (see
Figure 8.1). Consequentlyk must be even, in contradiction withk = 5. Hence, we can
assume that there is a basic intervalJ /∈ {A,B,C,D} such thatJ → A. SoJ → A ∪M

for someM ∈ {B,C,D}. We claim that there exists a pathγ of lengthl ≤ k − 1 starting
at one of the intervalsA or C and ending atJ such that at least one of the intervals ofγ

does not contain0. Now we prove the claim. Denote byS the set of the basic intervals
associated toP ′. Since each basic interval isf -covered by some basic interval we get that
f (∝) = ∝. SetKi = f i(A ∪ C) for i ≥ 0. Notice thatKi is a connected set for alli
and Card(K1 ∩ P) ≥ 3. SinceP is a periodic orbit andf (∝) = ∝, it follows that there
exists an integerr such thatK0 ( K1 ( · · · ( Kr = ∝ and Card(Ki ∩ P) ≥ i + 2 for
i < r. From the fact thatP has periodk we get thatr + 1 ≤ Card(Kr−1 ∩ P) ≤ k, and
sor ≤ k − 1. From the assumptions, for each basic intervalJi ∈ S, Ji ⊂ Ki \Ki−1 there
is Ji−1 ∈ S, Ji−1 ⊂ Ki−1 \ Ki−2 such thatJi−1→ Ji . Hence, givenJ ∈ S, J /∈ {A,C}
there exists a pathγ of lengthl ≤ r ≤ k − 1 starting at one of the intervalsA or C and
ending atJ . Moreover, sinceA ∩ C = {0}, A � C andf is P ′-linear, we obtain that the
basic intervals ofK1 \ (A ∪ C) do not contain0. Then the claim is proved. The pathγ
together with the pathsJ → A, J → M → A andC � A give us a loop of lengthn for
eachn ≥ k + 1. By construction this loop is non-repetitive and at least one of its intervals
does not contain0. Therefore, by Proposition 4.4{n ∈ N : n ≥ k} \ {2k} ⊂ Per(f ). So the
result follows.
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FIGURE 8.2. The graph off when0 ∈ K1 ∩K2 ∩K3 ∩K4.

Subcase 1.2:C � A← D ← B or B → C � A← D. From the facts that0 is the
unique fixed point off andf (O) ⊂ whiskers(A), we get thatf k−1(pb) ∈ whiskers(A).
Then, sinceK1 ⊂ whiskers(A) andK1→ O it follows that there is a basic intervalJ such
that eitherD ← J → A, or D ← J → B, or C ← J → A, or C ← J → B (see
Figure 8.1). In a similar way as in Subcase 1.1 we obtain a non-repetitive loop of lengthn

for eachn ≥ k + 2 in the hypotheses of Proposition 4.4. Then the result holds.

Case 2: f k−1(pa) ∈ whiskers(B). Set na = Card(whiskers(A) ∩ P), nb =
Card(whiskers(B) ∩ P) and no = Card(O ∩ P). Sincef (0) = 0 and f k−1(pa) ∈
whiskers(B), we have that whiskers(B)→ whiskers(A). By Lemma 4.1 there is a closed
subintervalK2 ⊂ whiskers(B) such thatK2 → K1. Sincef k−1(pb) /∈ whiskers(B), we
consider two subcases.

Subcase 2.1:f k−1(pb) ∈ O. Sincef (0) = 0, there are two closed subintervals
K3,K4 ⊂ O f -covering whiskers(B). From Lemma 4.1 we getK3 → K2 ← K4.
By Lemma 8.9 there exists a loop of lengthk containingK1.

First assume that at least one of the intervals{K1,K2,K3,K4} does not contain0.
Therefore the loop of lengthk = 5 together with the loopsK1 → K3 → K2 → K1 and
K1 → K4 → K2 → K1 give us a non-repetitive loop of lengthn for n ∈ N \ {2, 4, 10}.
By Lemma 4.3, there isx ∈ K1 such thatf n(x) = x. Since0 does not belong to someKi

and the loop is non-repetitive we obtain thatx has periodn. Thus the result follows.
Finally assume that0 ∈ K1 ∩ K2 ∩ K3 ∩ K4, there are no closed subintervalsKi

of O such thatf (Ki) = whiskers(B) and0 /∈ Ki , and there are no closed subintervals
Kj of whiskers(B) such thatf (Kj ) = whiskers(A) and 0 /∈ Kj . Then we have that
f (O) ⊂ whiskers(B), f (whiskers(B)) ⊂ whiskers(A) and thef -graph contains the paths
C → B ← D, B → A and eitherA→ C or A→ D (see Figure 8.2). By symmetry we
can suppose thatB → A→ C → B ← D. Since whiskers(A)→ O andf is P ′-linear,
we get thatna ≥ 2. On the other hand, sinceC andD f -coverB, if no ≥ 2 thennb ≥ 2.
Therefore fork = 5 there are two possibilities:na = 2, nb = 2 andno = 1; or na = 3,
nb = 1 andno = 1. Set{ai : i = 1, 2, . . . , 5} the 5-orbitP . The basic intervals associated
to P ′ areA,B,C,D,E andF .
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FIGURE 8.3. The graph off whenna = 2, nb = 2, no = 1.

FIGURE 8.4. The graph off whenna = 3, nb = 1, no = 1.

Possibility (i): na = 2,nb = 2 andno = 1. Then we takeA = [a2, 0], B = [0, a4], C =
[0, a3], D = [a3, 0], E = [a1, a2] andF = [a4, a5] (see Figure 8.3). Sincef k−1(pb) ∈ O,
we have thatf (a3) = a5. Moreoverf (a2) = a3 because whiskers(A) → O. Since
f (whiskers(B)) ⊂ whiskers(A), f ({a4, a5}) = {a1, a2}. SinceP has period 5, it follows
thatf (a5) = a1, f (a4) = a2 andf (a1) = a4. So we obtain the loopsE→ D→ F → E,
E → B → A → C → F → E, andE → D → B → A → C → F → E of lengths
3, 5 and 6 respectively (see again Figure 8.3). Then Per(f ) ⊃ N \ {2, 4, 10} and the result
follows.

Possibility (ii): na = 3, nb = 1 andno = 1. We takeA = [a3, 0], B = [0, a5],
C = [0, a4], D = [a4, 0], E = [a1, a2] and F = [a2, a3] (see Figure 8.4). Since
f k−1(pb) ∈ O we have thatf (a4) = a5. Moreoverf (a3) = a4 becauseK1 → O and
f is P ′-linear. Sincef k−1(pa) ∈ whiskers(B), f (a5) = a1. By periodicityf (a1) = a2

andf (a2) = a3. Clearly we obtain the loopsB → A → C → B, B → F → D → B,
B → E → F → D → B andB → F → A → C → B of lengths 3, 3, 4 and 4
respectively. Consequently Per(f ) ⊃ N \ {2, 10} and the result follows.
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FIGURE 8.5. The graph off whenna = 2, nb = 2 andno = 1.

Subcase 2.2:f k−1(pb) ∈ whiskers(A). Sincef (0) = 0 we have that whiskers(A)→
whiskers(B). Thus there existK3 ⊂ whiskers(A) and K4 ⊂ whiskers(B) such that
K3� K4. Furthermore, since whiskers(A)→ O we can suppose thatK3 does not contain
0. Moreover we can takeK3 such that its endpoints are elements ofP . By Lemma 8.9 there
is a loop of lengthk = 5 containingK3. This loop together with the loopK3� K4 give us
a non-repetitive loop of lengthn for eachn = 5i + 2j with i ≥ 1, j ≥ 1. By Lemma 4.3
there isx ∈ K3 such thatf n(x) = x. Since the loop is non-repetitive and0 /∈ K3, x has
periodn. Hence Per(f ) ⊃ {n ∈ N : n ≥ 9} \ {10}. Now we need to show that 8∈ Per(f ).

First, suppose thatf (pa) /∈ whiskers(B) or f (pb) /∈ whiskers(A). Therefore from the
facts thatf k−1(pb) ∈ whiskers(A) andf k−1(pa) ∈ whiskers(B) it follows that there are
two closed subintervals of whiskers(B) f -covering whiskers(A) or two closed subintervals
of whiskers(A) f -covering whiskers(B). Furthermore, since whiskers(A)� whiskers(B)

we have that there are three closed subintervalsK ′3 ∈ whiskers(A), K ′4 ∈ whiskers(B)

andK5 ∈ whiskers(A) or K5 ∈ whiskers(B) such that0 /∈ K5 ∩ K ′3 ∩ K ′4 and either
K ′3 � K ′4 � K5 or K5 � K ′3 � K ′4. Hence, we obtain a non-repetitive loop of length 8
such that at least one of its intervals does not contain0. In a similar way as above we get
that 8∈ Per(f ).

Finally, suppose thatf (pa) ∈ whiskers(B) and f (pb) ∈ whiskers(A). Since
whiskers(A)→ O, whiskers(A)→ whiskers(B) andf is P ′-linear we have thatna ≥ 2.
Since{f (pa), f

k−1(pa)} ⊂ whiskers(B) andk 6= 2 we havenb ≥ 2. Furthermore,no ≥ 1
becauseP ∩O 6= ∅. Then fork = 5 the only possibility isna = 2,nb = 2 andno = 1. Set
ai for i = 1, 2, . . . , 5 the 5-orbitP . The basic intervals associated toP ′ areA,B,C,D,E

andF . TakeA = [a2, 0], B = [0, a4], C = [0, a3], D = [a3, 0], E = [a1, a2] and
F = [a4, a5] (see Figure 8.5). From the facts that whiskers(A) → O andf is P ′-linear,
we get thatf (a2) = a3. Sincef k−1(pb) ∈ whiskers(A), we have thatf (a1) = a5. Notice
that f (a5) 6= a1 becausek 6= 2. Moreoverf (pb) ∈ whiskers(A) and sof (a5) = a2.
Sincef k−1(pa) ∈ whiskers(B), f (a4) = a1 and thenf (a3) = a4. Therefore we obtain
the non-repetitive loopE → B → E → B → E → B → E → F → E of length 8
in the hypotheses of Proposition 4.4 (see Figure 8.5). Consequently 8∈ Per(f ) and the
proposition is proved. 2
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FIGURE 9.1. The graph of an∞mapf .

9. The graph of an∞ map
If we identify the points 0, 1 and 2 of the segment[0, 2], then we obtain a space
homeomorphic to∞. The segments[0, 1] and[1, 2] with the endpoints identified to the
branching point represent the two circles of∞.

We represent the cartesian product∞×∞ as the square[0, 2] × [0, 2] identifying the
points(0, y), (1, y) and(2, y) for all y ∈ [0, 2], and the points(x, 0), (x, 1) and(x, 2)

for all x ∈ [0, 2]. Thus, the graph of an∞ mapf is the subset{(x, f (x)) : x ∈ ∞}
of∞×∞, and it can be represented as in Figure 9.1. Roughly speaking, we think in the
graph of an∞map like the graph of an interval mapg from [0, 2] into itself with the above
identifications. This allows us to talk about local or absolute maximum or minimum for an
∞ map in the same way as for interval maps. Thus, for instance in the pointsp andq the
∞mapf represented in Figure 9.1 has a local minimum and maximum with valuesm and
M respectively.

Let f be aP ′-linear∞ map such that each basic interval associated toP ′ does not
f -cover itself. Therefore, the graph off does not touch the diagonal except at the
branching point. LetV = [a, b] be a closed interval contained inO or in circle(B)

such thatg(a) = g(b) ∈ {0, 1, 2}, g(c) 6= g(a) for all c ∈ (a, b) andg(V ) is strictly
contained inO or in circle(B). Then we say thatV is an upper (respectivelylower)
subintervalaccording to whether it contains more local minima (respectively maxima)
than local maxima (respectively minima) ofg.

10. The unfolding of∞
In this sectionf will be a P ′-linear ∞ map such that each basic interval associated
to P ′ does notf -cover itself, andk will be the period ofP . Let K = [a, b] be a
closed subinterval of∞ such thatf ([a, b]) = O, (respectivelyf ([a, b]) = circle(B)),
f (a) = f (b) = 0, andf (c) 6= 0 for all c ∈ (a, b), then we say thatK f -coversO
(respectively circle(B)), or K → O (or O ← K). Moreover,K will be called anO-
crossing(respectively circle(B)-crossing) subinterval.

From now on in this section, we also assume that there are noO-crossing subintervals.
Again following ideas of [14] and [15] we define theunfoldingof∞ as follows. Define
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FIGURE 10.1. The unfolding of∞.

the graph∞∗ = G1 ∪G2 ∪G3 where:

G1 = {(x, y, z) ∈ R3 : z = 0, x2+ (y − 1)2 = 1};
G2 = {(x, y, z) ∈ R3 : z = 0, x2+ (y + 1)2 = 1};
G3 = {(x, y, z) ∈ R3 : y = z, x2+ (y + 1)2 = 1}.

(See Figure 10.1.)
ClearlyG1∪G2 is homeomorphic to∞, so we identify∞ with G1∪G2. Consider the

projectionπ :∞∗ −→∞ defined byπ(x, y, z) = (x, y, 0). We denote byp∗ the unique
point ofG3 such thatπ(p∗) = p.

Sincef is P ′-linear, f has finitely many local extrema; and consequently finitely
many upper and lower subintervals. Moreover, from the fact that there are noO-crossing
subintervals, it follows that there exists a finite ‘partition’ of∞ into upper and lower
subintervals. Now for the given∞ mapf we definef ∗ : ∞ −→ ∞∗ as follows. If
p ∈∞ thenf ∗(p) is eitherf (p)∗ if f (p) ∈ O andp belongs to an upper subinterval; or
f (p) otherwise. Clearlyf ∗ is well-defined. Sincef has noO-crossing subintervals and
P has elements on each component of∞ \ {0}, f ∗(∞) is homeomorphic toσ or∝. We
remark thatf = π ◦ f ∗ :∞ −→∞. DefineF = f ∗ ◦ π :∞∗ −→∞∗.
PROPOSITION10.1. Suppose that there are noO-crossing subintervals. Then the
following statements hold:

(a) if q is ann-point forF , thenp = π(q) is ann-point forf ;
(b) if p is ann-point forf andp ∈ G1, thenp is ann-point forF .

Proof. The proof follows as Proposition 7.3. 2

PROPOSITION10.2. Suppose that there are noO-crossing subintervals. If{5, 7} ⊂
Per(f ) thenN \ {2, 3, 4, 6, 8, 10, 11} ⊂ Per(f ).
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Proof. By Proposition 10.1 we have thatk ∈ Per(F ). SinceP has elements into each
circle of∞ and there are noO-crossing intervals, we get thatF(∞∗) is homeomorphic to
σ or∝. So, from theσ theorem and Proposition 8.1 the result follows. 2

11. The full periodicity kernel of∞
The goal in this section is to prove Theorem 1.7. Since∝ is homeomorphic to{(x, y) ∈
∞ : y ≤ 1}, in this section we shall consider∝ = {(x, y) ∈∞ : y ≤ 1} ⊂∞. Letf be an
∝map, we shall extendf to a∞ mapf as follows. We definef (z) = f (z) if z ∈ ∝ and
f |Cl(∞\∝) is any homeomorphism between Cl(∞ \∝) and the unique interval in∝ having
f (1, 1) andf (−1, 1) as endpoints such thatf (1, 1) = f (1, 1) andf (−1, 1) = f (−1, 1).
Of course Per(f ) = Per(f ). By Theorem 1.6,{2, 3, 4, 5, 6, 7, 10, 11} is a subset of the full
periodicity kernel of∞. Then, to prove Theorem 1.7 it is sufficient to show the following
two propositions.

PROPOSITION11.1. Let f be an∞ map. If{5, 7} ∈ Per(f ) thenN \ {2, 3, 4, 6, 8, 10,
11} ⊂ Per(f ).

PROPOSITION11.2. There exists an∞mapg such thatPer(g) = N \ {8}.
In the rest of this section we fix the∞ map f having a periodic orbitP of period

k ∈ {5, 7} and the setS of basic intervals associated toP ′. This fixed∞ map will be
called thestandard∞map.

LEMMA 11.3. Let f be the standard∞ map. If P ⊂ O or P ⊂ circle(B), then
Proposition 11.1 holds.

Proof. Without loss of generality we can assume thatP ⊂ O. Then we define theO map
g : O −→ O as follows. Forz ∈ O, g(z) = f (z) if f (z) ∈ O; andg(z) = 0 if f (z) /∈ O.
Clearly Per(g) ⊂ Per(f ). Hence, from the Circle theorem the result holds. 2

Remark 11.4.From Lemma 11.3 we can assume thatP has points into each circle of∞.
Furthermore, by Corollary 5.3 we can suppose that the standard∞mapf is P ′-linear.

LEMMA 11.5. Letf the standard∞map. Suppose that there isJ ∈ S such that there are
no basic intervals ofS \ {J } f -coveringJ . Then Proposition 11.1 holds.

Proof. Consider the mapg = f |∞\Int(J ) :∞\Int(J )→∞\Int(J ). From the assumptions
it follows that g is well-defined. Clearlyg is either aσ map or an∝ map such that
Per(g) = Per(f ). Hence, from theσ theorem and Proposition 8.1 the result follows.2

Remark 11.6.From Lemma 11.5 we can assume that eachJ ∈ S is f -covered by some
basic interval ofS \ {J }.
LEMMA 11.7. Let f be the standard∞ map. LetJ andK be basic intervals such that
J f m-coversK, for somem ≥ 1. EventuallyJ = K. Then there is a path of lengthm
starting atJ and ending atK.

Proof. If m = 1 it is trivial. So suppose thatm > 1. For 1 < i ≤ m, givenJi ∈ S,
Ji ⊂ f i(J ), sincef is P ′-linear, we can selectJi−1 ∈ S such thatJi−1 ⊂ f i−1(J ) and
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Ji−1 → Ji . Then, by induction assumption, the pathJ0 = J → J1 → · · · → Jm−1 →
Jm = K proves the lemma. 2

LEMMA 11.8. Let f be the standard∞ map. LetJ,K ∈ S. Then at least one of the
following statements holds:
(a) N \ {2, 3, 4, 6, 8, 10, 11} ⊂ Per(f );
(b) there is a path of lengthm for some1 ≤ m ≤ k + 1 starting atJ and ending atK.

Proof. From Remark 11.6 each basic interval isf -covered by some basic interval different
from itself. Then we get thatf (∞) = ∞. SetKi = f i(J ) for i ≥ 0. Moreover, sinceP
is a periodic orbit, there is an integerr ≥ 1 such that∪r

i=0Ki = ∪r+1
i=0Ki = E′ 6= ∪r−1

i=0Ki .
Notice thatE \E′ is either∅, or formed by exactly two basic intervalsJ1 andJ2 such that
J1 ⊂ O, J2 ⊂ circle(B) andJ1 � J2. Therefore, eitherE′ = ∞ or E′ is homeomorphic
to some space of{I , Y, X}. Since Card(S) = k + 2, we get thatr ≤ k + 1. Notice that
P ⊂ E′.

First, suppose thatE′ is homeomorphic toI , Y or X. Then we define theE′ map
g = f |E′ : E′ −→ E′. Since∪r

i=0Ki = ∪r+1
i=0Ki = E′, g is well-defined. Of courseP is

a periodic orbit of periodk for g. Then from theI theorem,Y theorem andn-od theorem,
statement (a) holds.

Finally, suppose thatE′ = ∞. Therefore,J f m-coversK, for some 1≤ m ≤ k + 1.
Thus by Lemma 11.7 there is a path of lengthm starting atJ and ending atK. 2

Proof of Proposition 11.1.From Proposition 5.5 withk ∈ {5, 7}, if there exists some
basic interval whichf -covers itself, then Proposition 11.1 holds. So from now on we can
suppose thatJ 9 J for anyJ ∈ S.

If there are no O-crossing subintervals of∞, then from Proposition 10.2,
Proposition 11.1 holds. By using similar arguments, if there are no circle(B)-crossing
subintervals, then Proposition 11.1 follows. So from now on we can assume that there are
two crossing subintervalsK1,K2 ⊂ ∞ such thatK1 → O andK2 → circle(B). Since
f is P ′-linear andJ 9 J for anyJ ∈ S, we get that0 is the unique fixed point off .
ThereforeK1 ⊂ circle(B) andK2 ⊂ O. Moreover, from the fact thatK1 � K2, there is
x ∈ K1 such thatf (x) ∈ K2 andf 2(x) = x. Let L ⊂ K2 andM ⊂ K1 be the basic
intervals containingf (x) andx respectively. By the linearity off we get thatL� M.

First we suppose thatL orM f k-covers itself. Without loss of generality we can assume
thatL f k-coversL. Then, by Lemma 11.7 there exists a loop of lengthk containingL.
Therefore the above loop of lengthk together with the loopL � M give us a loop of
lengthn for eachn > k odd and eachn ≥ 2k + 2 even. Notice that the loop of lengthn
is non-repetitive becausek is not multiple of 2. We claim that we can construct the above
loop of lengthn in such a way that at least one of its basic intervals does not contain0.
Now we prove the claim. If0 /∈ L or 0 /∈ M, then we are done. So suppose that0 ∈ L∩M.
Sincek is not multiple of 2, the loop of lengthn is not a repetition ofL� M. Furthermore,
since0 ∈ L ∩M it follows that the only branching intervalsf -covered byL andM areL

andM (see Remark 5.4). Hence the loop of lengthn contains someJ ∈ S with 0 /∈ J and
the claim is proved. By Proposition 4.4 we get thatN \ {2, 3, 4, 6, 8, 10} ⊂ Per(f ) and
Proposition 11.1 holds.
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Now we can assume thatL andM do notf k-cover themselves. Thus, sinceP has
periodk, we get thatL f k-coversJ for eachJ ∈ S with J ⊂ O andM f k-coversJ for
eachJ ∈ S with J ⊂ circle(B).

Without loss of generality we have three possibilities for the basic intervalsL andM:
either0 ∈ L ∩M; or 0 ∈ L and0 /∈ M; or 0 /∈ L ∪M. If 0 ∈ L ∩M, then without loss
of generality we can assume that there is a basic intervalM1 ⊂ circle(B) \ Int(M) such
thatL → M1. Moreover, sincef is P ′-linear,0 /∈ M1. If 0 ∈ L and0 /∈ M, then since
f (0) = 0 andL→ M, we have that there is a basic intervalM1 ⊂ circle(B)\ Int(M) such
thatL→ M1. Finally, sincek > 4, if 0 /∈ L ∪M, then again we can suppose that there is
a basic intervalM1 ⊂ circle(B) \ Int(M) such thatL→ M1.

In short, we get that there isM1 ∈ S such thatM1 ⊂ circle(B) \ Int(M), L → M1

and 0 /∈ M or 0 /∈ M1. Therefore,M f k-coversM1. From Lemma 11.7 there is a
path M → · · · → M1 of length k. From Lemma 11.8, if statement (a) holds, then
Proposition 11.1 follows; otherwise, from statement (b) we can assume that there is a
pathM1 → · · · → M of lengthm ≤ k + 1 andm is the shortest length of all the paths
fromM1 to M. Concatenating the path of lengthm together with the pathsM → L→ M1

and the pathM → · · · → M1 of lengthk we obtain two loops of lengthsm+2 andk+m.
Notice that both loops containM andM1. We takek = 5.

First suppose thatm is odd. Som ≤ k. The loopM → L → M1 → · · · → M

of length m + 2 and the loopM � L allow us to construct a non-repetitive loop of
lengthn for eachn ≥ k + 2 odd, containingM andM1. On the other hand, the loops
M → · · · → M1→ · · · → M of lengthk +m and the loopM � L allow us to construct
a non-repetitive loop of lengthn for eachn ≥ 2k + 2 even containingM andM1. Since
0 /∈ M or 0 /∈ M1, by Proposition 4.4 we have thatN \ {2, 3, 4, 6, 8, 10} ⊂ Per(f ).

Finally, suppose thatm is even. The loopM → L → M1 → · · · → M of length
m + 2 and the loopM � L give us a non-repetitive loop of lengthn for eachn ≥ k + 3
even containingM and M1. Moreover, the loopM → · · · → M1 → · · · → M of
lengthk + m ≤ 2k + 1 and the loopM � L give us a non-repetitive loop of length
n for eachn ≥ 2k + 1 odd containingM and M1. Since0 /∈ M or 0 /∈ M1, from
Proposition 4.4 we have thatN \ {2, 3, 4, 6, 7, 9} ⊂ Per(f ). Now we will prove that
9 ∈ Per(f ). Notice that ifm < k + 1, thenm ≤ k − 1 becausem is even. Hence, the loop
M → · · · → M1→ · · · → M of lengthk +m ≤ 2k − 1 odd and the loopM � L give
us a non-repetitive loop of length 2k − 1 = 9, and we are done. So, from now on, we can
assume thatm = k + 1 and that there are no non-repetitive loops of length 9 containing
some non-branching interval; and we will to obtain a contradiction.

Let J0 = M1 → J1 → · · · → Jm−1 → Jm = M be the above path of lengthm = 6.
By the minimality ofm, all basic intervals of this path are different. So,Jm−1 = L. From
the facts thatM f k-coversJ , for eachJ ∈ S with J ⊂ circle(B) andL f k-coversJ , for
eachJ ∈ S with J ⊂ O and since there are no non-repetitive loops of length 9 containing
some non-branching interval, it follows that{J1, J3} ⊂ circle(B) and{J2, J4} ⊂ O.

If there is a uniqueO-crossing subinterval, sinceJ 9 J for any J ∈ S it follows
that L is f -covered by an odd number of basic intervals. This is a contradiction with
the facts thatJ4 → L ← M and the minimality ofm. Otherwise, there are at least
two O-crossing subintervals. Therefore, there existsN ∈ S with N ⊂ circle(B) and
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N 6= M such thatN → L. SinceM f k-coversN , we obtain a non-repetitive loop
M → · · · → N → L → M → L → M of length 9 containing some non-branching
interval, in contradiction with the assumptions. So the proposition is proved. 2

Proof of Proposition 11.2.We need to construct an∞ mapg such that Per(g) = N \ {8}.
Let {a1, a2, . . . , a4} and {b1, b2, . . . , b5} be periodic orbits of periods 4 and 5

respectively such thatg(ai) = ai+1 for i = 1, 2, 3 andg(a4) = a1; g(bi) = bi+1 for
i = 1, 2, 3, 4 andg(b5) = b1. Let Q be the union of two above periodic orbits with
the branching point. Define the basic intervalsJi associated toQ for i = 1, 2, . . . , 11
as follows. The intervalsJi ⊂ O for i ∈ {1, 3, 4, 5, 8, 10} and Ji ⊂ circle(B) for
i ∈ {2, 6, 7, 9, 11} whereJ1 = [a1, 0], J2 = [0, a2], J3 = [0, a3] J4 = [a4, a1],
J5 = [b1, a4], J6 = [b2, 0], J7 = [a2, b3], J8 = [a3, b4], J9 = [b3, b5], J10= [b4, b1] and
J11= [b5, b2].

Now define aQ-linear∞ mapg such that the only elementary loops in theg-graph
are the following: J1 → J2 → J3 → J1, J1 → J2 → J3 → J4 → J1,
J2 → J3 → J4 → J2, J5 → J6→ J7 → J8 → J9 → J10→ J11→ J5, J7 � J8 and
J7→ J8→ J9→ J10→ J11→ J7.

By construction{4, 5} ⊂ Per(g). The loopsJ7 � J8, J2 → J3 → J4 → J2 and
J2 → J3 → J1 → J2 → J3 → J4 → J2, have lengths 2, 3 and 6 respectively,
are non-repetitive and at least one interval in each loop does not contain0. Since
{2, 3, 6} ∩ {8, 10} = ∅, from Proposition 4.4 we have that{2, 3, 6} ⊂ Per(g).

In a analogous way, concatenating the loopsJ7 � J8 andJ7 → J8 → J9 → J10→
J11→ J7 of lengths 2 and 5 respectively, we obtain that Per(f ) ⊃ {n ∈ N : n ≥ 5, n odd}
and Per(f ) ⊃ {n ∈ N : n ≥ 12, n even}.

Now we prove that 10∈ Per(f ). We note thatY is homeomorphic toJ1∪J2∪J3∪J4 ⊂
∞ and so we shall identifyY = J1 ∪ J2 ∪ J3 ∪ J4. SinceY is an invariant set for the
mapg, we can consider theY maph = g|Y . Of course,{a1, a2, a3, a4} is a periodic
orbit of period 4 forh and theh-graph is a subgraph of theg-graph. Using the loop
J1 → J2 → J3 → J4 → J1 → J2 → J3 → J1 → J2 → J3 → J1 of length 10 in
Proposition 4.4, we get 10∈ Per(f ).

On the other hand, since there are no non-repetitive loops of length 8 in theg-graph,
from Proposition 5.2 we get that 8/∈ Per(g). 2
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[2] L. Alsedà, J. Llibre and M. Misiurewicz.Combinatorial Dynamics in Dimension One (Advanced Series
in Nonlinear Dynamics 5)World Scientific, Singapore, 1993.
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