Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-11T21:03:57.179Z Has data issue: false hasContentIssue false

On the Aubry–Mather theory for symbolic dynamics

Published online by Cambridge University Press:  01 June 2008

E. GARIBALDI
Affiliation:
Institut de Mathématiques, Université Bordeaux 1, F-33405 Talence, France (email: Eduardo.Garibaldi@math.u-bordeaux1.fr)
A. O. LOPES
Affiliation:
Instituto de Matemática, UFRGS, 91509-900 Porto Alegre, Brazil (email: artur.lopes@ufrgs.br)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose a new model of ergodic optimization for expanding dynamical systems: the holonomic setting. In fact, we introduce an extension of the standard model used in this theory. The formulation we consider here is quite natural if one wants a meaning for possible variations of a real trajectory under the forward shift. In other contexts (for twist maps, for instance), this property appears in a crucial way. A version of the Aubry–Mather theory for symbolic dynamics is introduced. We are mainly interested here in problems related to the properties of maximizing probabilities for the two-sided shift. Under the transitive hypothesis, we show the existence of sub-actions for Hölder potentials also in the holonomic setting. We analyze then connections between calibrated sub-actions and the Mañé potential. A representation formula for calibrated sub-actions is presented, which drives us naturally to a classification theorem for these sub-actions. We also investigate properties of the support of maximizing probabilities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

References

[1]Bangert, V.. Mather sets for twist maps and geodesics on tori. Dynamics Reported 1 (1988), 156.CrossRefGoogle Scholar
[2]Baraviera, A., Lopes, A. O. and Thieullen, P.. A large deviation principle for equilibrium states of Holder potentials: the zero temperature case. Stoch. Dyn. 6 (2006), 7796.CrossRefGoogle Scholar
[3]Bousch, T.. Le poisson n’a pas d’arêtes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), 489508.CrossRefGoogle Scholar
[4]Bousch, T.. La condition de Walters. Ann. Sci. École Norm. Sup. (4) 34 (2001), 287311.CrossRefGoogle Scholar
[5]Bousch, T.. Un lemme de Mañé bilatéral. C. R. Math. Acad. Sci. Paris 335 (2002), 533536.Google Scholar
[6]Contreras, G.. Action potential and weak KAM solutions. Calc. Var. Partial Differential Equations 13 (2001), 427458.CrossRefGoogle Scholar
[7]Contreras, G. and Iturriaga, R.. Global minimizers of autonomous Lagrangians. 22 Colóquio Brasileiro de Matemática. IMPA, 1999.Google Scholar
[8]Contreras, G., Iturriaga, R., Paternain, G. P. and Paternain, M.. Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal. 8 (1998), 788809.CrossRefGoogle Scholar
[9]Contreras, G., Lopes, A. O. and Thieullen, P.. Lyapunov minimizing measures for expanding maps of the circle. Ergod. Th. & Dynam. Sys. 21 (2001), 13791409.CrossRefGoogle Scholar
[10]Conze, J. P. and Guivarc’h, Y.. Croissance des sommes ergodiques et principe variationnel. Technical Report, Université de Rennes 1, 1993.Google Scholar
[11]Fathi, A.. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris, Sér. I, Math. 324 (1997), 10431046.CrossRefGoogle Scholar
[12]Garibaldi, E.. Otimização ergódica: da maximização relativa aos homeomorfismos expansivos. PhD Thesis, Universidade Federal do Rio Grande do Sul, 2006.Google Scholar
[13]Garibaldi, E. and Lopes, A. O.. Functions for relative maximization. Preprint, 2006.Google Scholar
[14]Garibaldi, E., Lopes, A. O. and Thieullen, P.. On separating sub-actions. Preprint, 2006.Google Scholar
[15]Gomes, D. A.. Viscosity solution method and the discrete Aubry–Mather problem. Discrete Contin. Dyn. Syst. Ser. A 13 (2005), 103116.CrossRefGoogle Scholar
[16]Hunt, B. R. and Yuan, G. C.. Optimal orbits of hyperbolic systems. Nonlinearity 12 (1999), 12071224.Google Scholar
[17]Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst. Ser. A 15 (2006), 197224.CrossRefGoogle Scholar
[18]Jenkinson, O.. Every ergodic measure is uniquely maximizing. Discrete Contin. Dyn. Syst. Ser. A 16 (2006), 383392.CrossRefGoogle Scholar
[19]Lopes, A. O. and Thieullen, P.. Sub-actions for Anosov diffeomorfisms. Astérisque 287 (2003), 135146.Google Scholar
[20]Lopes, A. O. and Thieullen, P.. Mather measures and the Bowen–Series transformation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 663682.CrossRefGoogle Scholar
[21]Mañé, R.. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996), 273310.CrossRefGoogle Scholar
[22]Oliveira, E. R.. Propriedades genéricas de lagrangianos e problemas variacionais holonômicos em sistemas de funções iteradas. PhD Thesis (Preliminary Version), Universidade Federal do Rio Grande do Sul, 2007.Google Scholar
[23]Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990), 1268.Google Scholar
[24]Radu, L.. Duality in thermodynamic formalism. Preprint, 2004.Google Scholar