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Abstract. We propose a new model of ergodic optimization for expanding dynamical
systems: the holonomic setting. In fact, we introduce an extension of the standard model
used in this theory. The formulation we consider here is quite natural if one wants a
meaning for possible variations of a real trajectory under the forward shift. In other
contexts (for twist maps, for instance), this property appears in a crucial way. A version of
the Aubry—Mather theory for symbolic dynamics is introduced. We are mainly interested
here in problems related to the properties of maximizing probabilities for the two-sided
shift. Under the transitive hypothesis, we show the existence of sub-actions for Holder
potentials also in the holonomic setting. We analyze then connections between calibrated
sub-actions and the Mafié potential. A representation formula for calibrated sub-actions is
presented, which drives us naturally to a classification theorem for these sub-actions. We
also investigate properties of the support of maximizing probabilities.

1. The holonomic condition
Consider X a compact metric space. Given a continuous transformation 7 : X — X, we
denote by M7 the convex set of T-invariant Borel probability measures. As usual, we
consider on M7 the weak™* topology.

The triple (X, T, M) is the standard model used in ergodic optimization. Thus, given
a potential A € C(X), one of the main objectives is the characterization of maximizing
probabilities, that is, the probabilities belonging to

{MEMT:[ A(x) du(x) = max f A(x)dv(x)}.
X veMr Jx

Several results have been obtained related to this maximizing question, among them
[2-4,9,16-19]. For maximization with constraints, see [12, 13, 20]. Naturally, if we
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change the maximizing notion for the minimizing one, the analogous properties will
be true.

Our focus here will be on symbolic dynamics. Soleto : ¥ — X be a one-sided subshift
of finite type given by an r x r transition matrix M. More precisely, we have

T=(xe{l,...,r N : M}, xj51) =1 forall j >0}

and o is the left shift acting on X, o(xg, x1, ...) = (x1, X2, ...). Recall that, for fixed
» € (0, 1), we consider T with the metric d(x, X) = A%, where x = (xg, x1, ...), X =
(X0, X1, ...) € Zand k =min{j : x; # x;}.

In this particular situation, given a continuous potential A : ¥ — R, one should be
a priori interested in A-maximizing probabilities for the triple (X, o, My ).

Nevertheless, this standard model of ergodic optimization has a major difference to the
twist maps theory or to the Lagrangian Aubry—Mather problem: the dynamics of the shift
is not defined (via a critical path problem) from the potential to be maximized. In similar
terms, in the usual shift standard model, the notion of maximizing segment is not present.
One would like to have small variations of an optimal trajectory, by means of a path which
is not a true trajectory, but a small variation of a real trajectory of the dynamical system.
We will describe a model of ergodic optimization for subshifts of finite type where the
concept of maximizing segment can be introduced: the holonomic setting. In Aubry—
Mather theory for Lagrangian systems (continuous or discrete time), the set of holonomic
probabilities has been considered before by Mafié, Mather, Contreras and Gomes. Main
references on these topics are [1, 7, 11, 15, 21].

In order to define the holonomic model of ergodic optimization, we introduce the dual
subshift o* : ©* — X* using as transition matrix the transposed M'. In clear terms, we
consider thus the space

st=(yefl,...,r}N:M(yj41, yj) =1 forall j > 0)

and the shift 6*(..., y1, yo) = (..., y2, y1). It is possible, in this way, to identify the
space of the dynamics (f), 0), the natural extension of (X, o), with a subset of ¥* x X.
In fact, if y=(..., y1, yo) € ¥* and x = (xg, X1, ...) € X, then 3> will be the set of
points (y, X) = (..., y1, Yo | X0, X1, ...) € £* x X such that (yg, xo) is an allowed word,
namely, such that M(yop, xo) = 1.

We define then the transformation 7 : & — % by

T(yv X) = Ty(X) = (y()v X(), -xlv .. )

Note that 6~ (y, x) = (0*(y), ty(x)).
Let M be the convex set of probability measures over the Borel sigma-algebra of s

Definition 1. In an analogous way to [15], we consider the convex compact subset

Mo = {u eM: /2 F 5y (0) dia(y, ) = /Z FO®) di(y. XY f e c°<2>}.

A probability 1 € M will be called holonomic.
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Note that Mz C M. It is also not difficult to verify that, whenever u* x u € My,

we have u € M. Moreover, if i € M, then [i o 711_1 € M,, where 711 : 3 — ¥ is the
canonical projection. Indeed, if f € CO(Z), then

/ foo®d(fonH(x) =[ foo(x)dfi(y, x)
b $
=[ foo(ty(x)) dir(y, x)
b
- [ rodcy.x
b
=/ f) d(fonHx).
=
However, My does not contain just G-invariant probabilities. In fact, if x€ X is a

periodic point of period M, fix any subset {y°, ..., y”~'} C * with y] = xp—1, for
0<j<M—1. Itis easy to see that

S

1

M -
J

Syj X (ng(x) € ./\/l().
0

=

For the ergodic optimization problem, there is very little difference (from a purely
abstract point of view) in relation to which convex compact set of probability measures
over the Borel sigma-algebra is made the maximization. In fact, an adaptation of
[9, Proposition 10] assures that, when considering a convex compact subset N C M, a
generic Holder potential admits a single maximizing probability in A/

Taking a continuous application A : 3 — R, a natural situation is then to formulate the
maximization problem over the set M.

Definition 2. Given a potential A € C O(fi), denote

Ba = max / A(y, x) d(y, x).
fpeMy JS

We point out that sometimes, even if one is interested just in the problem for a Holder
potential A : ¥ — R, one has to go to the dual problem and consider the dual potential
A* : ¥* — R. This happens, for instance, when one is trying to analyze a large deviation
principle for the equilibrium probabilities associated to the family of Holder potentials
{rA}i>0 (see [2]).

Actually, the maximization problem over M is not so interesting, because any Holder
potential A : T - Ris cohomologous to a potential that depends just on future coordinates
(see, for instance, [23]). In this case, the problem can in principle be analyzed in the
standard model, that is, over M.

Furthermore, in order to analyze maximization of the integral of a potential A € C%(X),
no new maximal value will be found, because

ﬂrél%()/i A(x) du(y, X)ZM?%ULA(X) dp(x).
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Indeed, the correspondence [t € Mo fLom e M, preserves the integration on
C%(T) and the same property is verified by the correspondence p € My > 1o | o
671le Mo.

Therefore, we could say that the holonomic model of ergodic optimization (2,6, M)
is an extension of the standard model (X, o, M,).

This paper is part of the first author’s PhD thesis [12]. We will be interested here in the
maximization question over Mg and, if possible, in some properties that one can get for
the problem over (X, o). In §2, we will show the dual identity

Ba= inf  max [A(y,x)+ f(X) — f(zy(X)].
feCO(®) (yx)es

We will then analyze the problem of finding a function u € C°(X) which realizes the
infimum of the previous expression, that is, a sub-action for A.

Definition 3. A sub-action u € C°(X) for the potential A € C 0(%) is a function satisfying,
for any (y, x) € 3,
u(x) < u(ty(x)) — Ay, x) + fa.

Assuming the dynamics (X, o) is topologically mixing and the potential A is Holder,
we will show in §3 the existence of a Holder sub-action of maximal character. Furthermore,
under the transitivity hypothesis, for a potential 6-Holder, we will show that we can always
find a calibrated sub-action u € C?(%).

Definition 4. A calibrated sub-action u € C°(X) for A € Co(fl) is a function satisfying
u(x) = yrggl[”(fy(x)) — A(y, x) + Bal,

where, for each point x € ¥, we denote by X the subset of elements y € £* such that

(y.x) € 2.

In the transitive context, we will introduce in §4 the Mané potential S4 : ¥ X ¥ —
R U {400} (the terminology is borrowed from Aubry—Mather theory). Thus, we will
establish a family of Holder calibrated sub-actions, namely, {S4 (X, )}xe(4), Wwhere Q(A)
denotes the set of non-wandering points with respect to the potential A € C? (). All these
notions will be precisely defined later. Besides, these concepts already appear in [9] for
the forward shift setting.

Definition 5. We will denote by

muy = {,ll € Mo : / Ay, x)da(y, x) = ,BA}
by
the set of the A-maximizing holonomic probabilities.

When we investigate the connections between sub-actions and the supports of
holonomic probabilities, the A-maximizing holonomic probability notion is of great
importance. One of the main results of §5 is the representation formula for calibrated
sub-actions. More specifically, given a calibrated sub-action u for a potential A € C? (),
the following expression holds:

u®) = inf [ux) + Sa(x, X)].
xeQ(A)
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Such characterization is analogous to the one obtained for weak KAM solutions in
Lagrangian systems (see [6]). Under the transitivity hypothesis, this representation formula
and its reciprocal will describe, by means of an isometric bijection, the set of the calibrated
sub-actions for a Holder potential A. We will show yet that i € M4 with i o 7, ! ergodic
implies 71 (supp()) C S2(A). This property will drive us naturally to other questions like,
for instance, the possibility of reducing contact loci.

2. The dual formulation
We start by presenting the main goal of this section.

THEOREM 1. Given a potential A € Co(fi), we have

Ba= inf  max [A(y,x)+ f(X) — f(zy(X))].
FeCO(T) (y,x)es

One observes that this formula corresponds in Lagrangian Aubry—Mather theory to
the characterization of Mafié’s critical value (see [8, Theorem A]). Theorem 1 is just a
consequence of the Fenchel-Rockafellar theorem. For the standard model (X, T, M7),
a similar result was established before (consult, for instance, [10, 24]). We will present,
anyway, the complete proof for the holonomic setting.

First, consider the convex correspondence F : Co(f)) — R defined by F(g) =

max(A + g). Consider also the subset
C=1{geC'%): gy, x) = f(x) — f(zy(x)), for some f € CO(T)}.

We establish then a concave correspondence G : Co(f)) — R U {—o0} taking G(g) =0 if
g €C and G(g) = —o0 otherwise.

Let S be the set of the signed measures over the Borel sigma-algebra of . Remember
that the corresponding Fenchel transforms, F*:S — RU {400} and G*:S — R U
{—o00}, are given by

F*() = sup [/ g(y,X)dﬂ(y,X)—F(g)}

geCO(S)LIE
and
G*(p) = inf [/ g(y, x) dji(y, X)—G(g)]-
geCo(2)LJIE
Denote

So= {/leS:/if(ty(X)) diy, % =/ﬁ &) dity, x>erCO<z>}.

LEMMA 2. Given F and G as above, we verify

- /2 AW X ARG x) A€M,

+00 otherwise,

F* (1) =

and
0 ifin e So,
—00 otherwise.

G* (L) = {
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Proof. Assume first that it € S is not positive, that is, [i gives a negative value for some

Borel set. Therefore, we can find a sequence of functions {g;} C Co(fl, R™) such that

lim f): gj(y, X) dji(y, X) = 400. Once F(g;) < F(0) < +o0, we have F*(j1) = +o0.
Suppose that i € S is such that i > 0 and /i(2) # 1. In this case, we observe that

sup [/ g(y, X) diu(y, x) — F(g)} suﬂg[/i adji(y, x) — F(a)i|

geCO (ML=
= sup[a(A(2) — 1) — F(0)] = +o0.
acR

On the other hand, when we consider (4 € M, directly from the inequality
J5 Ay, x) dii(y, x) + [4 g(y. x) d[i(y, X) < F(g), we have

_ fE AW, 0 dAF X > sup [ / ¢(v. %) diA(y, x)—F(g)]

geCO(H)L/ X

v

Once F(—A) =0, we get the characterization of F*.
Now we will consider G*. If /i ¢ Sy, there exists a function f € C°(X) such that
[5 f(ry(x) dji(y, X) # [5 f(x) dji(y, X). Therefore, we verify

G*(l) = inf.[ g(y, x) dii(y, x)
geC Js

< inf a/[f(ry(x)) — f®)1dpy, x) = —oo.
aeR )3

Besides, for 1 € Sy, clearly G* (1) = 0. O
Using this lemma, we can show the dual expression of the beta constant S4 =
maxgen, [5 Ay, X) du(y, X).
Proof of Theorem 1. Once the correspondence F is Lipschitz, the Fenchel-Rockafellar
duality theorem assures
sup [G(g) — F(g)] = inf [F*(1) — G*({)].
5eCO(E) hes
Thus, by Lemma 2,
sup|:— max (A + g)(y, x)i| = inf [— /A Ay, x) duy, x)i|.
geCL  (yx)ex neMy by
Finally, from the definition of C, we get the statement of the theorem. O
Relative maximization is studied in [13]. In this case, the dual formula is also true.

More specifically, if we introduce a constraint ¢ € C 0($, R") with coordinate functions
1, - - ., ¢n, We can then consider an induced map ¢, € CO(MO, R") given by

(p*([)“) = <\/z;‘ (pl (ya X) dll(yv X)a AR A (Pn(Ya X) dﬁ“(yv X))

Thus, if AeC O(fl), we can immediately define a concave and continuous function
Ba.p i 9x(Mo) — R by

Bap(h) = max /A(y,x)d,&(y,x).

peps () /S
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Using a slightly more refined argument as [24], we could demonstrate the dual formula for
a beta function,
Baph) = inf max (A+ fom — fom o671 = (c, ¢ — h)(y, X).
(f,0)eCO(B)xR" (y,x)e
Nevertheless, the unconstrained dual formula raises a natural question: Can we find
functions accomplishing the infimum of the dual expression? In an equivalent way, is there
a functionu € C 0(E) such that

A—}—uom—uomo&‘lfﬂA?

As we mentioned in the first section, we call any function u as above a sub-action for A.
This terminology is motivated by the inequality

A+uoo —u<pau,

which is present in the usual definition of a sub-action u for the forward shift setting (see
[9] for instance). The next sections are mainly dedicated to showing the existence of sub-
actions in the holonomic setting.

3. Sub-actions: maximality and calibration

We start by showing not only the existence of sub-actions but also, in fact, the existence
of a maximal sub-action. To that end, remember that a dynamical system (X, T) is
topologically mixing if, for any pair of non-empty open sets D, E C X, there is an integer
K > Osuchthat TK(D)NE # ¢ forall k > K.

PROPOSITION 3. Consider any topologically mixing subshift of finite type o : ¥ — X and
a potential A € C e(fl). Then, there exists a sub-action u s € C° (X, R™) such that, for any
other sub-action u € CO(E, R™), we have us > u.

A sub-action like this one (not necessarily Holder) will be called maximal.
Proof. Without loss of generality, we can assume 4 = 0. Then, for each x € X, set
up(x) = inf{— Z A/, x)H):k>0,x"=x,y/ € E;“j, x/ ! = ryj(x/)}.
Jj=0
By convention, we assume that the sum is zero when k = 0.

Suppose for a moment that u 4 is a well-defined Holder application. Note that, if y* =y
and x° = x, then

k k—1
Ay, =Y AW, x) =) AT X

j=0 j=0
k_l . .

< =D AT X —ua ).
j=0

Clearly x! = Ty0 (x%) = Ty(x). Thus, since the inequality is true for all kK >0 and any
points (y', x"), ..., (", xb e ¥ such that x/t! = Tyi (x/), it follows that A(y, X) <
ua(ty(x)) — ua(x), thatis, u4 is a sub-action for the potential A.
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So let us prove that the function u 4 is well defined. Remember that, 'When Xexisa
periodic point of period k, if we choose any points §/ € X* satisfying )'Jé = Xp—(j+1), W€
obtain i = (1/k) Z, —0 05/ X 85k—j(z) € Mo. Hence, we immediately verify

k—1

=3 AGT @) =k [ A dity.x =0
j=0 >
Given x € X, we choose then points (yO, XO), R (yk_l, xk_l) es satisfying x" = x and

x/ = Tyj (x/). As (2, o) is topologically mixing, there exists an integer K > 0 such
that, for any k > K, we can find a periodic point X of period k satisfying d(x¥, X) < Af=X
where x* = Tyk-1 (Xk_l). Thus, when we put ifj = yj for K < j <k — 1, it follows that

k—1 ) ) k—1 Héldo (A
SO AW, ¥ = AG, oF T & ))‘ < T kAl
=0 =0

which assures that u 4 is well defined.
The application u 4 is 8-Holder. Indeed, fix x, X € ¥ with d(x, X) < A and consider once

more points %, x%, ..., xk e )y satisfying x? =xandx/*! = Tyj (x/). Putting
X0 =xand x/t! = Tyi (x/), we obtain
_ ldg (A)
ZA(y xf)—ZA(yf X)| € ——d(x, %"

As the collection of points {(yj ,x/ )} was chosen arbitrarily, it follows that

lua(X) —ua(X)| < 1_—0(md( %)".

To prove the maximal character of u,4, just observe that, for any sub-action u €
CO(E, R™), we have

k—1
u(x) < u(ryer (1) — ZA(y xf)<—ZA(y x/)

Jj=
whenk >0,x0=x,y/ € ¥ and x/*1 :ry,-(xj). m|

An interesting question is the existence of a sub-action of minimal character. Given
a potential A € C?(X), a possible approach to this demand is to introduce the function
UK? e Cc?(3) defined by

UK —inf{u € C? () : u sub-action for A, Holdg (1) < K, max u = 0}.

The sub-action U/f’g is in some sense minimal.

In the final section, instead of imposing max u =0, we will consider a suitable
normalization of sub-actions in order to present a maximal calibrated one. However,
we will need several results before we can discuss this special situation. For instance,
the following theorem assures the existence of calibrated sub-actions for any 6-Holder
potential.
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THEOREM 4. Let 0 : ¥ — X be a transitive subshift of finite type. For each potential
A€ Ce(f]), there exists a function u € C? (%) such that

u(x) = min [u(ty(x)) — A(y, X) + Bal.
yexg

Proof. The idea is to obtain a fixed point of a weak contraction as a limit of fixed points of
strong contractions (see [3, 4]).
Given p € (0, 1], we define the transformation £, : C°(Z) — C%(X) by

Lp(fHx)=p yrgg}k[f(fy(X)) — Ay, ©)].
Once L, is p-Lipschitz, consider, when 0 < p < 1, its fixed point u, € cox).
The first fact to be noted is the equicontinuity of the family {u,}. Indeed, note that
T =X, when d(x", x°) < A. Hence, if y’ € T, satisfies
1y (x°) = plu, (ryo(x”) — A°, x)]1,
we obtain
1y (X0) < plup(ry X)) — AR, X0)1.
Therefore, taking x! = 740 (xY%) and x! = 740 (x9), we have the inequality
up () —u, (%) < pIAGY’, x%) — A, KD+ plup &) — up(xH].
In this way, defining x/ = Tyj-1 (x/~1) and X/ = Tyj-1 (x/~1), we continue inductively

obtaining y/ € E;“j such that u p(xj )=plu p(l’y_[ (x/)) — A(yj ,x))]. Asa consequence of
this construction, it follows that

k—1
upE) —u, () <D pI AW, ) — A, ®D]+ pMlup ) =, ()]

j=0
Thus, we verify
o0
up () —u, () < Y pMAG, X)) — Ay %))

j=0

o
< Holdy(A) Z o/ ldx!, %)Y

j=0

o0
< Holdg (A)d(x°, x°)¢ Z PARYL
j=0
pHOldg (A)
1 —pAf
We have proved that the family {u,} is uniformly 6-Holder; in particular, it is an
equicontinuous family of functions.
The family {u,} presents also uniformly bounded oscillation. Indeed, given a point
(y, x) € f), note that

dx’, 397,

u,(x) —minu, < plu,(ty(x)) — A(y, X)] —min p[u, omy o 671 — Al
< plmax A — A(y, X)] + plu,(ty(x)) — min u,]
< Holdg(A) + up(ty(X)) —minu,.
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Since (X, o) is transitive, we can define a finite set {(y/, k;j)} C ¥* x N by choosing,

for each pair of symbols s, s’ € {1, ..., r}, an allowed word (y,fjfl, ..., ¥p) such that
y,fjfl = s’ and the word (yj, ) is allowed. Consequently, given X € £ with xo =s, the
inequality

u,(x) —minu, < k;Holdy(A) + up(rykf (x)) —minu,
assures that

_ ) Holdy (A) ¢
max  [u,(X) — u,(X)] < k;jHOldg(A) +2————27.

xo=s, ¥o=5' -0
Hence, when K = max k;, it follows that
0
1—2af

max [u, (x) = ()] < <1< + )Hﬁlde(z‘\),

that is, the family {u,} has uniformly bounded oscillation.

From the properties demonstrated above, we immediately obtain that the family
{u, — max u,} is equicontinuous and uniformly bounded. Note also that u, — max u, =
(p —1)maxu, + L,(u, —max u,). Then, if the function u (necessarily 6-Holder) is an
accumulation point of {u, — max u,} when p tends to 1, we have u = a + L (u) for some
constant a € R.

It remains to show that a = 84. Put A=A+uo 71 —uom o6 L. Since Zf a, for
all 1 € My, we verify

fi Ay, %) did(y, ) = /2 Ay, ®) dir(y, ) < a,
hence B84 < a. Besides, observe that
a= )rlrelz%)% X(y, x) forallxe X.
Thus, given x” € 3, take y° € T7; satisfying Ay, x°) = a. Putting x/ = et (x7h),

inductively consider y/ € E;“j such that A (y/,x/) =a. Let i € M be an accumulation
point of the sequence of probabilities

=
A= 3 2 Sy i
Jj=0

Clearly it is true that /2 A (y, x) di(y, X) = a. Therefore, if we prove that i1 € My, we
will obtain a < B4. For any f € CO(Z), note then that

1
k

k—1
‘ fz [f (ty(®)) = f (O] d iy, %) D L f (g (x)) = F(xI)]
j=0

= l|f(xk) — O < %Ilfllo
k Tk

Now taking the limit when k tends to infinity, we assure (i € My and this finishes the
proof. a
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The previous result implies the existence of a calibrated sub-action u for the forward
shift setting [3, 9, 17]. Indeed, supposing A € C?(X), observe that we have Ao €
C?(%). Hence, under the transitivity hypothesis, there exists a function u € C?(X)
satisfying

u(x) = ;gizri[u(fy(X)) —AoT(y, X) + Baorl.

Once Baor = Ba = max, e, fz A(x) du(x), taking z=1y(x), we obtain the usual
expression (see for instance [9])

u(x) = Ur(rzl)igx(u — A+ B4)@).

The notion of calibrated sub-action is an important concept also in relative
maximization. In particular, Theorem 4 assures a version for the holonomic setting of
[13, Theorem 17]. Such a version will point out that the differential of an alpha application
dictates the asymptotic behavior of the optimal trajectories. We will state the precise result.

We start by considering the Fenchel transform of the previous beta function 84 ,. Called
an alpha application, such a function a4, : R" — R is defined simply by

app(c) = heg(ljt\l/{g)[(a h) = Ba,p(h)].
IfuecC O(E) is a calibrated sub-action, we say that a sequence {yj ,x/} ¥ is an
optimal trajectory (associated to the potential A) in the case x/ = Tyj-1 (x/~1y and u(x/) =
u(x/t1 — A(y/, x/) + Ba. Since the equality ap,p(c) =—PBa—(c,g) is true, we can adapt
[13, Proof of Theorem 17] to the present case. Therefore, under the transitivity hypothesis,
if the potential A and the constraint ¢ are Holder, every optimal trajectory {y/, x/}
associated to A — (c, ¢) satisfies

k—1
im — 7 x/y =
Jim k;)wy %)) = Daay(©),

in the case when the function a4 , is differentiable at the point ¢ € R".

Concluding this section, we would like to say a few words about a version of
Livsic’s theorem for the model (fl, 6, Mp). We will say that a function A € Co(f)) is
cohomologous to a constant a € R if there exists a function u € C 0(%) such that

A+uom —uomoé ' =a.

PROPOSITION 5. Assume that o : ¥ — X is a transitive subshift of finite type and suppose
that A is a 0-Holder function. Then, M4 = My if, and only if, A is cohomologous to B 4.

Proof. The sufficiency is obvious. Reciprocally, as 14 = Mg implies B4 = —fB_4,
consider functions u, u’ € CO(X) satisfying

A+uom—uomo&71§ﬁA and ﬁASA—u/oN1+u/on10571.

Therefore, we have (u +u')om < +u')om o6~L. 1In this case, however, the

transitivity hypothesis implies that the function u + u’ is identically equal to a constant
b. Since u =b — u’, from the above two inequalities, it follows that the potential A is
cohomologous to $4 via the function u. d
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FIGURE 1. Graphical representation of paths belonging to P(x, X, €).

4. Calibrated sub-actions and Maiié potential

Using the Maiié potential and the set of non-wandering points, we will be able to introduce
a family of Holder calibrated sub-actions. In the final section, this family will play a crucial
role in the classification theorem of calibrated sub-actions.

Definition 6. Given € > 0 and x, X € X, we will call a path beginning within € of x and
ending at X an ordered sequence of points

G x0T X el
satisfying x* = x, x/ ! = 7,7 (x/) and d(Tyi-1 (x*=1), x) < €. We will denote by P(x, X, €)

the set of such paths (see Figure 1).

Definition 7. Following [9], a point x€ X will be called non-wandering with
respect to the potential A € C%(S) when, for all € >0, we can determine a path
(0, x9), ..., 1, x*" 1)} e P(x, x, €) such that

k—1
Y (A-B, X)) <e
j=0

We will denote by €2(A) the set of non-wandering points with respect to A.

When the potential is Holder, it is not difficult to see that 2(A) is a compact invariant
set. We will show that such a set is indeed not empty.

LEMMA 6. If 0 : X — X is a transitive subshift of finite type, for any potential A €
CY(2), we have Q(A) # 0.

Proof. Let u € C°(X) be a calibrated sub-action obtained from Theorem 4. Fix any point
x? € ¥. Take then y° € E;‘O satisfying the identity u(x) = u(tyo x%) — A, x0) + Ba.
Denote x/ ! = Ty (x/) and proceed in an inducti\{e way determining a point y/ ! ¢ E: it
such that u(x/11) = u(tyjs (x/t1)) — A(y/t!, x/ 1) + B4. Let x € T be a limit of some
subsequence {xJm}.
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We claim that x € Q2 (A). First note that, if my > m1, from the definition of the sequence
{x/}, we obtain
Jmy—1
— > (A= B, X)) =uim) — u(xin),

J=Jmy

For a fixed € > 0, consider an integer > 0 such that, if X', X’ € £ and d(x/, X”) < A/, then
lu(x) — u(x")| < €/2. We can suppose that [ is sufficiently large in such a way that

€
l—ke < —.

max{kl,
2

Now take an integer mq sufficiently large such that d(x/», x) < A!/2 for all m > my.
Considering integers my > mj > mq, put kK = jiu, — jm,. Since T} = E*jm , we choose
X

y/ = y/m i for 0 < j <k — 1. Finally, denote X" = x and X/*! = Ty (X/). Once
d(tye-1 K1), %) <d(rpar B, /) +d(xim, x) < 4 <€

it follows that {(¥°, X%, ..., "1, x*~1)} e P(x, x, €). Moreover, since d(x/m | x/m2)
< kl, we get

k_l k—l jmz_l
D A-BOGF )| < D AGFL®) = Y AW x|+ I — u(xim)|
j=0 Jj=0 J=im,
Holdg(A) , €
Therefore, x € Q2(A). O

The following definition is also inspired by [9].
Definition 8. We call ‘Maiié potential’ the function S4 : ¥ x ¥ — R U {Z00} defined by

Sa(x, X) = lin}) S5 (%, X),
€—
where

k—1

S(x. %) = = (A= B, xf)].

j=0

Note that Q(A) = {x € X : S4(x, x) =0}.

As we will see soon the Maifié potential will provide, for a Holder potential, a
one-parameter family of equally Holder sub-actions. Before that we need some properties.

Letu € C9(X) be a sub-action for the potential A € C O(f)). We say that the pointx € ¥
is u-connected to the point X € X, and we indicate this by x X X, when, for every € > 0,

we can determine a path {(y°, x?), ..., (7* 7!, x* 1)} € P(x, X, ¢€) such that
k—1 ) )
Z(A =B X)) — (u(x) —u®)| <e.
j=0

Note that x € Q2(A) implies x = x for any sub-action u.
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LEMMA 7. Let u € CO(X) be a sub-action for a potential A € Co(fl). Then, for any
X, X € X, we have S4(X, X) > u(X) — u(x). Moreover, the equality is true if, and only if,
X > X.

Before the proof of this lemma, we would like just to point out another important
property of the Maifié potential: if A is a 6-Holder potential, then S (X, X) < Sa (X, X) +
Sa(x, ):() for any points X, X, X €Y. We leave for the reader the demonstration of this
simple fact.

Proof. Fix p > 0. Take € € (0, p) such that |u(x’) — u(x")| < p, when X', X" € X satisfy
d(x', x") < €. Consider now any path

{(yo, XO), ce, (yk_l, xk_l)} e P(x, X, €).

Once

k—1
u(®) — ux) — p <ux®) —u(ryor () < = > (A= By %)),

j=0
it follows that u(X) — u(x) — p < Sa(x, X). Taking p arbitrarily small, we obtain the
inequality of the lemma.

If S4(x, X) =u(X) — u(x), from the definition of the Mafié potential, immediately we
u — . . — .

get x — X. Reciprocally, suppose that x is u-connected to X. Take then p > 0. Given
€ € (0, p), we can choose a path

(% x0), ..., ", x¥* H ePx X e

satisfying

k—1
Y A=BOG X)) — @) —u®)| <e
j=0

Observe that
k—1 ) )
- Z(A — B, X)) <u®) —ux) + € <uX) —ux) + p.
=0
Thus, we verify S (x, X) <u(X) —u(x) + p. As p can be taken arbitrarily small, we
finally get the equality claimed by the lemma. |

We now present the main result of this section.

PROPOSITION 8. Suppose that o : ¥ — X is a transitive subshift of finite type. Let A be a
0-Holder potential. Then, for each x € Q(A), the function Ss(X,-) is a 0-Holder
calibrated sub-action.

Proof. Fix a point x € Q(A). We must show first that S4(x, -) is a well-defined real
function. Thanks to Lemma 7, we only need to assure that S4 (X, X) < +oo forany X € X.
Take € > 0 arbitrary. For a fixed value €’ € (0, A], consider a path {(yo, xo), e,
1, xF "1} e P(x, X, €') satisfying
k—1

Y (A= B . X)) < ST X) +e
j=0
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As x € Q(A), we can take {(7°, X°), ..., G5~ 1, RE"D)} e P(x, x, €/2), with Ake’ < €/2,
such that

%) <_

Thus, we define y/ = y/ =¥ for k < j < k + k. Observe that we have y* = §° € Z

Ejk k-1 Therefore, we can put x/+! = Tyj (x/)fork—1<j<k+k—1.

We claim that {(¥°, x°), . . ., ("1, xk+k=1)) ¢ P(x, %, €). Indeed, we have
d(Tyesi T, %) < d (T D, 1 D) Fd (o & )
<ake € e
2
Besides, without difficulty we verify
k+k—1

_ HOlde(A)
> AW, xf)—ZA(yf X)| < —— (.
Jj=k
Hence, we immediately have
k+k—1
- .. Holdg(A) 3
SR <— > (A-Ba . x)) < 1—( ) + S5 %) + Je.
Jj=0
which yields
_. _Holde(A) , 4
Sax.X) = ——5—(€ ) + 85 (x. %).

As the right-hand side is finite, the application S4 (X, -) is well defined.

We claim that it is indeed a #-Hélder function. Take points X, X € ¥ such that d(X, X)
< X. Consider a fixed p > 0. Given € > 0, we can find a path {(yo, x0), ..., (yk_l, xk_l)} €
P(x, X, €), with A¥T! < ¢, such that

k—1

=Y (A= By, X)) < S§(x, %) + p.

Taking §/ =y/ for 0 < j < k, we write X” = X and, finally, we define X/*! = Ty (x/)
when 0 < j < k — 1. Itis easy to confirm that {(¥°, X0), .. ., F 1, ) e Px, x, 26),
as well as

_ZA(y xf)>—ZA(y’ x/) —HOlde(A) d(x,%)".

Therefore, we verlfy the following 1nequal1t1es:

Sa(x,X) > S5 (x, X)

k—1
> =Y (A= B, X)) —p
J'f

oldg (A)d(_ o —

v

—Z(A BN/, X)) —

Holdg(A) J& R

v

S3€(x, X) —
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Since € and p can be considered (in such order) arbitrarily small, we get
Holdg (A)

Y. dx, x)7.

SA(Xs i) - SA(Xv ):() > —
It follows at once that S4(x, -) € C?(Z).
It remains to show that the application S4(x, -) is a calibrated sub-action.
Fix a point (§,X) € . When {(y', x"), ..., (), x)} e P(x, 53(%), €), put y’ =,

x” = X. We point out that
AF. %) —Ba =Y (A= B, x) =Y (A- B/t x/
Jj=0 Jj=0
k—1
< =) (A-BOG T X - 55(x, %),
=0

As the path is arbitrary, we have A(y, X) — B4 < S (x, 75(X)) — S (x, X). Hence, taking
the limit, we show that S4 (X, -) is indeed a sub-action for the potential A.

In order to verify that it is a calibrated sub-action, we should be able to determine,
for each x € ¥, a point y € X accomplishing the equality S4(x, X) = Sa(x, 73(X)) —
A(¥,X) + Ba. Given € > 0, consider a path {(y°,x°), ..., 1 x*Hy e P(x, X, €)
such that

k—1
=) (A= By X)) < S§(x. %) +e.
j=0
This defines a family {y’}c-o C =%. Take y € £ an accumulation point of this family
when € tends to zero. Observe that
k—1

S, T (R) — (A =BG, %) <= Y (A= B/, X)),
j=0

As 1y0(X) = 13(X) for € sufficiently small, we can focus on

SS(x, 15(X) — (A — Ba) (Y0, %) < S§(x, %) + €.

So taking € arbitrarily small, we finish the proof. a

5. Sub-actions and supports

This section is dedicated to the analysis of relationships between sub-actions and supports
of holonomic probabilities. A unifying element of these concepts continues to be the notion
of contact locus.

Definition 9. Given a sub-action u € CY%x) for a potential A € Co(ﬁ), consider the
function A = A4 uom; —uom o6, We call the set My (u) = (A“)_l(,BA) the
contact locus of the sub-action u.

The contact locus is just the set where the usual inequality defining a sub-action
becomes an equality. It plays an important role in the localization of the support of
maximizing holonomic probabilities.
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PROPOSITION 9. Ifu € C%()isa sub-action for a potential A € CO(ZA)), then
ma = {fx € Mo : supp(fr) C Ma(u)}.

The proof of this statement is reduced to the well-known fact that, if its integral is zero,
a measurable non-negative function is zero almost everywhere.

We now require a classification theorem for calibrated sub-actions. We start by
presenting a result which supplies a representation formula for these sub-actions.

THEOREM 10. Ifu € CO(X) is a calibrated sub-action for a 0-Holder potential A, then
u(x) = inf [u(x)+ Sa(x, X)].
xeQ(A)
Proof. Thanks to Lemma 7, it immediately follows that

u®) < inf [u(x) + Sax, X)].
xeQ(A)

Besides, the identity will be true if there exists a point x € 2 (A) satisfying x =%

Consider {(y/, x/)} C $ an optimal trajectory associated to the potential A such that
x? = x. Denote by x € ¥ the limit of a subsequence {x/"}.

Lemma 6 shows that x € Q2(A). So we only have to prove that x 2 X. Fix € > 0 and
choose an integer [ > 0 in such a way that |u(x') — u(x”)| <€ when X/, x” € ¥ satisfy
d(x',x") < Al. Assume that [ also accomplishes A/ < e. Take m sufficiently large such
that d (x/m, x) < AL Putk = j,.

Observe that d(Tyk—l (x*=1, x) = d(x/m, X) < €. Therefore, we assure {(y°, x0), ...,
1 xHy e P(x, X, €). As

k=1
D A =BG, X)) — wx) —u®) =0,
j=0
we obtain
Z(A =B X)) — W) —u®)| = lux) —ux)| <e,
j=0
which finishes the proof. O

The following immediate corollary indicates the importance of the set 2(A) in the
analysis of calibrated sub-actions.

COROLLARY 11. Letu, u’ € CO(E) be calibrated sub-actions for a potential A € c? (f)).
If u<u on Q(A), then u <u' everywhere on ¥. In particular, if we have u|qa) =
u'|q4), then both sub-actions are equall.

Theorem 10 admits a reciprocal.

THEOREM 12. Let o : ¥ — X be a transitive subshift of finite type. Consider a potential
AeC e(f]). Assume that the function f : Q(A) — R has a finite lower bound. Then

u(x) = inf [f(x)+ Sa(x, X)]
xeQ(A)

defines a 0-Holder calibrated sub-action. Moreover, if f(X) — f(X) < Sa(x, X) for any
X, X € Q(A), thenu = f on Q(A).
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Proof. The good definition of u: ¥ — R is clear. We will show that it is a Holder
function. Fix € > 0. Given X, X € & with d(x, ):() < X, take a point x € Q2(A) such that
FX) + Sa(x, ):() < u():() + €. It follows from the proof of Proposition 8 that

Holdy (A)

o &%

u(X) — u(X) — € < Sa(x, X) — Sa(x, X) <
As € is arbitrary, we get u € C?(2).
In fact, u is a sub-action for the potential A. Consider a point (y, X) € ¥ and € > 0.
Choose x € Q(A) satisfying f(x) + Sa(x, 73(X)) < u(z3(X)) + €. Since

u(X) —u(ry(X)) — € < Sa(x, X) — Sa(x, 75(X)) < fa — A(¥. X),

the claim follows when € tends to zero.
The calibrated character of u is also a consequence of Proposition 8. Indeed, take x € X,
and choose a point x/ € Q(A) such that

. o _ 1
F&x) + Sax/, X) <u(X) + ;

Now, for each index j, take a point y/ € 7 satisfying
Sa(x, %) = SA(x/, 1y (X) — A(y/ . X) + Ba.

Finally, let y € E; be an accumulation point of the sequence {yj}. As M('L'yj X)) <
F&I) + Sa(x/, 74 (X)), we verify

. 1
u(ty; (X)) — A(y/, X) + Ba <u(X) + I

Therefore, u(t3(X)) — A(y, X) + Ba < u(X).

At last, suppose that f(X) — f(X) < Sa(x,X) for any x,Xxe€ Q(A). Hence, the
inequalities u(X) < f(X) < f(x) + Sa(x, X) are valid for all x € Q2(A), which implies
immediately u = f on Q(A). O

One of the main consequences of the previous theorem is a kind of Héolder supremacy
for sub-actions that we will state below. This result corresponds to the well-known
fact in Lagrangian Aubry—Mather theory according to which a weak KAM solution is
differentiable in the Aubry set (see [7]).

COROLLARY 13. Suppose o : & — X is a transitive subshift of finite type. If u € C°(X)
is a sub-action for a potential A € Ce(fl), then u|qa) is 6-Holder.

Allow us to indicate another immediate consequence of Theorem 12.

COROLLARY 14. Let 0 : X — X be a transitive subshift of finite type. Assume that
u € COX) is a sub-action for a 0-Holder potential A. Then, for every point X € Q2(A),
we verify

u(x) = ynelgg[u(ry(X)) — A(Y, x) + Bal.

Theorems 10 and 12 assure that every calibrated sub-action for a Holder potential A is
also Holder. Moreover, we have a complete description of the set of these sub-actions.
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THEOREM 15. Consider o : ¥ — X a transitive subshift of finite type and A: ¥ — R a
0-Holder potential. Then, there exists a bijective and isometric correspondence between
the set of calibrated sub-actions for A and the set of functions f € CO(Q(A)) satisfying
FX) — f(X) < Sa(X, X), for all points X, X € Q(A).

Proof. Let us analyze the correspondence
== i f S s ).
froup= xem( )[f(x) + Sa(x, 9)]

It follows from Theorem 12 that such correspondence is well defined and injective. From
Theorem 10 we get that it is surjective. Besides, the correspondence is an isometry. Indeed,
fixing € > 0, if x € X, take a point x € 2(A) such that f(x) + Sa(X, X) <uf(X) +e€.
Therefore, we have

ug(X) —uy(X) —€ < g(x) — fx) = If - gllo-

When € tends to zero, since X is arbitrary and since we can interchange the roles of f and g,
we see that |luy — ugllo < || f — gllo. On the other hand, as u r|q(a) = f and ug|oa) = &.
we verify [lu s — ugllo > I f — gllo. o

In [6], Contreras characterizes the weak KAM solutions of the Hamilton—-Jacobi
equation in terms of their values at each static class and the values of the action potential
of Mafié. The result we presented above describes a similar property for our holonomic
setting.

As announced just before the statement of Theorem 4, under the transitive hypothesis,
there always exists a calibrated sub-action of maximal character for a Holder potential. We
only need to consider the following one:

uop= inf Sus(x, ).
XeQ(A)

Indeed, it is clear that ug <0 on Q2 (A). Moreover, if we take any sub-action u € C $))
satisfying u|q(4) < 0, since u(X) < u(x) + Sa(X, X) < Sa(x, X) for x € Q(A) and x € X,
we verify u < ug.

Now we will focus also on the support of maximizing holonomic probabilities in order
to complete our investigation. We need just two lemmas.

LEMMA 16. Suppose i € My. Then, almost every point (y, X) € supp(ji) is of the form
(y, Ty(X)), with (¥, X) € supp(/1).

Proof. Consider the set
R ={(y, %) € supp(i2) : X # 15(X) ¥ (3, %) € supp()}.

Suppose A(R)=¢>0.Put R =m(R). Consider D C T a compact subset and £ C X an
open subset satisfying D C R C E with ({t o 7, 1)(E — D) < €/2. Take then a function
fe co(z, [0, 1]) such that f|p =1 and f|s_g =0. Once nl_l(R) N supp(fi) = R, we
get

/i FX) diy, x) > awy (D) = e (R) — o (E — D)) > %
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Thus, consider a sequence of functions { f;} C CcY(x, [0, 1]) such that fi? xe-p- By
the monotonic convergence theorem, we obtain

/;:XE—D(Ty(X))dll(Ys X) jlirgo/ifj(fy(X))dﬂ(y, X)

/A fi(x) di(y, x)
£

im
J—>0o0
~ -1 €

= p(r, (E—-D)) < 5

Note that, from the definition of R, we have fsupp(ﬁ) xR (ty(x)) dfi(y, x) = 0. Hence, as
0< f < xg, we verify

f fry(x) dii(y, x) < / xE—R(Ty(X)) dii(y, X)
2 supp(i1)
. €
<[ reen(en diyx < 5.
supp(iL)
However, since f € C%(X) and i € My, it follows that fz fx)di(y, x) <e€/2.
We then get a contradiction. Therefore, ,&(I%) =0. O
We need also a result on numerical sequences.
LEMMA 17. Consider a sequence {a;} C R for which the following is true:

|k
lim - i =b.
kggok;a]

Let R be a subset of the set of positive integers satisfying
1
lim —#{j e R:j<k}>0.
k—oo k

Then, for any € > 0 and any positive integer K, there exist k1, ko € R such that ky > k; >

K and
ko

> aj—(kp—k)b| <e.

Jj=ki+1

The previous lemma was used by Maifé in [21]. We can now present the following
result.

PROPOSITION 18. Suppose o : ¥ — X is a transitive subshift of finite type. Let A be a
0-Hélder potential. Assume [ € M g with [i o 7'[1_1 ergodic. Then w1 (supp(ii)) C Q(A).

Proof. 1t is enough to show that (ji o nl_l)(Q(A)) = 1. Fix € > 0. Denote by Q(A, €)
the set of the points x € ¥ for which we can find a path (5%, x0), ..., L, x¥ e
P(x, x, €) satisfying

<E€.

k—1 ) )
Y (A-BaG, %)
j=0

As Q(A) =) Q(A, 1/j), it is enough to show that (& o rrl_l)(SZ(A, €)=1.
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Suppose, however, that (& o 711_1)(7'[1 (supp(1)) — (A, €)) > 0. Take an integer [ > 0
sufficiently large in such a way that 21/ < €. So there exists x € 71 (supp(/1)) such that
(fio nl_l)(Dl — Q(A, €)) >0, where Dy is the open ball of radius Al centered at the
point X.

Thus, consider a point X € 71 (supp(fi)) such that

1 ,
lim —-#{0<j<k:0/(X) e D;—Q(A, €)} > 0.
k—o0 k

Thanks to Lemma 16, we can assume that, for every index j > 0, there exists a point
¥/ € £* such that (§/, o/ (X)) € supp(2) and o/~ (X) = 73, (67 (X)).

As u € CY(Z) is an arbitrary sub-action for A, from Proposition 9 we get that
AGF/, 07/ (X)) — Ba = u(c/71 (X)) — u(o/ (X)). Define, finally,

aj =u(@/'®) —u(0’/(X)) and R={j:0/(X) e D —Q(A,e).
Using Lemma 17, we obtain integers k1, k> € R, with 1 < k; < k>, accomplishing

ko
> g

Jj=ki+1

< €.

Y (A-BE, of(i))‘ =

Jj=ki+1

However, once o¥1 (%), o%2(X) € D, it follows that d (6% (X), o*2(X)) < 2A!. Therefore,

(2, R ®), ..., T, okl ®)) e P02 (R), 0%2(%), €) yields o*2(X) € Q(A, e).
This is a contradiction because k, € R.
Hence, (L o 7; ) (Q(A, €) = 1. O

Remember that the addition of a constant does not change the role played by a sub-
action. Thus, the next proposition indicates a kind of rigidity created by the previous
ergodic assumption.

PROPOSITION 19. Consider a probability {1 € M 4 such that i o rrl_l is ergodic. If u, u' €
CO%(2) are sub-actions for A € Co(fl), then u — u' is identically constant on 71 (supp(ii)).

Proof. Suppose x € 71 (supp(&1)). We can use Lemma 16 in order to get a point (¥, X) €
supp({1) such that x = 73(X).
From Proposition 9, we verify

u(X) —u(x) =pa — AF, X) =u'X) — u'(x).

So (u —u)(x)=(u—u)X)=(u —u') oo(x). Therefore, we have u —u' = (u —u') o
o on my(supp(/1)). As the probability [t o 7, Uis ergodic, it follows immediately that
u — u' is constant on 7ty (supp(i1)). O

Let us consider again the transitivity hypothesis and assume that A is Holder. Given
u a sub-action for A, let M4 (u) be its corresponding contact locus. Then, we claim
that 2(A) C w1 (M4 (u)). This is completely obvious when u is a calibrated sub-action,
because in such a case 71(M4(u)) = X. Besides, Corollary 14 tells us that every sub-
actionu € C 0(E) for the potential A behaves as a calibrated sub-action on 2 (A).
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Therefore, the following inclusions are true:

U mGewp@)co@c [ m®aw).

AN 4 uecO(x)

}107‘[;1 ergodic u sub-action

In some situations for the standard model (X, 7', M), it is known that, given a Holder
potential A, a probability is A-maximizing if, and only if, its support is contained in the
set of non-wandering points (with respect to A). See, for instance, the case of expanding
maps of the circle in [9, Proposition 15(ii)] and also the case of Anosov diffeomorphisms
in [19, Lemmas 12 and 13].

Hence, it is natural to ask the following: In order to verify that (i € M4, would it be
enough to check that [i o nfl is ergodic and 7 (supp(i1)) C 2(A)? The answer is ‘no’.

Indeed, here is a counter-example. Take a potential A : {0, 2 >R depending just
on three coordinates in such a way that A(1, 1|1) > A(s, s’ | s”) whenever s + s’ +
s <2. 1If we denote by ss’ either the periodic point (s,s’,...,s,s’,...)€X, or
the periodic point (..., s, s’,...,s,s’) € £*, then we have 811,11), 81,11) € Mo with
311,11y © nl_l =811 =0¢1,11) © yrl_l. Nevertheless, observe that §(11,11) 1S a maximizing
probability, but clearly 8p1,11) ¢ M14.

The second inclusion above also brings us an interesting question: What can be said
about 771 (M4 (u)) — 2(A)? The next proposition gives a partial answer.

PROPOSITION 20. Let 0 : X — X be a transitive subshift of finite type and assume
A e C/(X) is not cohomologous to a constant. Take u € C 0(E) an arbitrary sub-action
for A. Then, for each positive integer k, there exists a sub-action Uy € CO(X) satisfying

k—1
T (Ma(Up) C () 077 (r1 (M a ().
j=0

Moreover; if u is 6-Holder, then we can also take Uy as a 6-Holder function.

Proof. We begin with A = A +uom —uom ob~ ' <pa.

Given k > 0 and x € X, we call a path of size k ending at the point x an ordered sequence
of points y%, x%, ..., "L xkhe $ which verifies x* =x and x/t! = Tyj (x/) for
0 < j <k — 1. Denote by P (x) the set of such paths. Note that

k—1 ) )
YA X)) <kBa
=0
for {(yo, XO), e, (yk_l, xk_l)} € Pr(x).
Taking {(¥°, o' (x)), (¥', 0¥ 2(x)), ..., ¥, x)} € Pr(6¥"1(x)), we have the

identity

k—1 ) ]
Y AW, o ()

j=0

k—1 k—1
=kAY L0+ ) JAG T e ) = Y A, ot ().
j=0 j=0
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Now we define W : ¥ — R in the following way:
W(x) = max [ JAGT! 6t f(x))]
(0,051 @), (7F LX)} ePro 1 (%)) LK Z

Once the correspondence X = maxy,—y, A(y, o(x)) is 0-Holder, the same is true for the
function W.
Fix a point (y, x) € X. Then consider a path

(¢, " X)), . (2 0 (0), (7, X)) € Pr(o" (%))

accomplishing
| k=t ‘ _
T JAG T o (%) = W().
j=1
Puty*~! =y. As {(y!, ¥ 2(x)), . .., (F 1, %)} € Pre_i (0¥ (zy(x))), without difficulty
we get

k—1
Ay, ) + W - W(ry®) < A %+ % Y JAGT! 6F )
j=0

1 « .
‘%Z JAY, "1 (%))
]:

1
=Y Ay, o).

| =

Therefore, if we denote U, = W + k1 Sru, we obtain

k=1

1
A ) + Ur®) = Ur(ry(x) = 1 ) A 0" ) + Sku(X) - —Sku(ry<x>)
j=0

1 «— , .
. Z A"y, o1 (%)) < Ba-

j=0

Hence, Uy is a sub-action for the potential A.

Let us check that such a sub-action Uy accomplishes the claim of the proposition.
We just follow the itinerary of the construction of Uy in the opposite direction. If
x € w1 (M4 (Ug)), then there exists a path

(G, 1), ., L 0 e Pr(oF T (x)
such that

1 k—1 ) ]
£ 2 A T ) = Ba,
j=0

which yields A%(y/, ok=177(x)) = Ba. Thus, clearly o*~1=/(x) € 1 (M (x)) for all
jefo, ... k—1}. =
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The proof described above found inspiration in the strategy used by Bousch in [S].

The previous proposition brings our attention to the following question: Does a
non-calibrated sub-action exist? The answer is ‘yes’.

Under the same hypotheses as in Proposition 20, assume that u € C?(Z) is a
calibrated sub-action. Suppose the existence of a point (y°, x") € £ satisfying both

0 L0y _ 0
Ay, x") = maxy0:y8 A(y, x”) and

AQY, x0) + ux) — u(rp(x%)) < Ba.

(These assumptions are obviously verified by any potential A € C?(X) not cohomologous
to a constant.) We claim that the function U € C?(X) defined by

U = 5[u(o () +u@®]+ 3 max A(y, o(x)

is a sub-action for A which is not calibrated. Indeed, the function U is nothing other than
the sub-action U; described in the proof of the previous proposition. Moreover, note that,
forally e ¥*

0y)°
T X
700

A, Tp(x%) + U (10 (x)) — Uty (130 (x")))
< 3A®, 1 (") + u(ry(x) — u(ty(ry(x)))]
+ 3AGY, x0) + u(x") — u(r(x*)] < Ba.

and therefore 7,0 (x0) ¢ 11 (M4 (D).

A deeper study of non-calibrated sub-actions is the aim of a subsequent paper [14].
Finally, we would like to mention that the possibility of adapting our holonomic setting to
the case of iterated function systems has been recently announced [22].
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