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Abstract. We propose a new model of ergodic optimization for expanding dynamical
systems: the holonomic setting. In fact, we introduce an extension of the standard model
used in this theory. The formulation we consider here is quite natural if one wants a
meaning for possible variations of a real trajectory under the forward shift. In other
contexts (for twist maps, for instance), this property appears in a crucial way. A version of
the Aubry–Mather theory for symbolic dynamics is introduced. We are mainly interested
here in problems related to the properties of maximizing probabilities for the two-sided
shift. Under the transitive hypothesis, we show the existence of sub-actions for Hölder
potentials also in the holonomic setting. We analyze then connections between calibrated
sub-actions and the Mañé potential. A representation formula for calibrated sub-actions is
presented, which drives us naturally to a classification theorem for these sub-actions. We
also investigate properties of the support of maximizing probabilities.

1. The holonomic condition
Consider X a compact metric space. Given a continuous transformation T : X → X , we
denote by MT the convex set of T -invariant Borel probability measures. As usual, we
consider onMT the weak* topology.

The triple (X, T,MT ) is the standard model used in ergodic optimization. Thus, given
a potential A ∈ C0(X), one of the main objectives is the characterization of maximizing
probabilities, that is, the probabilities belonging to{

µ ∈MT :

∫
X

A(x) dµ(x) = max
ν∈MT

∫
X

A(x) dν(x)

}
.

Several results have been obtained related to this maximizing question, among them
[2–4, 9, 16–19]. For maximization with constraints, see [12, 13, 20]. Naturally, if we
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change the maximizing notion for the minimizing one, the analogous properties will
be true.

Our focus here will be on symbolic dynamics. So let σ : 6 → 6 be a one-sided subshift
of finite type given by an r × r transition matrix M. More precisely, we have

6 = {x ∈ {1, . . . , r}
N

: M(x j , x j+1) = 1 for all j ≥ 0}

and σ is the left shift acting on 6, σ(x0, x1, . . .) = (x1, x2, . . .). Recall that, for fixed
λ ∈ (0, 1), we consider 6 with the metric d(x, x̄) = λk , where x = (x0, x1, . . .), x̄ =

(x̄0, x̄1, . . .) ∈ 6 and k = min{ j : x j 6= x̄ j }.
In this particular situation, given a continuous potential A : 6 → R, one should be

a priori interested in A-maximizing probabilities for the triple (6, σ,Mσ ).
Nevertheless, this standard model of ergodic optimization has a major difference to the

twist maps theory or to the Lagrangian Aubry–Mather problem: the dynamics of the shift
is not defined (via a critical path problem) from the potential to be maximized. In similar
terms, in the usual shift standard model, the notion of maximizing segment is not present.
One would like to have small variations of an optimal trajectory, by means of a path which
is not a true trajectory, but a small variation of a real trajectory of the dynamical system.
We will describe a model of ergodic optimization for subshifts of finite type where the
concept of maximizing segment can be introduced: the holonomic setting. In Aubry–
Mather theory for Lagrangian systems (continuous or discrete time), the set of holonomic
probabilities has been considered before by Mañé, Mather, Contreras and Gomes. Main
references on these topics are [1, 7, 11, 15, 21].

In order to define the holonomic model of ergodic optimization, we introduce the dual
subshift σ ∗

: 6∗
→ 6∗ using as transition matrix the transposed MT. In clear terms, we

consider thus the space

6∗
= {y ∈ {1, . . . , r}

N
: M(y j+1, y j ) = 1 for all j ≥ 0}

and the shift σ ∗(. . . , y1, y0) = (. . . , y2, y1). It is possible, in this way, to identify the
space of the dynamics (6̂, σ̂ ), the natural extension of (6, σ ), with a subset of 6∗

× 6.
In fact, if y = (. . . , y1, y0) ∈ 6∗ and x = (x0, x1, . . .) ∈ 6, then 6̂ will be the set of
points (y, x) = (. . . , y1, y0 | x0, x1, . . .) ∈ 6∗

× 6 such that (y0, x0) is an allowed word,
namely, such that M(y0, x0) = 1.

We define then the transformation τ : 6̂ → 6 by

τ(y, x) = τy(x) = (y0, x0, x1, . . .).

Note that σ̂−1(y, x) = (σ ∗(y), τy(x)).
LetM be the convex set of probability measures over the Borel sigma-algebra of 6̂.

Definition 1. In an analogous way to [15], we consider the convex compact subset

M0 =

{
µ̂ ∈M :

∫
6̂

f (τy(x)) dµ̂(y, x) =

∫
6̂

f (x) dµ̂(y, x) ∀ f ∈ C0(6)

}
.

A probability µ̂ ∈M0 will be called holonomic.
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Note that Mσ̂ ⊂M0. It is also not difficult to verify that, whenever µ∗
× µ ∈M0,

we have µ ∈Mσ . Moreover, if µ̂ ∈M0, then µ̂ ◦ π−1
1 ∈Mσ , where π1 : 6̂ → 6 is the

canonical projection. Indeed, if f ∈ C0(6), then∫
6

f ◦ σ(x) d(µ̂ ◦ π−1
1 )(x) =

∫
6̂

f ◦ σ(x) dµ̂(y, x)

=

∫
6̂

f ◦ σ(τy(x)) dµ̂(y, x)

=

∫
6̂

f (x) dµ̂(y, x)

=

∫
6

f (x) d(µ̂ ◦ π−1
1 )(x).

However, M0 does not contain just σ̂ -invariant probabilities. In fact, if x ∈ 6 is a
periodic point of period M , fix any subset {y0, . . . , yM−1

} ⊂ 6∗ with y j
0 = xM−1+ j for

0 ≤ j ≤ M − 1. It is easy to see that

µ̂ =
1
M

M−1∑
j=0

δy j × δσ j (x) ∈M0.

For the ergodic optimization problem, there is very little difference (from a purely
abstract point of view) in relation to which convex compact set of probability measures
over the Borel sigma-algebra is made the maximization. In fact, an adaptation of
[9, Proposition 10] assures that, when considering a convex compact subset N ⊂M, a
generic Hölder potential admits a single maximizing probability in N .

Taking a continuous application A : 6̂ → R, a natural situation is then to formulate the
maximization problem over the setM0.

Definition 2. Given a potential A ∈ C0(6̂), denote

βA = max
µ̂∈M0

∫
6̂

A(y, x) dµ̂(y, x).

We point out that sometimes, even if one is interested just in the problem for a Hölder
potential A : 6 → R, one has to go to the dual problem and consider the dual potential
A∗

: 6∗
→ R. This happens, for instance, when one is trying to analyze a large deviation

principle for the equilibrium probabilities associated to the family of Hölder potentials
{t A}t>0 (see [2]).

Actually, the maximization problem overMσ̂ is not so interesting, because any Hölder
potential A : 6̂ → R is cohomologous to a potential that depends just on future coordinates
(see, for instance, [23]). In this case, the problem can in principle be analyzed in the
standard model, that is, overMσ .

Furthermore, in order to analyze maximization of the integral of a potential A ∈ C0(6),
no new maximal value will be found, because

max
µ̂∈M0

∫
6̂

A(x) dµ̂(y, x) = max
µ∈Mσ

∫
6

A(x) dµ(x).
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Indeed, the correspondence µ̂ ∈M0 7→ µ̂ ◦ π−1
1 ∈Mσ preserves the integration on

C0(6) and the same property is verified by the correspondence µ ∈Mσ 7→ µ ◦ π1 ◦

σ̂−1
∈M0.

Therefore, we could say that the holonomic model of ergodic optimization (6̂, σ̂ ,M0)

is an extension of the standard model (6, σ,Mσ ).
This paper is part of the first author’s PhD thesis [12]. We will be interested here in the

maximization question over M0 and, if possible, in some properties that one can get for
the problem over (6, σ ). In §2, we will show the dual identity

βA = inf
f ∈C0(6)

max
(y,x)∈6̂

[A(y, x) + f (x) − f (τy(x))].

We will then analyze the problem of finding a function u ∈ C0(6) which realizes the
infimum of the previous expression, that is, a sub-action for A.

Definition 3. A sub-action u ∈ C0(6) for the potential A ∈ C0(6̂) is a function satisfying,
for any (y, x) ∈ 6̂,

u(x) ≤ u(τy(x)) − A(y, x) + βA.

Assuming the dynamics (6, σ ) is topologically mixing and the potential A is Hölder,
we will show in §3 the existence of a Hölder sub-action of maximal character. Furthermore,
under the transitivity hypothesis, for a potential θ -Hölder, we will show that we can always
find a calibrated sub-action u ∈ Cθ (6).

Definition 4. A calibrated sub-action u ∈ C0(6) for A ∈ C0(6̂) is a function satisfying

u(x) = min
y∈6∗

x

[u(τy(x)) − A(y, x) + βA],

where, for each point x ∈ 6, we denote by 6∗
x the subset of elements y ∈ 6∗ such that

(y, x) ∈ 6̂.

In the transitive context, we will introduce in §4 the Mañé potential SA : 6 × 6 →

R ∪ {+∞} (the terminology is borrowed from Aubry–Mather theory). Thus, we will
establish a family of Hölder calibrated sub-actions, namely, {SA(x, ·)}x∈�(A), where �(A)

denotes the set of non-wandering points with respect to the potential A ∈ Cθ (6̂). All these
notions will be precisely defined later. Besides, these concepts already appear in [9] for
the forward shift setting.

Definition 5. We will denote by

mA =

{
µ̂ ∈M0 :

∫
6̂

A(y, x) dµ̂(y, x) = βA

}
the set of the A-maximizing holonomic probabilities.

When we investigate the connections between sub-actions and the supports of
holonomic probabilities, the A-maximizing holonomic probability notion is of great
importance. One of the main results of §5 is the representation formula for calibrated
sub-actions. More specifically, given a calibrated sub-action u for a potential A ∈ Cθ (6̂),
the following expression holds:

u(x̄) = inf
x∈�(A)

[u(x) + SA(x, x̄)].
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Such characterization is analogous to the one obtained for weak KAM solutions in
Lagrangian systems (see [6]). Under the transitivity hypothesis, this representation formula
and its reciprocal will describe, by means of an isometric bijection, the set of the calibrated
sub-actions for a Hölder potential A. We will show yet that µ̂ ∈ mA with µ̂ ◦ π−1

1 ergodic
implies π1(supp(µ̂)) ⊂ �(A). This property will drive us naturally to other questions like,
for instance, the possibility of reducing contact loci.

2. The dual formulation
We start by presenting the main goal of this section.

THEOREM 1. Given a potential A ∈ C0(6̂), we have

βA = inf
f ∈C0(6)

max
(y,x)∈6̂

[A(y, x) + f (x) − f (τy(x))].

One observes that this formula corresponds in Lagrangian Aubry–Mather theory to
the characterization of Mañé’s critical value (see [8, Theorem A]). Theorem 1 is just a
consequence of the Fenchel–Rockafellar theorem. For the standard model (X, T,MT ),
a similar result was established before (consult, for instance, [10, 24]). We will present,
anyway, the complete proof for the holonomic setting.

First, consider the convex correspondence F : C0(6̂) → R defined by F(g) =

max(A + g). Consider also the subset

C = {g ∈ C0(6̂) : g(y, x) = f (x) − f (τy(x)), for some f ∈ C0(6)}.

We establish then a concave correspondence G : C0(6̂) → R ∪ {−∞} taking G(g) = 0 if
g ∈ C̄ and G(g) = −∞ otherwise.

Let S be the set of the signed measures over the Borel sigma-algebra of 6̂. Remember
that the corresponding Fenchel transforms, F∗

: S → R ∪ {+∞} and G∗
: S → R ∪

{−∞}, are given by

F∗(µ̂) = sup
g∈C0(6̂)

[∫
6̂

g(y, x) dµ̂(y, x) − F(g)

]
and

G∗(µ̂) = inf
g∈C0(6̂)

[∫
6̂

g(y, x) dµ̂(y, x) − G(g)

]
.

Denote

S0 =

{
µ̂ ∈ S :

∫
6̂

f (τy(x)) dµ̂(y, x) =

∫
6̂

f (x) dµ̂(y, x) ∀ f ∈ C0(6)

}
.

LEMMA 2. Given F and G as above, we verify

F∗(µ̂) =

−

∫
6̂

A(y, x) dµ̂(y, x) if µ̂ ∈M,

+∞ otherwise,

and

G∗(µ̂) =

{
0 if µ̂ ∈ S0,
−∞ otherwise.
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Proof. Assume first that µ̂ ∈ S is not positive, that is, µ̂ gives a negative value for some
Borel set. Therefore, we can find a sequence of functions {g j } ⊂ C0(6̂, R−) such that
lim

∫
6̂

g j (y, x) dµ̂(y, x) = +∞. Once F(g j ) ≤ F(0) < +∞, we have F∗(µ̂) = +∞.
Suppose that µ̂ ∈ S is such that µ̂ ≥ 0 and µ̂(6̂) 6= 1. In this case, we observe that

sup
g∈C0(6̂)

[∫
6̂

g(y, x) dµ̂(y, x) − F(g)

]
≥ sup

a∈R

[∫
6̂

a dµ̂(y, x) − F(a)

]
= sup

a∈R
[a(µ̂(6̂) − 1) − F(0)] = +∞.

On the other hand, when we consider µ̂ ∈M, directly from the inequality∫
6̂

A(y, x) dµ̂(y, x) +
∫
6̂

g(y, x) dµ̂(y, x) ≤ F(g), we have

−

∫
6̂

A(y, x) dµ̂(y, x) ≥ sup
g∈C0(6̂)

[∫
6̂

g(y, x) dµ̂(y, x) − F(g)

]
.

Once F(−A) = 0, we get the characterization of F∗.
Now we will consider G∗. If µ̂ /∈ S0, there exists a function f ∈ C0(6) such that∫

6̂
f (τy(x)) dµ̂(y, x) 6=

∫
6̂

f (x) dµ̂(y, x). Therefore, we verify

G∗(µ̂) = inf
g∈C

∫
6̂

g(y, x) dµ̂(y, x)

≤ inf
a∈R

a
∫

6̂

[ f (τy(x)) − f (x)] dµ̂(y, x) = −∞.

Besides, for µ̂ ∈ S0, clearly G∗(µ̂) = 0. 2

Using this lemma, we can show the dual expression of the beta constant βA =

maxµ̂∈M0

∫
6̂

A(y, x) dµ̂(y, x).

Proof of Theorem 1. Once the correspondence F is Lipschitz, the Fenchel–Rockafellar
duality theorem assures

sup
g∈C0(6̂)

[G(g) − F(g)] = inf
µ̂∈S

[F∗(µ̂) − G∗(µ̂)].

Thus, by Lemma 2,

sup
g∈C

[
− max

(y,x)∈6̂

(A + g)(y, x)

]
= inf

µ̂∈M0

[
−

∫
6̂

A(y, x) dµ̂(y, x)

]
.

Finally, from the definition of C, we get the statement of the theorem. 2

Relative maximization is studied in [13]. In this case, the dual formula is also true.
More specifically, if we introduce a constraint ϕ ∈ C0(6̂, Rn) with coordinate functions
ϕ1, . . . , ϕn , we can then consider an induced map ϕ∗ ∈ C0(M0, Rn) given by

ϕ∗(µ̂) =

(∫
6̂

ϕ1(y, x) dµ̂(y, x), . . . ,

∫
6̂

ϕn(y, x) dµ̂(y, x)

)
.

Thus, if A ∈ C0(6̂), we can immediately define a concave and continuous function
βA,ϕ : ϕ∗(M0) → R by

βA,ϕ(h) = max
µ̂∈ϕ−1

∗ (h)

∫
6̂

A(y, x) dµ̂(y, x).
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Using a slightly more refined argument as [24], we could demonstrate the dual formula for
a beta function,

βA,ϕ(h) = inf
( f,c)∈C0(6)×Rn

max
(y,x)∈6̂

(A + f ◦ π1 − f ◦ π1 ◦ σ̂−1
− 〈c, ϕ − h〉)(y, x).

Nevertheless, the unconstrained dual formula raises a natural question: Can we find
functions accomplishing the infimum of the dual expression? In an equivalent way, is there
a function u ∈ C0(6) such that

A + u ◦ π1 − u ◦ π1 ◦ σ̂−1
≤ βA ?

As we mentioned in the first section, we call any function u as above a sub-action for A.
This terminology is motivated by the inequality

A + u ◦ σ − u ≤ βA,

which is present in the usual definition of a sub-action u for the forward shift setting (see
[9] for instance). The next sections are mainly dedicated to showing the existence of sub-
actions in the holonomic setting.

3. Sub-actions: maximality and calibration
We start by showing not only the existence of sub-actions but also, in fact, the existence
of a maximal sub-action. To that end, remember that a dynamical system (X, T ) is
topologically mixing if, for any pair of non-empty open sets D, E ⊂ X , there is an integer
K > 0 such that T k(D) ∩ E 6= ∅ for all k > K .

PROPOSITION 3. Consider any topologically mixing subshift of finite type σ : 6 → 6 and
a potential A ∈ Cθ (6̂). Then, there exists a sub-action u A ∈ Cθ (6, R−) such that, for any
other sub-action u ∈ C0(6, R−), we have u A ≥ u.

A sub-action like this one (not necessarily Hölder) will be called maximal.

Proof. Without loss of generality, we can assume βA = 0. Then, for each x ∈ 6, set

u A(x) = inf
{
−

k−1∑
j=0

A(y j , x j ) : k ≥ 0, x0
= x, y j

∈ 6∗

x j , x j+1
= τy j (x j )

}
.

By convention, we assume that the sum is zero when k = 0.
Suppose for a moment that u A is a well-defined Hölder application. Note that, if y0

= y
and x0

= x, then

A(y, x) =

k∑
j=0

A(y j , x j ) −

k−1∑
j=0

A(y j+1, x j+1)

≤ −

k−1∑
j=0

A(y j+1, x j+1) − u A(x).

Clearly x1
= τy0(x0) = τy(x). Thus, since the inequality is true for all k ≥ 0 and any

points (y1, x1), . . . , (yk, xk) ∈ 6̂ such that x j+1
= τy j (x j ), it follows that A(y, x) ≤

u A(τy(x)) − u A(x), that is, u A is a sub-action for the potential A.
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So let us prove that the function u A is well defined. Remember that, when x̄ ∈ 6 is a
periodic point of period k, if we choose any points ȳ j

∈ 6∗ satisfying ȳ j
0 = x̄k−( j+1), we

obtain µ̂ = (1/k)
∑k−1

j=0 δȳ j × δσ k− j (x̄) ∈M0. Hence, we immediately verify

−

k−1∑
j=0

A(ȳ j , σ k− j (x̄)) = −k
∫

6̂

A(y, x) dµ̂(y, x) ≥ 0.

Given x ∈ 6, we choose then points (y0, x0), . . . , (yk−1, xk−1) ∈ 6̂ satisfying x0
= x and

x j+1
= τy j (x j ). As (6, σ ) is topologically mixing, there exists an integer K > 0 such

that, for any k > K , we can find a periodic point x̄ of period k satisfying d(xk, x̄) < λk−K ,
where xk

= τyk−1(xk−1). Thus, when we put ȳ j
= y j for K ≤ j ≤ k − 1, it follows that∣∣∣∣k−1∑

j=0

A(y j , x j ) −

k−1∑
j=0

A(ȳ j , σ k− j (x̄))

∣∣∣∣ ≤
Höldθ (A)

1 − λθ
+ 2K‖A‖0,

which assures that u A is well defined.
The application u A is θ -Hölder. Indeed, fix x, x̄ ∈ 6 with d(x, x̄) ≤ λ and consider once

more points (y0, x0), . . . , (yk−1, xk−1) ∈ 6̂ satisfying x0
= x and x j+1

= τy j (x j ). Putting
x̄0

= x̄ and x̄ j+1
= τy j (x̄ j ), we obtain∣∣∣∣k−1∑

j=0

A(y j , x j ) −

k−1∑
j=0

A(y j , x̄ j )

∣∣∣∣ ≤
Höldθ (A)

1 − λθ
d(x, x̄)θ .

As the collection of points {(y j , x j )} was chosen arbitrarily, it follows that

|u A(x) − u A(x̄)| ≤
Höldθ (A)

1 − λθ
d(x, x̄)θ .

To prove the maximal character of u A, just observe that, for any sub-action u ∈

C0(6, R−), we have

u(x) ≤ u(τyk−1(xk−1)) −

k−1∑
j=0

A(y j , x j ) ≤ −

k−1∑
j=0

A(y j , x j )

when k ≥ 0, x0
= x, y j

∈ 6∗

x j and x j+1
= τy j (x j ). 2

An interesting question is the existence of a sub-action of minimal character. Given
a potential A ∈ Cθ (6̂), a possible approach to this demand is to introduce the function
U K ,θ

A ∈ Cθ (6) defined by

U K ,θ
A = inf{u ∈ Cθ (6) : u sub-action for A, Höldθ (u) ≤ K , max u = 0}.

The sub-action U K ,θ
A is in some sense minimal.

In the final section, instead of imposing max u = 0, we will consider a suitable
normalization of sub-actions in order to present a maximal calibrated one. However,
we will need several results before we can discuss this special situation. For instance,
the following theorem assures the existence of calibrated sub-actions for any θ -Hölder
potential.
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THEOREM 4. Let σ : 6 → 6 be a transitive subshift of finite type. For each potential
A ∈ Cθ (6̂), there exists a function u ∈ Cθ (6) such that

u(x) = min
y∈6∗

x

[u(τy(x)) − A(y, x) + βA].

Proof. The idea is to obtain a fixed point of a weak contraction as a limit of fixed points of
strong contractions (see [3, 4]).

Given ρ ∈ (0, 1], we define the transformation Lρ : C0(6) → C0(6) by

Lρ( f )(x) = ρ min
y∈6∗

x

[ f (τy(x)) − A(y, x)].

Once Lρ is ρ-Lipschitz, consider, when 0 < ρ < 1, its fixed point uρ ∈ C0(6).
The first fact to be noted is the equicontinuity of the family {uρ}. Indeed, note that

6∗

x0 = 6∗

x̄0 when d(x0, x̄0) ≤ λ. Hence, if y0
∈ 6∗

x0 satisfies

uρ(x0) = ρ[uρ(τy0(x0)) − A(y0, x0)],

we obtain
uρ(x̄0) ≤ ρ[uρ(τy0(x̄0)) − A(y0, x̄0)].

Therefore, taking x1
= τy0(x0) and x̄1

= τy0(x̄0), we have the inequality

uρ(x̄0) − uρ(x0) ≤ ρ[A(y0, x0) − A(y0, x̄0)] + ρ[uρ(x̄1) − uρ(x1)].

In this way, defining x j
= τy j−1(x j−1) and x̄ j

= τy j−1(x̄ j−1), we continue inductively
obtaining y j

∈ 6∗

x j such that uρ(x j ) = ρ[uρ(τy j (x j )) − A(y j , x j )]. As a consequence of
this construction, it follows that

uρ(x̄0) − uρ(x0) ≤

k−1∑
j=0

ρ j+1
[A(y j , x j ) − A(y j , x̄ j )] + ρk

[uρ(x̄k) − uρ(xk)].

Thus, we verify

uρ(x̄0) − uρ(x0) ≤

∞∑
j=0

ρ j+1
[A(y j , x j ) − A(y j , x̄ j )]

≤ Höldθ (A)

∞∑
j=0

ρ j+1d(x j , x̄ j )θ

≤ Höldθ (A)d(x0, x̄0)θ
∞∑
j=0

ρ j+1λ jθ

=
ρHöldθ (A)

1 − ρλθ
d(x0, x̄0)θ .

We have proved that the family {uρ} is uniformly θ -Hölder; in particular, it is an
equicontinuous family of functions.

The family {uρ} presents also uniformly bounded oscillation. Indeed, given a point
(y, x) ∈ 6̂, note that

uρ(x) − min uρ ≤ ρ[uρ(τy(x)) − A(y, x)] − min ρ[uρ ◦ π1 ◦ σ̂−1
− A]

≤ ρ[max A − A(y, x)] + ρ[uρ(τy(x)) − min uρ]

≤ Höldθ (A) + uρ(τy(x)) − min uρ .
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Since (6, σ ) is transitive, we can define a finite set {(y j , k j )} ⊂ 6∗
× N by choosing,

for each pair of symbols s, s′
∈ {1, . . . , r}, an allowed word (y j

k j −1, . . . , y j
0 ) such that

y j
k j −1 = s′ and the word (y j

0 , s) is allowed. Consequently, given x ∈ 6 with x0 = s, the
inequality

uρ(x) − min uρ ≤ k j Höldθ (A) + uρ(τ
k j

y j (x)) − min uρ

assures that

max
x0=s, x̄0=s′

[uρ(x) − uρ(x̄)] ≤ k j Höldθ (A) + 2
Höldθ (A)

1 − λθ
λθ .

Hence, when K = max k j , it follows that

max
x,x̄∈6

[uρ(x) − uρ(x̄)] ≤

(
K +

2λθ

1 − λθ

)
Höldθ (A),

that is, the family {uρ} has uniformly bounded oscillation.
From the properties demonstrated above, we immediately obtain that the family

{uρ − max uρ} is equicontinuous and uniformly bounded. Note also that uρ − max uρ =

(ρ − 1) max uρ + Lρ(uρ − max uρ). Then, if the function u (necessarily θ -Hölder) is an
accumulation point of {uρ − max uρ} when ρ tends to 1, we have u = a + L1(u) for some
constant a ∈ R.

It remains to show that a = βA. Put Ã = A + u ◦ π1 − u ◦ π1 ◦ σ̂−1. Since Ã ≤ a, for
all µ̂ ∈M0, we verify∫

6̂

A(y, x) dµ̂(y, x) =

∫
6̂

Ã(y, x) dµ̂(y, x) ≤ a,

hence βA ≤ a. Besides, observe that

a = max
y∈6∗

x

Ã(y, x) for all x ∈ 6.

Thus, given x0
∈ 6, take y0

∈ 6∗

x0 satisfying Ã(y0, x0) = a. Putting x j
= τy j−1(x j−1),

inductively consider y j
∈ 6∗

x j such that Ã(y j , x j ) = a. Let µ̂ ∈M be an accumulation
point of the sequence of probabilities

µ̂k =
1
k

k−1∑
j=0

δ(y j ,x j ).

Clearly it is true that
∫
6̂

Ã(y, x) dµ̂(y, x) = a. Therefore, if we prove that µ̂ ∈M0, we
will obtain a ≤ βA. For any f ∈ C0(6), note then that∣∣∣∣∫

6̂

[ f (τy(x)) − f (x)] dµ̂k(y, x)

∣∣∣∣ =
1
k

∣∣∣∣k−1∑
j=0

[ f (τy j (x j )) − f (x j )]

∣∣∣∣
=

1
k
| f (xk) − f (x0)| ≤

2
k
‖ f ‖0.

Now taking the limit when k tends to infinity, we assure µ̂ ∈M0 and this finishes the
proof. 2
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The previous result implies the existence of a calibrated sub-action u for the forward
shift setting [3, 9, 17]. Indeed, supposing A ∈ Cθ (6), observe that we have A ◦ τ ∈

Cθ (6̂). Hence, under the transitivity hypothesis, there exists a function u ∈ Cθ (6)

satisfying
u(x) = min

y∈6∗
x

[u(τy(x)) − A ◦ τ(y, x) + βA◦τ ].

Once βA◦τ = βA = maxµ∈Mσ

∫
6

A(x) dµ(x), taking z = τy(x), we obtain the usual
expression (see for instance [9])

u(x) = min
σ(z)=x

(u − A + βA)(z).

The notion of calibrated sub-action is an important concept also in relative
maximization. In particular, Theorem 4 assures a version for the holonomic setting of
[13, Theorem 17]. Such a version will point out that the differential of an alpha application
dictates the asymptotic behavior of the optimal trajectories. We will state the precise result.

We start by considering the Fenchel transform of the previous beta function βA,ϕ . Called
an alpha application, such a function αA,ϕ : Rn

→ R is defined simply by

αA,ϕ(c) = min
h∈ϕ∗(M0)

[〈c, h〉 − βA,ϕ(h)].

If u ∈ C0(6) is a calibrated sub-action, we say that a sequence {y j , x j
} ⊂ 6̂ is an

optimal trajectory (associated to the potential A) in the case x j
= τy j−1(x j−1) and u(x j ) =

u(x j+1) − A(y j , x j ) + βA. Since the equality αA,ϕ(c) = −βA−〈c,ϕ〉 is true, we can adapt
[13, Proof of Theorem 17] to the present case. Therefore, under the transitivity hypothesis,
if the potential A and the constraint ϕ are Hölder, every optimal trajectory {y j , x j

}

associated to A − 〈c, ϕ〉 satisfies

lim
k→∞

1
k

k−1∑
j=0

ϕ(y j , x j ) = DαA,ϕ(c),

in the case when the function αA,ϕ is differentiable at the point c ∈ Rn .
Concluding this section, we would like to say a few words about a version of

Livšic’s theorem for the model (6̂, σ̂ ,M0). We will say that a function A ∈ C0(6̂) is
cohomologous to a constant a ∈ R if there exists a function u ∈ C0(6) such that

A + u ◦ π1 − u ◦ π1 ◦ σ̂−1
= a.

PROPOSITION 5. Assume that σ : 6 → 6 is a transitive subshift of finite type and suppose
that A is a θ -Hölder function. Then, mA =M0 if, and only if, A is cohomologous to βA.

Proof. The sufficiency is obvious. Reciprocally, as mA =M0 implies βA = −β−A,
consider functions u, u′

∈ C0(6) satisfying

A + u ◦ π1 − u ◦ π1 ◦ σ̂−1
≤ βA and βA ≤ A − u′

◦ π1 + u′
◦ π1 ◦ σ̂−1.

Therefore, we have (u + u′) ◦ π1 ≤ (u + u′) ◦ π1 ◦ σ̂−1. In this case, however, the
transitivity hypothesis implies that the function u + u′ is identically equal to a constant
b. Since u = b − u′, from the above two inequalities, it follows that the potential A is
cohomologous to βA via the function u. 2
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FIGURE 1. Graphical representation of paths belonging to P(x, x̄, ε).

4. Calibrated sub-actions and Mañé potential
Using the Mañé potential and the set of non-wandering points, we will be able to introduce
a family of Hölder calibrated sub-actions. In the final section, this family will play a crucial
role in the classification theorem of calibrated sub-actions.

Definition 6. Given ε > 0 and x, x̄ ∈ 6, we will call a path beginning within ε of x and
ending at x̄ an ordered sequence of points

(y0, x0), . . . , (yk−1, xk−1) ∈ 6̂

satisfying x0
= x̄, x j+1

= τy j (x j ) and d(τyk−1(xk−1), x) < ε. We will denote by P(x, x̄, ε)

the set of such paths (see Figure 1).

Definition 7. Following [9], a point x ∈ 6 will be called non-wandering with
respect to the potential A ∈ C0(6̂) when, for all ε > 0, we can determine a path
{(y0, x0), . . . , (yk−1, xk−1)} ∈ P(x, x, ε) such that∣∣∣∣k−1∑

j=0

(A − βA)(y j , x j )

∣∣∣∣ < ε.

We will denote by �(A) the set of non-wandering points with respect to A.

When the potential is Hölder, it is not difficult to see that �(A) is a compact invariant
set. We will show that such a set is indeed not empty.

LEMMA 6. If σ : 6 → 6 is a transitive subshift of finite type, for any potential A ∈

Cθ (6̂), we have �(A) 6= ∅.

Proof. Let u ∈ C0(6) be a calibrated sub-action obtained from Theorem 4. Fix any point
x0

∈ 6. Take then y0
∈ 6∗

x0 satisfying the identity u(x0) = u(τy0(x0)) − A(y0, x0) + βA.

Denote x j+1
= τy j (x j ) and proceed in an inductive way determining a point y j+1

∈ 6∗

x j+1

such that u(x j+1) = u(τy j+1(x j+1)) − A(y j+1, x j+1) + βA. Let x ∈ 6 be a limit of some
subsequence {x jm }.
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We claim that x ∈ �(A). First note that, if m2 > m1, from the definition of the sequence
{x j

}, we obtain

−

jm2−1∑
j= jm1

(A − βA)(y j , x j ) = u(x jm1 ) − u(x jm2 ).

For a fixed ε > 0, consider an integer l > 0 such that, if x′, x′′
∈ 6 and d(x′, x′′) < λl , then

|u(x′) − u(x′′)| < ε/2. We can suppose that l is sufficiently large in such a way that

max
{
λl ,

Höldθ (A)

1 − λθ
λθl

}
<

ε

2
.

Now take an integer m0 sufficiently large such that d(x jm , x) < λl/2 for all m > m0.
Considering integers m2 > m1 > m0, put k = jm2 − jm1 . Since 6∗

x = 6∗

x jm1
, we choose

ȳ j
= y jm1+ j for 0 ≤ j ≤ k − 1. Finally, denote x̄0

= x and x̄ j+1
= τȳ j (x̄ j ). Once

d(τȳk−1(x̄k−1), x) ≤ d(τȳk−1(x̄k−1), x jm2 ) + d(x jm2 , x) < λk+l
+ λl < ε,

it follows that {(ȳ0, x̄0), . . . , (ȳk−1, x̄k−1)} ∈ P(x, x, ε). Moreover, since d(x jm1 , x jm2 )

< λl , we get∣∣∣∣k−1∑
j=0

(A − βA)(ȳ j , x̄ j )

∣∣∣∣ ≤

∣∣∣∣k−1∑
j=0

A(ȳ j , x̄ j ) −

jm2−1∑
j= jm1

A(y j , x j )

∣∣∣∣ + |u(x jm1 ) − u(x jm2 )|

<
Höldθ (A)

1 − λθ
λθl

+
ε

2
< ε.

Therefore, x ∈ �(A). 2

The following definition is also inspired by [9].

Definition 8. We call ‘Mañé potential’ the function SA : 6 × 6 → R ∪ {±∞} defined by

SA(x, x̄) = lim
ε→0

Sε
A(x, x̄),

where

Sε
A(x, x̄) = inf

{(y0,x0),...,(yk−1,xk−1)}∈P(x,x̄,ε)

[
−

k−1∑
j=0

(A − βA)(y j , x j )

]
.

Note that �(A) = {x ∈ 6 : SA(x, x) = 0}.
As we will see soon the Mañé potential will provide, for a Hölder potential, a

one-parameter family of equally Hölder sub-actions. Before that we need some properties.
Let u ∈ C0(6) be a sub-action for the potential A ∈ C0(6̂). We say that the point x ∈ 6

is u-connected to the point x̄ ∈ 6, and we indicate this by x
u

→ x̄, when, for every ε > 0,
we can determine a path {(y0, x0), . . . , (yk−1, xk−1)} ∈ P(x, x̄, ε) such that∣∣∣∣k−1∑

j=0

(A − βA)(y j , x j ) − (u(x) − u(x̄))

∣∣∣∣ < ε.

Note that x ∈ �(A) implies x
u

→ x for any sub-action u.
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LEMMA 7. Let u ∈ C0(6) be a sub-action for a potential A ∈ C0(6̂). Then, for any
x, x̄ ∈ 6, we have SA(x, x̄) ≥ u(x̄) − u(x). Moreover, the equality is true if, and only if,
x

u
→ x̄.

Before the proof of this lemma, we would like just to point out another important
property of the Mañé potential: if A is a θ -Hölder potential, then SA(x, ¯̄x) ≤ SA(x, x̄) +

SA(x̄, ¯̄x) for any points x, x̄, ¯̄x ∈ 6. We leave for the reader the demonstration of this
simple fact.

Proof. Fix ρ > 0. Take ε ∈ (0, ρ) such that |u(x′) − u(x′′)| < ρ, when x′, x′′
∈ 6 satisfy

d(x′, x′′) < ε. Consider now any path

{(y0, x0), . . . , (yk−1, xk−1)} ∈ P(x, x̄, ε).

Once

u(x̄) − u(x) − ρ < u(x0) − u(τyk−1(xk−1)) ≤ −

k−1∑
j=0

(A − βA)(y j , x j ),

it follows that u(x̄) − u(x) − ρ ≤ SA(x, x̄). Taking ρ arbitrarily small, we obtain the
inequality of the lemma.

If SA(x, x̄) = u(x̄) − u(x), from the definition of the Mañé potential, immediately we
get x

u
→ x̄. Reciprocally, suppose that x is u-connected to x̄. Take then ρ > 0. Given

ε ∈ (0, ρ), we can choose a path

{(y0, x0), . . . , (yk−1, xk−1)} ∈ P(x, x̄, ε)

satisfying ∣∣∣∣k−1∑
j=0

(A − βA)(y j , x j ) − (u(x) − u(x̄))

∣∣∣∣ < ε.

Observe that

−

k−1∑
j=0

(A − βA)(y j , x j ) < u(x̄) − u(x) + ε < u(x̄) − u(x) + ρ.

Thus, we verify SA(x, x̄) ≤ u(x̄) − u(x) + ρ. As ρ can be taken arbitrarily small, we
finally get the equality claimed by the lemma. 2

We now present the main result of this section.

PROPOSITION 8. Suppose that σ : 6 → 6 is a transitive subshift of finite type. Let A be a
θ -Hölder potential. Then, for each x ∈ �(A), the function SA(x, ·) is a θ -Hölder
calibrated sub-action.

Proof. Fix a point x ∈ �(A). We must show first that SA(x, ·) is a well-defined real
function. Thanks to Lemma 7, we only need to assure that SA(x, x̄) < +∞ for any x̄ ∈ 6.

Take ε > 0 arbitrary. For a fixed value ε′
∈ (0, λ], consider a path {(y0, x0), . . . ,

(yk−1, xk−1)} ∈ P(x, x̄, ε′) satisfying

−

k−1∑
j=0

(A − βA)(y j , x j ) < Sε′

A (x, x̄) + ε.
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As x ∈ �(A), we can take {(ȳ0, x̄0), . . . , (ȳk̄−1, x̄k̄−1)} ∈ P(x, x, ε/2), with λk̄ε′ < ε/2,
such that ∣∣∣∣k̄−1∑

j=0

(A − βA)(ȳ j , x̄ j )

∣∣∣∣ <
ε

2
.

Thus, we define y j
= ȳ j−k for k ≤ j < k + k̄. Observe that we have yk

= ȳ0
∈ 6∗

x̄0 =

6∗

τyk−1 (xk−1)
. Therefore, we can put x j+1

= τy j (x j ) for k − 1 ≤ j < k + k̄ − 1.

We claim that {(y0, x0), . . . , (yk+k̄−1, xk+k̄−1)} ∈ P(x, x̄, ε). Indeed, we have

d(τyk+k̄−1(xk+k̄−1), x) ≤ d(τyk+k̄−1(xk+k̄−1), τȳk̄−1(x̄k̄−1)) + d(τȳk̄−1(x̄k̄−1), x)

< λk̄ε′
+

ε

2
< ε.

Besides, without difficulty we verify∣∣∣∣k+k̄−1∑
j=k

A(y j , x j ) −

k̄−1∑
j=0

A(ȳ j , x̄ j )

∣∣∣∣ ≤
Höldθ (A)

1 − λθ
(ε′)θ .

Hence, we immediately have

Sε
A(x, x̄) ≤ −

k+k̄−1∑
j=0

(A − βA)(y j , x j ) <
Höldθ (A)

1 − λθ
(ε′)θ + Sε′

A (x, x̄) +
3
2
ε,

which yields

SA(x, x̄) ≤
Höldθ (A)

1 − λθ
(ε′)θ + Sε′

A (x, x̄).

As the right-hand side is finite, the application SA(x, ·) is well defined.
We claim that it is indeed a θ -Hölder function. Take points x̄, ¯̄x ∈ 6 such that d(x̄, ¯̄x)

≤ λ. Consider a fixed ρ > 0. Given ε > 0, we can find a path {(y0, x0), . . . , (yk−1, xk−1)} ∈

P(x, x̄, ε), with λk+1 < ε, such that

−

k−1∑
j=0

(A − βA)(y j , x j ) < Sε
A(x, x̄) + ρ.

Taking ȳ j
= y j for 0 ≤ j < k, we write x̄0

= ¯̄x and, finally, we define x̄ j+1
= τȳ j (x̄ j )

when 0 ≤ j < k − 1. It is easy to confirm that {(ȳ0, x̄0), . . . , (ȳk−1, x̄k−1)} ∈ P(x, ¯̄x, 2ε),
as well as

−

k−1∑
j=0

A(y j , x j ) ≥ −

k−1∑
j=0

A(ȳ j , x̄ j ) −
Höldθ (A)

1 − λθ
d(x̄, ¯̄x)θ .

Therefore, we verify the following inequalities:

SA(x, x̄) ≥ Sε
A(x, x̄)

> −

k−1∑
j=0

(A − βA)(y j , x j ) − ρ

≥ −

k−1∑
j=0

(A − βA)(ȳ j , x̄ j ) −
Höldθ (A)

1 − λθ
d(x̄, ¯̄x)θ − ρ

≥ S2ε
A (x, ¯̄x) −

Höldθ (A)

1 − λθ
d(x̄, ¯̄x)θ − ρ.
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Since ε and ρ can be considered (in such order) arbitrarily small, we get

SA(x, x̄) − SA(x, ¯̄x) ≥ −
Höldθ (A)

1 − λθ
d(x̄, ¯̄x)θ .

It follows at once that SA(x, ·) ∈ Cθ (6).
It remains to show that the application SA(x, ·) is a calibrated sub-action.
Fix a point (ȳ, x̄) ∈ 6̂. When {(y1, x1), . . . , (yk, xk)} ∈ P(x, τȳ(x̄), ε), put y0

= ȳ,
x0

= x̄. We point out that

A(ȳ, x̄) − βA =

k∑
j=0

(A − βA)(y j , x j ) −

k−1∑
j=0

(A − βA)(y j+1, x j+1)

≤ −

k−1∑
j=0

(A − βA)(y j+1, x j+1) − Sε
A(x, x̄).

As the path is arbitrary, we have A(ȳ, x̄) − βA ≤ Sε
A(x, τȳ(x̄)) − Sε

A(x, x̄). Hence, taking
the limit, we show that SA(x, ·) is indeed a sub-action for the potential A.

In order to verify that it is a calibrated sub-action, we should be able to determine,
for each x̄ ∈ 6, a point ȳ ∈ 6∗

x̄ accomplishing the equality SA(x, x̄) = SA(x, τȳ(x̄)) −

A(ȳ, x̄) + βA. Given ε > 0, consider a path {(y0, x0), . . . , (yk−1, xk−1)} ∈ P(x, x̄, ε)

such that

−

k−1∑
j=0

(A − βA)(y j , x j ) < Sε
A(x, x̄) + ε.

This defines a family {y0
}ε>0 ⊂ 6∗

x̄ . Take ȳ ∈ 6∗

x̄ an accumulation point of this family
when ε tends to zero. Observe that

Sε
A(x, τy0(x̄)) − (A − βA)(y0, x̄) ≤ −

k−1∑
j=0

(A − βA)(y j , x j ).

As τy0(x̄) = τȳ(x̄) for ε sufficiently small, we can focus on

Sε
A(x, τȳ(x̄)) − (A − βA)(y0, x̄) < Sε

A(x, x̄) + ε.

So taking ε arbitrarily small, we finish the proof. 2

5. Sub-actions and supports
This section is dedicated to the analysis of relationships between sub-actions and supports
of holonomic probabilities. A unifying element of these concepts continues to be the notion
of contact locus.

Definition 9. Given a sub-action u ∈ C0(6) for a potential A ∈ C0(6̂), consider the
function Au

= A + u ◦ π1 − u ◦ π1 ◦ σ̂−1. We call the set MA(u) = (Au)−1(βA) the
contact locus of the sub-action u.

The contact locus is just the set where the usual inequality defining a sub-action
becomes an equality. It plays an important role in the localization of the support of
maximizing holonomic probabilities.
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PROPOSITION 9. If u ∈ C0(6) is a sub-action for a potential A ∈ C0(6̂), then

mA = {µ̂ ∈M0 : supp(µ̂) ⊂ MA(u)}.

The proof of this statement is reduced to the well-known fact that, if its integral is zero,
a measurable non-negative function is zero almost everywhere.

We now require a classification theorem for calibrated sub-actions. We start by
presenting a result which supplies a representation formula for these sub-actions.

THEOREM 10. If u ∈ C0(6) is a calibrated sub-action for a θ -Hölder potential A, then

u(x̄) = inf
x∈�(A)

[u(x) + SA(x, x̄)].

Proof. Thanks to Lemma 7, it immediately follows that

u(x̄) ≤ inf
x∈�(A)

[u(x) + SA(x, x̄)].

Besides, the identity will be true if there exists a point x ∈ �(A) satisfying x
u

→ x̄.
Consider {(y j , x j )} ⊂ 6̂ an optimal trajectory associated to the potential A such that

x0
= x̄. Denote by x ∈ 6 the limit of a subsequence {x jm }.
Lemma 6 shows that x ∈ �(A). So we only have to prove that x

u
→ x̄. Fix ε > 0 and

choose an integer l > 0 in such a way that |u(x′) − u(x′′)| < ε when x′, x′′
∈ 6 satisfy

d(x′, x′′) < λl . Assume that l also accomplishes λl < ε. Take m sufficiently large such
that d(x jm , x) < λl . Put k = jm .

Observe that d(τyk−1(xk−1), x) = d(x jm , x) < ε. Therefore, we assure {(y0, x0), . . . ,

(yk−1, xk−1)} ∈ P(x, x̄, ε). As
k−1∑
j=0

(A − βA)(y j , x j ) − (u(xk) − u(x̄)) = 0,

we obtain ∣∣∣∣k−1∑
j=0

(A − βA)(y j , x j ) − (u(x) − u(x̄))

∣∣∣∣ = |u(x jm ) − u(x)| < ε,

which finishes the proof. 2

The following immediate corollary indicates the importance of the set �(A) in the
analysis of calibrated sub-actions.

COROLLARY 11. Let u, u′
∈ C0(6) be calibrated sub-actions for a potential A ∈ Cθ (6̂).

If u ≤ u′ on �(A), then u ≤ u′ everywhere on 6. In particular, if we have u|�(A) =

u′
|�(A), then both sub-actions are equal.

Theorem 10 admits a reciprocal.

THEOREM 12. Let σ : 6 → 6 be a transitive subshift of finite type. Consider a potential
A ∈ Cθ (6̂). Assume that the function f : �(A) → R has a finite lower bound. Then

u(x̄) = inf
x∈�(A)

[ f (x) + SA(x, x̄)]

defines a θ -Hölder calibrated sub-action. Moreover, if f (x̄) − f (x) ≤ SA(x, x̄) for any
x, x̄ ∈ �(A), then u = f on �(A).
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Proof. The good definition of u : 6 → R is clear. We will show that it is a Hölder
function. Fix ε > 0. Given x̄, ¯̄x ∈ 6 with d(x̄, ¯̄x) ≤ λ, take a point x ∈ �(A) such that
f (x) + SA(x, ¯̄x) < u( ¯̄x) + ε. It follows from the proof of Proposition 8 that

u(x̄) − u( ¯̄x) − ε < SA(x, x̄) − SA(x, ¯̄x) ≤
Höldθ (A)

1 − λθ
d(x̄, ¯̄x)θ .

As ε is arbitrary, we get u ∈ Cθ (6).
In fact, u is a sub-action for the potential A. Consider a point (ȳ, x̄) ∈ 6̂ and ε > 0.

Choose x ∈ �(A) satisfying f (x) + SA(x, τȳ(x̄)) < u(τȳ(x̄)) + ε. Since

u(x̄) − u(τȳ(x̄)) − ε < SA(x, x̄) − SA(x, τȳ(x̄)) ≤ βA − A(ȳ, x̄),

the claim follows when ε tends to zero.
The calibrated character of u is also a consequence of Proposition 8. Indeed, take x̄ ∈ 6,

and choose a point x j
∈ �(A) such that

f (x j ) + SA(x j , x̄) < u(x̄) +
1
j
.

Now, for each index j , take a point y j
∈ 6∗

x̄ satisfying

SA(x j , x̄) = SA(x j , τy j (x̄)) − A(y j , x̄) + βA.

Finally, let ȳ ∈ 6∗

x̄ be an accumulation point of the sequence {y j
}. As u(τy j (x̄)) ≤

f (x j ) + SA(x j , τy j (x̄)), we verify

u(τy j (x̄)) − A(y j , x̄) + βA < u(x̄) +
1
j
.

Therefore, u(τȳ(x̄)) − A(ȳ, x̄) + βA ≤ u(x̄).
At last, suppose that f (x̄) − f (x) ≤ SA(x, x̄) for any x, x̄ ∈ �(A). Hence, the

inequalities u(x̄) ≤ f (x̄) ≤ f (x) + SA(x, x̄) are valid for all x ∈ �(A), which implies
immediately u = f on �(A). 2

One of the main consequences of the previous theorem is a kind of Hölder supremacy
for sub-actions that we will state below. This result corresponds to the well-known
fact in Lagrangian Aubry–Mather theory according to which a weak KAM solution is
differentiable in the Aubry set (see [7]).

COROLLARY 13. Suppose σ : 6 → 6 is a transitive subshift of finite type. If u ∈ C0(6)

is a sub-action for a potential A ∈ Cθ (6̂), then u|�(A) is θ -Hölder.

Allow us to indicate another immediate consequence of Theorem 12.

COROLLARY 14. Let σ : 6 → 6 be a transitive subshift of finite type. Assume that
u ∈ C0(6) is a sub-action for a θ -Hölder potential A. Then, for every point x ∈ �(A),
we verify

u(x) = min
y∈6∗

x

[u(τy(x)) − A(y, x) + βA].

Theorems 10 and 12 assure that every calibrated sub-action for a Hölder potential A is
also Hölder. Moreover, we have a complete description of the set of these sub-actions.
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THEOREM 15. Consider σ : 6 → 6 a transitive subshift of finite type and A : 6 → R a
θ -Hölder potential. Then, there exists a bijective and isometric correspondence between
the set of calibrated sub-actions for A and the set of functions f ∈ C0(�(A)) satisfying
f (x̄) − f (x) ≤ SA(x, x̄), for all points x, x̄ ∈ �(A).

Proof. Let us analyze the correspondence

f 7→ u f = inf
x∈�(A)

[ f (x) + SA(x, ·)].

It follows from Theorem 12 that such correspondence is well defined and injective. From
Theorem 10 we get that it is surjective. Besides, the correspondence is an isometry. Indeed,
fixing ε > 0, if x̄ ∈ 6, take a point x ∈ �(A) such that f (x) + SA(x, x̄) < u f (x̄) + ε.
Therefore, we have

ug(x̄) − u f (x̄) − ε < g(x) − f (x) ≤ ‖ f − g‖0.

When ε tends to zero, since x̄ is arbitrary and since we can interchange the roles of f and g,
we see that ‖u f − ug‖0 ≤ ‖ f − g‖0. On the other hand, as u f |�(A) = f and ug|�(A) = g,
we verify ‖u f − ug‖0 ≥ ‖ f − g‖0. 2

In [6], Contreras characterizes the weak KAM solutions of the Hamilton–Jacobi
equation in terms of their values at each static class and the values of the action potential
of Mañé. The result we presented above describes a similar property for our holonomic
setting.

As announced just before the statement of Theorem 4, under the transitive hypothesis,
there always exists a calibrated sub-action of maximal character for a Hölder potential. We
only need to consider the following one:

u0 = inf
x∈�(A)

SA(x, ·).

Indeed, it is clear that u0 ≤ 0 on �(A). Moreover, if we take any sub-action u ∈ C0(6)

satisfying u|�(A) ≤ 0, since u(x̄) ≤ u(x) + SA(x, x̄) ≤ SA(x, x̄) for x ∈ �(A) and x̄ ∈ 6,
we verify u ≤ u0.

Now we will focus also on the support of maximizing holonomic probabilities in order
to complete our investigation. We need just two lemmas.

LEMMA 16. Suppose µ̂ ∈M0. Then, almost every point (y, x) ∈ supp(µ̂) is of the form
(y, τȳ(x̄)), with (ȳ, x̄) ∈ supp(µ̂).

Proof. Consider the set

R̂ = {(y, x) ∈ supp(µ̂) : x 6= τȳ(x̄) ∀ (ȳ, x̄) ∈ supp(µ̂)}.

Suppose µ̂(R̂) = ε > 0. Put R = π1(R̂). Consider D ⊂ 6 a compact subset and E ⊂ 6 an
open subset satisfying D ⊂ R ⊂ E with (µ̂ ◦ π−1

1 )(E − D) < ε/2. Take then a function
f ∈ C0(6, [0, 1]) such that f |D ≡ 1 and f |6−E ≡ 0. Once π−1

1 (R) ∩ supp(µ̂) = R̂, we
get ∫

6̂

f (x) dµ̂(y, x) ≥ µ̂(π−1
1 (D)) ≥ µ̂(π−1

1 (R)) − µ̂(π−1
1 (E − D)) >

ε

2
.
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Thus, consider a sequence of functions { f j } ⊂ C0(6, [0, 1]) such that f j ↑ χE−D . By
the monotonic convergence theorem, we obtain∫

6̂

χE−D(τy(x)) dµ̂(y, x) = lim
j→∞

∫
6̂

f j (τy(x)) dµ̂(y, x)

= lim
j→∞

∫
6̂

f j (x) dµ̂(y, x)

= µ̂(π−1
1 (E − D)) <

ε

2
.

Note that, from the definition of R, we have
∫

supp(µ̂)
χR(τy(x)) dµ̂(y, x) = 0. Hence, as

0 ≤ f ≤ χE , we verify∫
6̂

f (τy(x)) dµ̂(y, x) ≤

∫
supp(µ̂)

χE−R(τy(x)) dµ̂(y, x)

≤

∫
supp(µ̂)

χE−D(τy(x)) dµ̂(y, x) <
ε

2
.

However, since f ∈ C0(6) and µ̂ ∈M0, it follows that
∫
6̂

f (x) dµ̂(y, x) < ε/2.
We then get a contradiction. Therefore, µ̂(R̂) = 0. 2

We need also a result on numerical sequences.

LEMMA 17. Consider a sequence {a j } ⊂ R for which the following is true:

lim
k→∞

1
k

k∑
j=1

a j = b.

Let R be a subset of the set of positive integers satisfying

lim
k→∞

1
k

#{ j ∈ R : j ≤ k} > 0.

Then, for any ε > 0 and any positive integer K , there exist k1, k2 ∈ R such that k2 > k1 ≥

K and ∣∣∣∣ k2∑
j=k1+1

a j − (k2 − k1)b

∣∣∣∣ < ε.

The previous lemma was used by Mañé in [21]. We can now present the following
result.

PROPOSITION 18. Suppose σ : 6 → 6 is a transitive subshift of finite type. Let A be a
θ -Hölder potential. Assume µ̂ ∈ mA with µ̂ ◦ π−1

1 ergodic. Then π1(supp(µ̂)) ⊂ �(A).

Proof. It is enough to show that (µ̂ ◦ π−1
1 )(�(A)) = 1. Fix ε > 0. Denote by �(A, ε)

the set of the points x ∈ 6 for which we can find a path {(y0, x0), . . . , (yk−1, xk−1)} ∈

P(x, x, ε) satisfying ∣∣∣∣k−1∑
j=0

(A − βA)(y j , x j )

∣∣∣∣ < ε.

As �(A) =
⋂

�(A, 1/j), it is enough to show that (µ̂ ◦ π−1
1 )(�(A, ε)) = 1.
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Suppose, however, that (µ̂ ◦ π−1
1 )(π1(supp(µ̂)) − �(A, ε)) > 0. Take an integer l > 0

sufficiently large in such a way that 2λl < ε. So there exists x ∈ π1(supp(µ̂)) such that
(µ̂ ◦ π−1

1 )(Dl − �(A, ε)) > 0, where Dl is the open ball of radius λl centered at the
point x.

Thus, consider a point x̄ ∈ π1(supp(µ̂)) such that

lim
k→∞

1
k

#{0 ≤ j < k : σ j (x̄) ∈ Dl − �(A, ε)} > 0.

Thanks to Lemma 16, we can assume that, for every index j > 0, there exists a point
ȳ j

∈ 6∗ such that (ȳ j , σ j (x̄)) ∈ supp(µ̂) and σ j−1(x̄) = τȳ j (σ j (x̄)).
As u ∈ C0(6) is an arbitrary sub-action for A, from Proposition 9 we get that

A(ȳ j , σ j (x̄)) − βA = u(σ j−1(x̄)) − u(σ j (x̄)). Define, finally,

a j = u(σ j−1(x̄)) − u(σ j (x̄)) and R = { j : σ j (x̄) ∈ Dl − �(A, ε)}.

Using Lemma 17, we obtain integers k1, k2 ∈ R, with 1 ≤ k1 < k2, accomplishing∣∣∣∣ k2∑
j=k1+1

(A − βA)(ȳ j , σ j (x̄))

∣∣∣∣ =

∣∣∣∣ k2∑
j=k1+1

a j

∣∣∣∣ < ε.

However, once σ k1(x̄), σ k2(x̄) ∈ Dl , it follows that d(σ k1(x̄), σ k2(x̄)) ≤ 2λl . Therefore,
{(ȳk2 , σ k2(x̄)), . . . , (ȳk1+1, σ k1+1(x̄))} ∈ P(σ k2(x̄), σ k2(x̄), ε) yields σ k2(x̄) ∈ �(A, ε).
This is a contradiction because k2 ∈ R.

Hence, (µ̂ ◦ π−1
1 )(�(A, ε)) = 1. 2

Remember that the addition of a constant does not change the role played by a sub-
action. Thus, the next proposition indicates a kind of rigidity created by the previous
ergodic assumption.

PROPOSITION 19. Consider a probability µ̂ ∈ mA such that µ̂ ◦ π−1
1 is ergodic. If u, u′

∈

C0(6) are sub-actions for A ∈ C0(6̂), then u − u′ is identically constant on π1(supp(µ̂)).

Proof. Suppose x ∈ π1(supp(µ̂)). We can use Lemma 16 in order to get a point (ȳ, x̄) ∈

supp(µ̂) such that x = τȳ(x̄).
From Proposition 9, we verify

u(x̄) − u(x) = βA − A(ȳ, x̄) = u′(x̄) − u′(x).

So (u − u′)(x) = (u − u′)(x̄) = (u − u′) ◦ σ(x). Therefore, we have u − u′
= (u − u′) ◦

σ on π1(supp(µ̂)). As the probability µ̂ ◦ π−1
1 is ergodic, it follows immediately that

u − u′ is constant on π1(supp(µ̂)). 2

Let us consider again the transitivity hypothesis and assume that A is Hölder. Given
u a sub-action for A, let MA(u) be its corresponding contact locus. Then, we claim
that �(A) ⊂ π1(MA(u)). This is completely obvious when u is a calibrated sub-action,
because in such a case π1(MA(u)) = 6. Besides, Corollary 14 tells us that every sub-
action u ∈ C0(6) for the potential A behaves as a calibrated sub-action on �(A).
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Therefore, the following inclusions are true:⋃
µ̂∈mA

µ̂◦π
−1
1 ergodic

π1(supp(µ̂)) ⊂ �(A) ⊂

⋂
u∈C0(6)

u sub-action

π1(MA(u)).

In some situations for the standard model (X, T,MT ), it is known that, given a Hölder
potential A, a probability is A-maximizing if, and only if, its support is contained in the
set of non-wandering points (with respect to A). See, for instance, the case of expanding
maps of the circle in [9, Proposition 15(ii)] and also the case of Anosov diffeomorphisms
in [19, Lemmas 12 and 13].

Hence, it is natural to ask the following: In order to verify that µ̂ ∈ mA, would it be
enough to check that µ̂ ◦ π−1

1 is ergodic and π1(supp(µ̂)) ⊂ �(A)? The answer is ‘no’.
Indeed, here is a counter-example. Take a potential A : {0, 1}

Z
→ R depending just

on three coordinates in such a way that A(1, 1 | 1) > A(s, s′
| s′′) whenever s + s′

+

s′′
≤ 2. If we denote by ss′ either the periodic point (s, s′, . . . , s, s′, . . .) ∈ 6, or

the periodic point (. . . , s, s′, . . . , s, s′) ∈ 6∗, then we have δ(11,11), δ(01,11) ∈M0 with
δ(11,11) ◦ π−1

1 = δ11 = δ(01,11) ◦ π−1
1 . Nevertheless, observe that δ(11,11) is a maximizing

probability, but clearly δ(01,11) /∈ mA.
The second inclusion above also brings us an interesting question: What can be said

about π1(MA(u)) − �(A)? The next proposition gives a partial answer.

PROPOSITION 20. Let σ : 6 → 6 be a transitive subshift of finite type and assume
A ∈ Cθ (6̂) is not cohomologous to a constant. Take u ∈ C0(6) an arbitrary sub-action
for A. Then, for each positive integer k, there exists a sub-action Uk ∈ C0(6) satisfying

π1(MA(Uk)) ⊂

k−1⋂
j=0

σ− j (π1(MA(u))).

Moreover, if u is θ -Hölder, then we can also take Uk as a θ -Hölder function.

Proof. We begin with Au
= A + u ◦ π1 − u ◦ π1 ◦ σ̂−1

≤ βA.
Given k > 0 and x ∈ 6, we call a path of size k ending at the point x an ordered sequence

of points (y0, x0), . . . , (yk−1, xk−1) ∈ 6̂ which verifies x0
= x and x j+1

= τy j (x j ) for
0 ≤ j < k − 1. Denote by Pk(x) the set of such paths. Note that

k−1∑
j=0

Au(y j , x j ) ≤ kβA

for {(y0, x0), . . . , (yk−1, xk−1)} ∈ Pk(x).
Taking {(y0, σ k−1(x)), (y1, σ k−2(x)), . . . , (yk−1, x)} ∈ Pk(σ

k−1(x)), we have the
identity

k−1∑
j=0

A(y j , σ k−1− j (x))

= k A(yk−1, x) +

k−1∑
j=0

j A(y j−1, σ k− j (x)) −

k−1∑
j=0

j A(y j , σ k−1− j (x)).

https://doi.org/10.1017/S0143385707000491 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000491


Aubry–Mather theory for symbolic dynamics 813

Now we define W : 6 → R in the following way:

W (x) = max
{(y0,σ k−1(x)),...,(yk−1,x)}∈Pk (σ

k−1(x))

[
1
k

k−1∑
j=1

j A(y j−1, σ k− j (x))

]
.

Once the correspondence x 7→ maxy0=x0 A(y, σ (x)) is θ -Hölder, the same is true for the
function W .

Fix a point (y, x) ∈ 6̂. Then consider a path

{(y0, σ k−1(x)), . . . , (yk−2, σ (x)), (y, x)} ∈ Pk(σ
k−1(x))

accomplishing
1
k

k−1∑
j=1

j A(y j−1, σ k− j (x)) = W (x).

Put yk−1
= y. As {(y1, σ k−2(x)), . . . , (yk−1, x)} ∈ Pk−1(σ

k−1(τy(x))), without difficulty
we get

A(y, x) + W (x) − W (τy(x)) ≤ A(yk−1, x) +
1
k

k−1∑
j=0

j A(y j−1, σ k− j (x))

−
1
k

k−1∑
j=0

j A(y j , σ k−1− j (x))

=
1
k

k−1∑
j=0

A(y j , σ k−1− j (x)).

Therefore, if we denote Uk = W + k−1Sku, we obtain

A(y, x) + Uk(x) − Uk(τy(x)) ≤
1
k

k−1∑
j=0

A(y j , σ k−1− j (x)) +
1
k

Sku(x) −
1
k

Sku(τy(x))

=
1
k

k−1∑
j=0

Au(y j , σ k−1− j (x)) ≤ βA.

Hence, Uk is a sub-action for the potential A.
Let us check that such a sub-action Uk accomplishes the claim of the proposition.

We just follow the itinerary of the construction of Uk in the opposite direction. If
x ∈ π1(MA(Uk)), then there exists a path

{(y0, σ k−1(x)), . . . , (yk−1, x)} ∈ Pk(σ
k−1(x))

such that
1
k

k−1∑
j=0

Au(y j , σ k−1− j (x)) = βA,

which yields Au(y j , σ k−1− j (x)) = βA. Thus, clearly σ k−1− j (x) ∈ π1(MA(u)) for all
j ∈ {0, . . . , k − 1}. 2
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The proof described above found inspiration in the strategy used by Bousch in [5].
The previous proposition brings our attention to the following question: Does a

non-calibrated sub-action exist? The answer is ‘yes’.
Under the same hypotheses as in Proposition 20, assume that u ∈ Cθ (6) is a

calibrated sub-action. Suppose the existence of a point (y0, x0) ∈ 6̂ satisfying both
A(y0, x0) = maxy0=y0

0
A(y, x0) and

A(y0, x0) + u(x0) − u(τy0(x0)) < βA.

(These assumptions are obviously verified by any potential A ∈ Cθ (6) not cohomologous
to a constant.) We claim that the function U ∈ Cθ (6) defined by

U (x) =
1
2 [u(σ (x)) + u(x)] +

1
2 max

y0=x0
A(y, σ (x))

is a sub-action for A which is not calibrated. Indeed, the function U is nothing other than
the sub-action U2 described in the proof of the previous proposition. Moreover, note that,
for all y ∈ 6∗

τy0 (x0)
,

A(y, τy0(x0)) + U (τy0(x0)) − U (τy(τy0(x0)))

≤
1
2 [A(y, τy0(x0)) + u(τy0(x0)) − u(τy(τy0(x0)))]

+
1
2 [A(y0, x0) + u(x0) − u(τy0(x0))] < βA,

and therefore τy0(x0) /∈ π1(MA(U )).
A deeper study of non-calibrated sub-actions is the aim of a subsequent paper [14].

Finally, we would like to mention that the possibility of adapting our holonomic setting to
the case of iterated function systems has been recently announced [22].
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[4] T. Bousch. La condition de Walters. Ann. Sci. École Norm. Sup. (4) 34 (2001), 287–311.
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