Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-11T02:03:29.491Z Has data issue: false hasContentIssue false

On numbers having finite beta-expansions

Published online by Cambridge University Press:  03 February 2009

TOUFIK ZAÏMI*
Affiliation:
Département de Mathématiques, Centre Université Larbi Ben M’hidi, Oum El Bouaghi 04000, Algérie (email: toufikzaimi@yahoo.com)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let β be a real number greater than one, and let ℤβ be the set of real numbers which have a zero fractional part when expanded in base β. We prove that β is a Pisot number when the set ℕβ−ℕβ−ℕβ is discrete, where ℕβ=ℤβ∩[0,[. We also give partial answers to some related open problems, and in particular, we show that β is a Pisot number when a sum ℤβ+⋯+ℤβ is a Meyer set.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

References

[1]Akyama, S.. Self affine tiling and Pisot numeration systems. Number Theory and its Applications. Eds. K. Györy and S. Kanemitsu. Kluwer, Dordrecht, 1999, pp. 717.Google Scholar
[2]Akyama, S., Bassino, F. and Frougny, Ch.. Arithmetic Meyer sets and finite automata. Inform. Comput. 201 (2005), 199215.CrossRefGoogle Scholar
[3]Akyama, S., Rao, H. and Steiner, W.. A certain finiteness property of Pisot number systems. J. Number Theory 107 (2004), 135160.Google Scholar
[4]Barache, D., Champagne, B. and Gazeau, J. P.. Pisot-Cyclotomic Quasilattices and their Symmetry Semi-groups. Quasicrystals and Discrete Geometry (Fields Institute Monograph Series, 10). Ed. J. Patera. American Mathematical Society, Providence, RI, 1998.Google Scholar
[5]Barat, G., Frougny, Ch. and Pethö, A.. A note on linear recurrent Mahler numbers. Integers 5 (2005), A1.Google Scholar
[6]Blanchard, F.. β-expansions and symbolic dynamics. Theoret. Comp. Sci. 65 (1989), 131141.CrossRefGoogle Scholar
[7]Bugeaud, Y.. On a property of Pisot numbers and related questions. Acta Math. Hungar. 73 (1996), 3339.CrossRefGoogle Scholar
[8]Burdǐk, Č., Frougny, Ch., Gazeau, J. P. and Krejcar, R.. Beta-integers as natural counting systems for quasicrystals. J. Phys. A: Math. Gen. 31 (1998), 64496472.CrossRefGoogle Scholar
[9]Erdös, P. and Komornik, V.. Developments in non integer bases. Acta Math. Hungar. 79 (1998), 5783.CrossRefGoogle Scholar
[10]Frougny, Ch.. Confluent linear numeration systems. Theoret. Comput. Sci. 106 (1992), 183219.CrossRefGoogle Scholar
[11]Frougny, Ch.. Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 3760.Google Scholar
[12]Frougny, Ch. and Solomyak, B.. Finite beta-expansions. Ergod. Th. & Dynam. Sys. 12 (1992), 713723.CrossRefGoogle Scholar
[13]Hollander, M.. Linear numeration systems, finite beta-expansions, and discrete spectrum of substitution dynamical systems. PhD Thesis, University of Washington, 1996.Google Scholar
[14]Lagarias, J. C.. Meyer’s concept of quasicrystal and quasiregular sets. Commun. Math. Phys. 179 (1996), 365376.CrossRefGoogle Scholar
[15]Lothaire, M.. Algebraic Combinatorics on Words (Encyclopedia of Mathematics and its Applications, 90). Cambridge University Press, Cambridge, 2002.CrossRefGoogle Scholar
[16]Parry, W.. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401416.CrossRefGoogle Scholar
[17]Rauzy, G.. Nombres Algébriques et substitutions. Bull. Soc. France 110 (1982), 147178.CrossRefGoogle Scholar
[18]Rényi, A.. Representations for real numbers and their ergodic properties. Acta Math. Hungar. 8 (1957), 477493.Google Scholar
[19]Zaïmi, T.. On an approximation property of Pisot numbers. Acta Math. Hungar. 96(4) (2002), 309325.CrossRefGoogle Scholar
[20]Zaïmi, T.. On an approximation property of Pisot numbers II. J. Théor. Nombres Bordeaux 16 (2004), 239249.Google Scholar
[21]Zaïmi, T.. Approximation by polynomials with bounded coefficients. J. Number Theory 127 (2007), 103117.CrossRefGoogle Scholar