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On numbers having finite beta-expansions
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Abstract. Let β be a real number greater than one, and let Zβ be the set of real numbers
which have a zero fractional part when expanded in base β. We prove that β is a Pisot
number when the set Nβ − Nβ − Nβ is discrete, where Nβ = Zβ ∩ [0,∞[. We also give
partial answers to some related open problems, and in particular, we show that β is a Pisot
number when a sum Zβ + · · · + Zβ is a Meyer set.

1. Introduction
Representations of real numbers with an arbitrary real base greater than one, say β,
called beta-expansions, were introduced by Rényi [18]. They arise from orbits of the
transformation x 7→ βx (mod 1) of the unit interval, and have been studied in ergodic
theory (see [6, 12] and [16]). As usual for a real number t we denote by I (t) the
largest rational integer not exceeding t , and by F(t) the difference t − I (t). We also
denote the ring of rational integers, the field of real numbers and the set of non-negative
rational integers by Z, R and N, respectively. The following definitions can be found
in [12, 16] and [18]. Let x be a positive real number and let p = p(x) ∈ Z be such
that β p

≤ x < β p+1. Then, the beta-expansion of x in base β, or simply the beta-
expansion of x , is the infinite sequence (εk)k≤p = (εk(x))k≤p defined by the relations
εp = I (x/β p), rp = rp(x)= F(x/β p), and εk = I (βrk+1) and rk = rk(x)= F(βrk+1) for
k running through the set Z ∩ ]−∞, p[. In this case, we write

x ≡ (εk)k≤p

and we have

x = εpβ
p
+ εp−1β

p−1
+ · · · + ε0 + ε−1β

−1
+ ε−2β

−2
+ · · · ,

rk ∈ [0, 1[ and εk ∈ [0, β[ ∩ N.
If there is N ∈ Z such that εn = 0 for all n ≤ N − 1, then we say that x has a finite

beta-expansion; in this case we write

x ≡ (εk)N≤k≤p,

where N is the greatest rational integer such that εn = 0 for all n ≤ N − 1.
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We say that a sequence (εk)k≤p, where εk ∈ N and p ∈ Z, is admissible if it is the beta-
expansion of a certain positive number, that is, when there is x ∈ ]0,∞[ such that x ≡
(εk)k≤p. A sequence (ηk)k≤p, where ηk ∈ N and p ∈ Z, is said to be lexicographically less
than a sequence (γk)k≤q , where γk ∈ N and q ∈ Z, if there is l ∈ N such that ηp−l < γq−l ,
and ηp−k = γq−k for all k ∈ {0, . . . , l − 1}. Let (ε∗k )k≤0 be the sequence of non-negative
rational integers defined as follows: (ε∗k )k≤0 is the purely periodical sequence

((β − 1)(β − 1)(β − 1) · · · )= ((β − 1)ω)

with period one (and only term β − 1), when β ∈ N. If β /∈ N and F(β)≡ (εk)k≤n , where
εk 6= 0 for infinitely many k (respectively, and F(β)≡ (εk)N≤k≤n), then

for all k ≤ 0, ε∗k = εk

(respectively, then (ε∗k )k≤0 is the purely periodical sequence

(ε0ε−1 · · · εN+1(εN − 1))ω

with period 1− N ), where ε0 := I (β) and εm := 0 for all m ∈ {−1,−2, . . . , n + 1}.
A result of Parry [16] says that a sequence (εk)k≤p, where εk ∈ N and p ∈ Z, is

admissible, if and only if each sequence of the form (εk)k≤p0 , where p0 ∈ Z ∩ ]−∞, p],
is lexicographically less than (ε∗k )k≤0. The closure of the set of admissible sequences is
called a beta-shift. It is a symbolic dynamical system, that is, a closed shift-invariant subset
of {0, 1, . . . , I (β)}N (see [6] and [12]). By analogy with the decimal representation,
the beta-expansion of a negative real number x is the sequence (−εk(−x))k≤p(−x), and
by convention 0≡ (0) (for definitions and results on beta-expansions, see for instance
[15, Ch. 7]).

The real number x is called a beta-integer if ε j = 0 for all j < 0. Note that beta-integers
were introduced in [4]. Clearly, a beta-integer has a finite beta-expansion. Let Nβ be the
set of non-negative beta-integers. Then,

Nβ = {εpβ
p
+ εp−1β

p−1
+ · · · + ε0, p ∈ N, (εp · · · ε0000 · · · ) is admissible} ∪ {0},

Nβ = N when β ∈ N, and the set Zβ of beta-integers, satisfies

Zβ = Nβ ∪ (−Nβ).

Consider also the sets

Am = Am(β)= {ηpβ
p
+ ηp−1β

p−1
+ · · · + η0, p ∈ N, ηi ∈ {0, 1, . . . , m}}

and

Bm = Bm(β)= Am − Am = {γpβ
p
+ · · · + γ0, p ∈ N, γi ∈ {−m,−m + 1, . . . , m}},

where m ∈ Z+ := Z ∩ [1,∞[. Clearly, Nβ ⊂ AI (β) and Zβ ⊂ BI (β). Recall that a Pisot
number is a positive algebraic integer whose other conjugates over the field of the rationals
Q are of modulus less than one. By the pigeonhole principle it is easy to see that, when β is
a Pisot number, each set Bm is discrete, i.e. Bm has no finite limit point (see also [7, 9, 19–
21]). Using a result of Frougny [11] from automata theory, Bugeaud [7] proved that the
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converse of the last proposition is true, and after this Erdös and Komornik [9] showed that
the condition ‘Bm is discrete, where m is the smallest integer satisfying m ≥ β − 1/β’ is
sufficient to deduce that β is a Pisot number. Recently [21], the present author proved
that the implication ‘BI (β) − AI (β) is discrete H⇒ β is a Pisot number’ is also true. The
question whether Pisot numbers are the only numbers β such that 0 is not a limit point of
BI (β), remains open. The first aim of this paper is to prove the following.

THEOREM 1. If Nβ − Nβ − Nβ is discrete, then β is a Pisot number.

It is worth noting that the above result is an improvement of [21, Theorem 1], since the
inclusion AI (β) ⊂ Nβ , is true only when β is a root of a polynomial of the form

xd
− a(xd−1

+ xd−2
+ · · · + x)− b,

where d ≥ 2, a ∈ N, b ∈ N and a ≥ b ≥ 1 (see [10]); numbers β of this kind are called
confluent Pisot numbers (see [5]).

The following definitions and results can be found in [2] and [14]. A subset X of R is
called a Delaunay set if it is relatively dense in R (i.e. there is ε > 0 such that any closed
interval of length ε contains at least one element of X ; to be more precise we also say
that X is ε-dense), and uniformly discrete (i.e. there is ε > 0 such that the usual distance
between two distinct points of X is greater than ε). The Delaunay set X is a Meyer set if the
set X − X = {x − x ′, x ∈ X, x ′ ∈ X} is also a Delaunay set. The implication ‘β is a Pisot
number H⇒ Zβ is a Meyer set’, due to authors of [8], also appears in [2, Proposition 1].
Lagarias [14] has proved that a Delaunay set X is a Meyer set if and only if there is a finite
subset F of R such that X − X ⊂ X + F . Using essentially this last result and Theorem 1,
we obtain the following.

THEOREM 2. We have the following.
(i) If β is a Pisot number, then each finite sum

∑
1≤k≤n Zβ = Zβ + · · · + Zβ , where

n ∈ Z+, is a Meyer set.
(ii) If there is N ∈ Z+ such that

∑
1≤k≤N Zβ is a Meyer set, then so are all sets∑

1≤k≤n Zβ , where n ∈ Z+.
(iii) If some finite sum

∑
1≤k≤N Zβ , where N ∈ Z+, is a Meyer set, then β is a Pisot

number.

It follows immediately that β is a Pisot number when Zβ is a Meyer set; thus the
converse of [2, Proposition 1] is true. Note also that if the assertion ‘Pisot numbers are the
only numbers β such that Zβ is a Delaunay set’ is true, then so is the proposition ‘Pisot
numbers are the only numbers β such that 0 is not a limit point of BI (β)’ (see the proof of
Theorem 2).

Now, let Finβ be the set of real numbers which have finite beta-expansions: x ∈ Finβ if
there is N ∈ Z such that ε j (x)= 0 for all j ≤ N . Then,

Zβ ⊂ Finβ ⊂
(

N[β] + N
[

1
β

])
∪

(
− N[β] − N

[
1
β

])
⊂ Z[β] + Z

[
1
β

]
(if S ⊂ R and α ∈ R, then S[α] is the set of polynomials with coefficients in S, evaluated
at α). Clearly, if β is an algebraic integer, then Z[β] ⊂ Z[1/β] and so Z[1/β] = Z[β]
+ Z[1/β]. Recall also that a Salem number is a real algebraic integer greater than one
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whose other conjugates over Q are all of modulus at most one and with a conjugate of
modulus one. In [12, Lemma 1] it was asserted that β is a Pisot or a Salem number when
N⊂ Finβ . In fact, by the same arguments as in the proof of the last mentioned result, we
obtain the following.

THEOREM 3. Assume that there is N ∈ N such that {I (βn)+ 1, n ∈ N, n ≥ N } ⊂ Finβ .
Then, β is a Pisot number and β has at most one positive conjugate over Q.

It follows immediately when Finβ = Z[β] + Z[1/β] that β is a Pisot number (with at
most one positive conjugate) and so Finβ = Z[1/β]. It is easy to see when F(β) ∈ Finβ ,
that β is an algebraic integer with no conjugate over Q in [0, 1]. In fact, the implication
Finβ = Z[β] + Z[1/β] H⇒ β is a Pisot number with no conjugate over Q in [0, 1], has
already been proved in [12]. Conversely, Frougny and Solomyak have shown that if
the minimal polynomial over Q of the Pisot number β is of the form xd

− a1xd−1

− a2xd−2
− · · · − ad , where a1 ≥ a2 ≥ · · · ≥ ad ≥ 1, then Finβ = Z[1/β] (see [12]). A

complete characterization of Pisot numbers β satisfying Finβ = Z[1/β] is not known.
In [1], Akiyama used Pisot units, say also β, with the same property to construct tilings of
Rd−1, were d is the degree of β over Q; a tiling close to these was obtained by Rauzy [17]
in connection with substitutative dynamical systems. In his thesis [13] Hollander found
another class of Pisot numbers β satisfying Finβ = Z[1/β], and studied the following weak
finiteness property: if x ∈ Z[1/β], then

∃ (yn(x))n∈N = (yn)n∈N, yn ∈ Finβ , yn − x ∈ Finβ and lim
n→∞

yn = x . (Wx )

If (Wx ) is satisfied for all x ∈ Z[1/β], then we say that β satisfies (W ). Clearly, if
Finβ = Z[1/β], then β satisfies (W ) (choose, for instance, yn(x)= x , where n ∈ N and
x ∈ Z[1/β]). In [3], Akyama et al found a class of Pisot numbers which satisfy (W ),
conjectured that this property holds for all Pisot numbers, and proved that if (W ) holds
for some β, then β is a Pisot or a Salem number. In a similar manner as in the proof of
Theorem 3, we show the following result.

THEOREM 4. If (Wx ) holds when x takes infinitely many values of the form I (βn)+ 1,
where n ∈ N, then β is a Pisot or a Salem number.

2. Proofs

Proof of Theorem 1. The idea of the first part of the present proof is similar to that of
[21, Theorem 1] with minor modifications. Let Iβ := Nβ − Nβ ,

b ∈ Iβ ∩ [1,∞[

and b ≡ (εk)k≤p, where p ∈ N. Then, the sequence (εp · · · ε0000 · · · ) is admissible,
εpβ

p
+ εp−1β

p−1
+ · · · + ε0 ≡ (εpεp−1 · · · ε0) and so

εpβ
p
+ εp−1β

p−1
+ · · · + ε0 ∈ Nβ .

Moreover, the number b − (εpβ
p
+ εp−1β

p−1
+ · · · + ε0) belongs to the finite set

F0 := (Iβ − Nβ) ∩ [0, 1[,
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since Iβ − Nβ is discrete and b − (εpβ
p
+ εp−1β

p−1
+ · · · + ε0)= r0(b) ∈ [0, 1[.

Consider an element
d ∈ Iβ − Iβ .

Then, d can be written
d = b − b′,

where
b = a1 − a2, b′ = a′1 − a′2

and {a1, a2, a′1, a′2} ⊂ Nβ . Let n be a sufficiently large rational integer so that βn
+ b ≥ 1,

βn
+ b′ ≥ 1, βn

+ a1 ∈ Nβ and βn
+ a′1 ∈ Nβ . Such an integer n exists because the

first inequalities hold trivially when n is large, and the last inequalities follow from
the fact that if a sequence, say (αpαp−1αp−2 · · · ), is admissible, then the sequence
(10 · · · 0αpαp−1αp−2 · · · ) containing n vanishing terms before the term αp, where
n ≥−s and s is the greatest negative rational integer such that ε∗s ≥ 1, is also admissible.
It follows that βn

+ b ∈ Iβ , βn
+ b′ ∈ Iβ and there are a ∈ Nβ , r ∈ F0, a′ ∈ Nβ and r ′ ∈ F0

satisfying βn
+ b = a + r and βn

+ b′ = a′ + r ′; thus,

d = (a + r)− (a′ + r ′)= (a − a′)+ (r − r ′),

and
Iβ + Iβ = Iβ − Iβ ⊂ Iβ + F,

where F is the finite set F0 − F0. Hence, Iβ + Iβ + Iβ ⊂ Iβ + Iβ + F ⊂ Iβ + F + F , and
by induction we have

N∑
i=1

Iβ ⊂ Iβ +
N−1∑
i=1

F,

where N ∈ Z ∩ [2,∞[. As
∑N−1

i=1 F is a finite set, and the sum of a finite set and a discrete
set is also a discrete set, by the last inclusion we deduce that each set

∑N
i=1 Iβ , where

N ∈ Z+, is discrete. To complete the proof, we claim that it suffices to show that there
exists M = M(β) ∈ Z+ such that

AI (β) ⊂
∑

1≤i≤M

Nβ .

Indeed, in this case we have

AI (β) − AI (β) − AI (β) ⊂
∑

1≤i≤M

Iβ −
∑

1≤i≤M

Nβ ⊂
∑

1≤i≤2M

Iβ ,

and the result follows immediately by [21, Theorem 1], as AI (β) − AI (β) − AI (β) is a
subset of the discrete set

∑
1≤i≤2M Iβ . Let a be a non-zero element of the set AI (β). Then,

a = ηpβ
p
+ ηp−1β

p−1
+ · · · + η0,

where p ∈ N, ηi ∈ {0, 1, . . . , I (β)} and ηp ≥ 1. For each i ∈ {0, 1, . . . ,min(p, M − 1)},
where M := 1− s, set

ai :=

I (p−i)/M∑
j=0

ηi+ j Mβ
i+ j M .
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Then, ai ∈ AI (β), and each non-zero coefficient, say ηi+ j M , in the last expression of ai is
followed by at least (M − 1) vanishing coefficients. Since the first term of the sequence
(ε∗k )k≤0, namely ε∗0 , is the greatest rational integer less than β, and this term is followed
(in the sequence (ε∗k )k≤0) by exactly M − 2 vanishing terms, the sequence

(ηi+M I (p−i)/M 0 · · · 0ηi+M I (p−i)/M−M · · · ηi+M 0 · · · 0ηi 000 · · · )

is admissible,
ai ∈ Nβ

and

ai =

I (p−i)/M∑
j=0

ηi+(I ((p−i)/M)− j)Mβ
i+(I ((p−i)/M)− j)M .

To end the proof it remains to verify that

a =
min(p,M−1)∑

i=0

ai ,

as this equality implies AI (β) ⊂
∑

0≤i≤min(p,M−1) Nβ ⊂
∑

1≤i≤M Nβ . If p ≤ M − 1, then
for each i ∈ {0, 1, . . . , p}we have ai = ηiβ

i , and the equality is trivial. To prove the result
when p ≥ M , it suffices to show that {P1, P2, . . . , PM−1}, where

Pi =

{
i, i + M, i + 2M, . . . , i + I

(
p − i

M

)
M

}
and i ∈ {0, 1, . . . , M − 1}, is a partition of the set {0, 1, . . . , p}. Clearly, we have
I ((p − i)/M)≤ (p − i)/M , i + I ((p − i)/M)M ≤ p and so Pi ⊂ {0, 1, . . . , p}. More-
over, if there are (i, i ′) ∈ {0, 1, . . . , M − 1} × {0, 1, . . . , M − 1} and (k, k′) ∈ N×
N such that i < i ′ and i + k M = i ′ + k′M , then (k − k′)M > 0, k − k′ ≥ 1 and so
i ′ − i ≥ M ; the last inequality leads to a contradiction since i ′ − i ≤ i ′ ≤ M − 1. 2

Proof of Theorem 2. From the definition of the beta-expansion of a real number in an
arbitrary base β, we see that the set Zβ is 1-dense; thus, each finite sum

∑
1≤i≤n Zβ ,

where n is a positive rational integer, is relatively dense. By the inclusion∑
1≤i≤n

Zβ ⊂ Bn[β],

we have that the set
∑

1≤i≤n Zβ is discrete when β is a Pisot number (recall that each set
Bm is discrete when β is a Pisot number). It follows, in particular, that 0 is not a limit point
of
∑

1≤i≤2n Zβ , and so by the equalities Zβ =−Zβ and∑
1≤i≤n

Zβ −
∑

1≤i≤n

Zβ =
∑

1≤i≤2n

Zβ ,

we have that the set
∑

1≤i≤n Zβ is uniformly discrete; thus,
∑

1≤i≤n Zβ is a Delaunay set
and Theorem 2(i) is true, since

∑
1≤i≤2n Zβ is also a Delaunay set.

Now, assume that
∑

1≤i≤N Zβ is a Meyer set for some N ∈ Z+. It is clear that
Theorem 2(ii) is a corollary of Theorems 1 and 2(i), when N ≥ 2, as Nβ − Nβ − Nβ
⊂ Zβ + Zβ + Zβ and Zβ + Zβ + Zβ is contained in a (uniformly) discrete set
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(by the same arguments it suffices to show that Zβ + Zβ + Zβ is discrete when N = 1). In
fact, using the above-mentioned result of Lagarias, we can easily show Theorem 2(ii) for
any N ≥ 1. Indeed, when X is a Meyer set and X − X ⊂ X + F , where F is a finite set,
note that X − X is a Delaunay set,

(X − X)− (X − X)⊂ X + F − (X + F)= (X − X)+ (F − F)

and so X − X is a Meyer set, as F − F is a finite subset of R. It follows that∑
1≤i≤N Zβ −

∑
1≤i≤N Zβ =

∑
1≤i≤2N Zβ is a Meyer set, and by induction we have that

each set of the form ∑
1≤i≤2n N

Zβ ,

where n ∈ N, is also a Meyer set. Moreover, since any finite sum
∑

1≤i≤m Zβ , where
m ∈ Z+, is relatively dense and is contained in a uniformly discrete set (for instance we
have

∑
1≤i≤m Zβ ⊂

∑
1≤i≤2m N Zβ), we deduce that

∑
1≤i≤m Zβ is a Delaunay set; thus∑

1≤i≤2m Zβ is a Delaunay set and so
∑

1≤i≤m Zβ is a Meyer set. Finally, note that
Theorem 2(ii) together with Theorem 1 yield immediately Theorem 2(iii). 2

Proof of Theorem 3. Clearly, β is a Pisot number when it is a rational integer. Assume that
β /∈ N. Let p be a sufficiently large rational integer so that

β p
+ 1< β p+1

and
I (β p) < β p.

Such an integer p exists, since the first inequality holds trivially when p is large, and the
second inequality follows from the fact that if there is n ∈ N such that if I (βn)= βn and
I (βn+1)= βn+1, then β is an algebraic integer, β = βn+1/βn

= (I (βn+1)/I (βn)) ∈Q,
and so β ∈ N. Let

x := I (β p)+ 1.

Then,

β p < x < β p
+ 1< β p+1,

1<
x

β p < 1+
1
β p < 2,

εp(x)= 1 and rp(x) < 1/β p; thus,

x ≡ (10 · · · 0ε−1 · · · ),

where ε−1 ≥ 1, and
x /∈ Nβ .

Since x ∈ Finβ , there is a positive rational integer m such that

x ≡ (10 · · · 0ε−1 · · · ε−m);

in particular, we have

x = β p
+ ε−1β

−1
+ ε−2β

−2
+ · · · + ε−mβ

−m .
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It follows immediately from the last equality that β is an algebraic integer, and if γ is a
conjugate of β over Q, then

x = γ p
+ ε−1γ

−1
+ ε−2γ

−2
+ · · · + ε−mγ

−m

and so

β p
− γ p

=

m∑
k=1

ε−k(γ
−k
− β−k).

Hence, for |γ |> 1 we see that

|β p
− γ p

|

I (β)
≤

m∑
k=1

(|γ−k
| + β−k) <

1
|γ | − 1

+
1

β − 1

and so γ = β, since otherwise lim supp |γ
p
− β p
| =∞ (indeed, without loss of generality

set γ = |γ |eiπ t , where t ∈ [0, 1] and i2
=−1. Clearly, we have limn−→∞ |γ

n
− βn
| =∞

when t = 0 and γ 6= β. If t = a/b, where a ∈ Z+ and b ∈ Z+, then |γ 2nb+1
− β2nb+1

|

≥ |γ |2nb+1
| sin(π t)| for all n ∈ N, and so limn−→∞ |γ

2nb+1
− β2nb+1

| =∞, except
when t = 1; for t = 1 we have limn−→∞ |γ

2n+1
− β2n+1

| =∞. Finally, if t /∈Q, then
(F(tn))n∈N is dense mod(1) and so there is a sequence (nk)k∈N of positive rational integers
such that limk−→∞ F(tnk)= 1/2; thus limk−→∞ |γ

2nk − β2nk | = limk−→∞(|γ |
2nk

+ β2nk )=∞). Note also, when |γ | = 1, that 1/γ is a conjugate of β (1/γ is the complex
conjugate of γ ) and so is 1/β; thus,

x = β−p
+ ε−1β + · · · + ε−mβ

m,

and so
m ≤ p,

since we have ε−m ≥ 1 and x < β p+1. It follows by the inequalities

x ≤ |γ p
+ ε−1γ

−1
+ · · · + ε−mγ

−m
| ≤ 1+ ε−1 + · · · + ε−m ≤ I (β)(m + 1),

that x ≤ I (β)(p + 1), and this last relation leads to a contradiction when p is large (recall
that x > β p). Hence, |γ |< 1 and β is a Pisot number. Now, suppose that γ is a positive
real number. Then, the inequality γβ ≥ 1 (if γβ < 1, then the norm of β over Q will be 0)
together with the relation x = γ p

+ ε−1γ
−1
+ · · · + ε−mγ

−m yield

x < 1+ ε−1β + · · · + ε−mβ
m
≤ I (β)

βm+1
− 1

β − 1
;

thus, m is large when p is so. It follows when β has a real conjugate, say η, satisfying

γ ≤ η < 1

that
1
γm −

1
ηm ≤

m∑
i=1

ε−i (γ
−i
− η−i )= ηp

− γ p < 1

and so γ = η, since limm→∞(1/γm
− 1/ηm)=∞ when γ 6= η. Consequently, the Pisot

number β can not have more than one positive conjugate. Finally, note that the inclusion
N[β] ⊂ Finβ has been proved in [12] when β is a quadratic Pisot number with a positive
conjugate. 2
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Proof of Theorem 4. In a similar manner as in the beginning of the proof of Theorem 3,
suppose that β /∈ N and let

x := I (β p)+ 1,

where p ∈ N is sufficiently large so that β p
+ 1< β p+1 and I (β p) < β p. Let δ be a

positive real number satisfying
x + δ < β p

+ 1.

From the hypothesis, there are y and z ∈ Finβ , such that

y = x + z

and
z < δ.

Hence,
β p < y < β p

+ 1< β p+1,

1< (y/β p) < 1+ (1/β p) < 2, εp(y)= 1 and rp(y) < (1/β p); thus, there is a positive
rational integer m such that

y ≡ (10 · · · 0ε−1 · · · ε−m),

where ε−m ≥ 1, and so y = β p
+ ε−1β

−1
+ ε−2β

−2
+ · · · + ε−mβ

−m . Let

z ≡ (η−Kη−K−1 · · · η−K−t ),

where K ∈ N and t ∈ N. Then,

x = β p
+ ε−1β

−1
+ · · · + ε−mβ

−m

− (η−Kβ
−K
+ η−K−1β

−K−1
+ · · · + η−K−tβ

−K−t ),

xβu
= βu+p

+ ε−1β
u−1
+ · · · + ε−mβ

u−m

− (η−Kβ
u−K
+ η−K−1β

u−K−1
+ · · · + η−K−tβ

u−K−t ),

where u =max(m, K + t), and so β is an algebraic integer. Let γ be a conjugate of β over
Q with modulus greater than one. Then,

x = γ p
+ ε−1γ

−1
+ · · · + ε−mγ

−m

− (η−K γ
−K
+ η−K−1γ

−K−1
+ · · · + η−K−tγ

−K−t ),

and so

β p
− γ p

=

u∑
i=1

s−i (γ
−i
− β−i ),

where si ∈ {−I (β), . . . , 0, . . . , I (β)} for each i ∈ {0, 1, . . . , u}. Hence,

|β p
− γ p

|

I (β)
≤

u∑
i=1

(|γ−i
| + β−i ) <

1
|γ | − 1

+
1

β − 1

and similarly as in the end of the proof of Theorem 3, the last relation leads to a
contradiction when β 6= γ ; thus, β is a Pisot or a Salem number. 2
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