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Abstract. Let B be a real number greater than one, and let Zg be the set of real numbers
which have a zero fractional part when expanded in base 8. We prove that 8 is a Pisot
number when the set Ng — Ng — Ng is discrete, where Ng = Zg N [0, oo[. We also give
partial answers to some related open problems, and in particular, we show that 8 is a Pisot
number when a sum Zg + - - - + Zg is a Meyer set.

1. Introduction

Representations of real numbers with an arbitrary real base greater than one, say S,
called beta-expansions, were introduced by Rényi [18]. They arise from orbits of the
transformation x — Bx (mod 1) of the unit interval, and have been studied in ergodic
theory (see [6, 12] and [16]). As usual for a real number ¢ we denote by I(¢) the
largest rational integer not exceeding ¢, and by F(¢) the difference r — I (). We also
denote the ring of rational integers, the field of real numbers and the set of non-negative
rational integers by Z, R and N, respectively. The following definitions can be found
in [12, 16] and [18]. Let x be a positive real number and let p = p(x) € Z be such
that B” <x < BP*!. Then, the beta-expansion of x in base B, or simply the beta-
expansion of x, is the infinite sequence (&x)x<p = (x(x))k<p defined by the relations
ep=1(x/BP),rp =rp(x)=F(x/BP),and &y = I (Bri+1) and ry = ri(x) = F(Bri+1) for
k running through the set Z N ]—oo, p[. In this case, we write

x = (ekk<p
and we have
x=g,B" +e, 1B oot fT FeafT 4,

ry €10, 1[ and ¢ € [0, B[ N N.
If there is N € Z such that ¢, =0 for all n < N — 1, then we say that x has a finite
beta-expansion; in this case we write

X = (&x)N<k<ps

where N is the greatest rational integer such that e, =0 foralln <N — 1.
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We say that a sequence (ex)x<p, Where &x € N and p € Z, is admissible if it is the beta-
expansion of a certain positive number, that is, when there is x € ]0, oo[ such that x =
(ex)k<p- A sequence (x)k<p, where n; € Nand p € Z, is said to be lexicographically less
than a sequence (yx)r<4, where y € N and g € Z, if there is [ € N such that 5, ; < y;,
and np—x = vy« forall k € {0, ..., I — 1}. Let (&})x<o be the sequence of non-negative
rational integers defined as follows: (£])k<o is the purely periodical sequence

(B=DB-DHB-=D--)=(B—-D)
with period one (and only term 8 — 1), when 8 € N. If 8 ¢ N and F(8) = (ex)k<n, Where
ex # 0 for infinitely many k (respectively, and F(8) = (ex)n<k<n), then
forallk <0, &f =&
(respectively, then (g})x<o is the purely periodical sequence
(e06—1 - ent1(en — 1))

with period 1 — N), where g9 :=1(8) and ¢, :=0forallm e {—1, =2,...,n+ 1}.

A result of Parry [16] says that a sequence (&x)k<p, Where gx € N and p € Z, is
admissible, if and only if each sequence of the form (ex)r<p,, where pg € Z N ]—o00, p],
is lexicographically less than (g;)r<o. The closure of the set of admissible sequences is
called a beta-shift. It is a symbolic dynamical system, that is, a closed shift-invariant subset
of {0,1,...,1 (,8)}N (see [6] and [12]). By analogy with the decimal representation,
the beta-expansion of a negative real number x is the sequence (—&x(—x))k<p(—x), and
by convention 0 = (0) (for definitions and results on beta-expansions, see for instance
[15, Ch. 7]).

The real number x is called a beta-integer if £; = 0 for all j < 0. Note that beta-integers
were introduced in [4]. Clearly, a beta-integer has a finite beta-expansion. Let Ng be the
set of non-negative beta-integers. Then,

Ng = {e,87 + 8P71/31’_1 +---+e0, pEN, (gp---£0000 - --)is admissible} U {0},
Ng =N when g € N, and the set Zg of beta-integers, satisfies
Zg =Ng U (=Ng).
Consider also the sets
A =An(B)=npB” +np1BP +---+m0, peN, 1 €{0,1,...,m}}
and
By =Bn(B)=An—An={ypB’ +---+yv0.peN,ye{-m, —m+1,...,m}},

where m € ZT :=Z N [1, oo[. Clearly, Ng C Ajg) and Zg C Bjp). Recall that a Pisot
number is a positive algebraic integer whose other conjugates over the field of the rationals
Q are of modulus less than one. By the pigeonhole principle it is easy to see that, when g is
a Pisot number, each set By, is discrete, i.e. B, has no finite limit point (see also [7, 9, 19—
21]). Using a result of Frougny [11] from automata theory, Bugeaud [7] proved that the
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converse of the last proposition is true, and after this Erdés and Komornik [9] showed that
the condition ‘B, is discrete, where m is the smallest integer satisfying m > 8 — 1/8’ is
sufficient to deduce that 8 is a Pisot number. Recently [21], the present author proved
that the implication ‘B gy — Aj(g) is discrete = f is a Pisot number’ is also true. The
question whether Pisot numbers are the only numbers 8 such that 0 is not a limit point of
Bj(p), remains open. The first aim of this paper is to prove the following.

THEOREM 1. IfNg — Ng — Ng is discrete, then § is a Pisot number.

It is worth noting that the above result is an improvement of [21, Theorem 1], since the
inclusion Aj gy C Ng, is true only when f is a root of a polynomial of the form

x? —a(x M 4 x4 x) — b,

where d >2,a€N, beN and a > b > 1 (see [10]); numbers S of this kind are called
confluent Pisot numbers (see [5]).

The following definitions and results can be found in [2] and [14]. A subset X of R is
called a Delaunay set if it is relatively dense in R (i.e. there is ¢ > 0 such that any closed
interval of length ¢ contains at least one element of X; to be more precise we also say
that X is e-dense), and uniformly discrete (i.e. there is ¢ > 0 such that the usual distance
between two distinct points of X is greater than ¢). The Delaunay set X is a Meyer set if the
set X — X ={x —x/, x € X, x’ € X} is also a Delaunay set. The implication ‘B is a Pisot
number = Zg is a Meyer set’, due to authors of [8], also appears in [2, Proposition 1].
Lagarias [14] has proved that a Delaunay set X is a Meyer set if and only if there is a finite
subset F' of R such that X — X C X + F. Using essentially this last result and Theorem 1,
we obtain the following.

THEOREM 2. We have the following.

(1) If B is a Pisot number, then each finite sum lekﬁn 7g=12pg + - - -+ Zp, where
n € 77T, is a Meyer set.

(ii) If there is N € Z" such that Y, _,_n Zg is a Meyer set, then so are all sets
Y \<k<n Zg, where n € Z7. o

(iii) Ifso_m_e finite sum Yy _; .y Zg, where N € Z*, is a Meyer set, then f is a Pisot
number.

It follows immediately that B is a Pisot number when Zg is a Meyer set; thus the
converse of [2, Proposition 1] is true. Note also that if the assertion ‘Pisot numbers are the
only numbers 8 such that Zg is a Delaunay set’ is true, then so is the proposition ‘Pisot
numbers are the only numbers B such that 0 is not a limit point of Bjg)’ (see the proof of
Theorem 2).

Now, let Fing be the set of real numbers which have finite beta-expansions: x € Fing if
there is N € Z such that ¢ (x) =0 for all j < N. Then,

Z C Fing C (N[ﬂ] +N[%D U (- NI — N[%D C Zip) +Z[H

(if S C R and « € R, then S[«] is the set of polynomials with coefficients in S, evaluated
at o). Clearly, if 8 is an algebraic integer, then Z[B] C Z[1/8] and so Z[1/8] = Z[f]
+ Z[1/8]. Recall also that a Salem number is a real algebraic integer greater than one
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whose other conjugates over Q are all of modulus at most one and with a conjugate of
modulus one. In [12, Lemma 1] it was asserted that g is a Pisot or a Salem number when
N C Fing. In fact, by the same arguments as in the proof of the last mentioned result, we
obtain the following.

THEOREM 3. Assume that there is N € N such that {I1(8")+ 1, n € N, n > N} C Fing.
Then, B is a Pisot number and B has at most one positive conjugate over Q.

It follows immediately when Fing = Z[8] + Z[1/8] that 8 is a Pisot number (with at
most one positive conjugate) and so Fing = Z[1/8]. It is easy to see when F(8) € Fing,
that B is an algebraic integer with no conjugate over Q in [0, 1]. In fact, the implication
Fing = Z[B1+ Z[1/B] = B is a Pisot number with no conjugate over Q in [0, 1], has
already been proved in [12]. Conversely, Frougny and Solomyak have shown that if
the minimal polynomial over Q of the Pisot number 8 is of the form x? — g x¢~!
—ax?2 ... _qg,, where a; >a»>--->ay > 1, then Fing = Z[1/8] (see [12]). A
complete characterization of Pisot numbers 8 satisfying Fing = Z[1/8] is not known.
In [1], Akiyama used Pisot units, say also 8, with the same property to construct tilings of
R?~1, were d is the degree of 8 over Q; a tiling close to these was obtained by Rauzy [17]
in connection with substitutative dynamical systems. In his thesis [13] Hollander found
another class of Pisot numbers 8 satisfying Fing = Z[1/8], and studied the following weak
finiteness property: if x € Z[1/8], then

3 On()neN = Yndnen, Yo €Fing, y, —x €Fing and nli)rgo yn=x. (Wy)

If (W,) is satisfied for all x € Z[1/8], then we say that g satisfies (W). Clearly, if
Fing = Z[1/B], then B satisfies (W) (choose, for instance, y,(x) = x, where n € N and
x € Z[1/B]). In [3], Akyama et al found a class of Pisot numbers which satisfy (W),
conjectured that this property holds for all Pisot numbers, and proved that if (W) holds
for some B, then 8 is a Pisot or a Salem number. In a similar manner as in the proof of
Theorem 3, we show the following result.

THEOREM 4. If (W,) holds when x takes infinitely many values of the form I(8") + 1,
where n € N, then B is a Pisot or a Salem number.

2.  Proofs

Proof of Theorem 1. The idea of the first part of the present proof is similar to that of
[21, Theorem 1] with minor modifications. Let g := Ng — Ng,

belgn(l, ool

and b = (ex)k<p, where p € N. Then, the sequence (g - - - 9000 - - -) is admissible,
epBP + 8,,_1,817_1 +---+e=(epep_1 - - - &o) and so

epB” +ep1BP 4+ + 80 € Np.
Moreover, the number b — (¢, 87 + 8,,_1,3”_1 + - - - 4 go) belongs to the finite set

Fo:= (g —Ng) N[0, 1[,
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since Ig —Ng is discrete and b — (g,B8” +£p_1;8”_1 + .48 =ro) €0, 1.
Consider an element
de ]Iﬂ — ]1/3.

Then, d can be written
d=b-b,

where

b=a —a, b/=a/l —aé
and {ay, ay, a{, aé} C Ng. Let n be a sufficiently large rational integer so that 8" +b > 1,
B"+b =1, p" +a; €Ng and B" 4+ aj € Ng. Such an integer n exists because the
first inequalities hold trivially when n is large, and the last inequalities follow from
the fact that if a sequence, say (apop_10p—2---), is admissible, then the sequence
(10 - - - Ocpap_10p—2 - -+ ) containing n vanishing terms before the term o, where
n > —s and s is the greatest negative rational integer such that ¢} > 1, is also admissible.
It follows that 8" + b € g, 8" + b" € Ig and there area € Ng, r € Fy,a’ € Ngandr’ € Fy
satisfying 8" +b=a +r and 8" + b’ = a’ + r’; thus,

d=(a+r) — @ +r)=(@—d)+@—r),
and
Ig+Ig=1Ig —IgClg+F,

where F is the finite set Fy — Fp. Hence, Ig +1g + 1 Clg +1g + F Clg + F + F, and
by induction we have

N N-—1
Z]Iﬁ C Hﬁ + Z F,
i=1 i=1

where N € Z N [2, oo[. As ZlN;l] F is a finite set, and the sum of a finite set and a discrete
set is also a discrete set, by the last inclusion we deduce that each set ZlN= 1 Ig, where
N € Z*, is discrete. To complete the proof, we claim that it suffices to show that there
exists M = M(B) € Z™ such that
App C Z Ng.
l<i<M
Indeed, in this case we have
Ay —Arp —Aip C Y. Tg— Y Ngc Y g
I<i<M I<i<M 1<i<2M

and the result follows immediately by [21, Theorem 1], as Ajg) — A1) — Ar(p) is a
subset of the discrete set ) |1 _; -y Ig. Let a be a non-zero element of the set A;(g). Then,

a=npB’ +n, 187" +- -+,

where pe N, n; €{0,1,...,I(B)}andn, > 1. Foreachi € {0, 1, ..., min(p, M — 1)},
where M :=1 — s, set
I(p—i)/M
aj := Z Ni+jmB
j=0

i+jM
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Then, a; € Aj ), and each non-zero coefficient, say ;4 ju, in the last expression of a; is
followed by at least (M — 1) vanishing coefficients. Since the first term of the sequence
(ef)k<0, namely &3, is the greatest rational integer less than §, and this term is followed
(in the sequence (&7 )k<0) by exactly M — 2 vanishing terms, the sequence

@ivm1(p—iyymO -~ - Onipmr(p—iyym—m - - - Niem0 - - - 0n;000 - - )

is admissible,

a; € Nf;
and
I(p=i)/M il )
ai= Y Nipap-iym—pmp T ETIM=DM,
j=0
To end the proof it remains to verify that
min(p,M—1)
a= ), a
i=0

as this equality implies A7(g) C Y- o<i<min(p.m—1) Ng C D1<i<p Np- If p <M — 1, then
foreachi € {0, 1, ..., p} wehave a; = n; B, and the equality is trivial. To prove the result
when p > M, it suffices to show that { Py, P>, ..., Py—_1}, where

Pi:{i,i—i—M,i—i—ZM,...,i—i—I(pA;l)M}

and i € {0, 1,..., M — 1}, is a partition of the set {0, 1,..., p}. Clearly, we have
I((p—i)/M)<(p—i)/M,i+1((p—i)/M)M<pandsoP; c{0,1,...,p}. More-
over, if there are (i,i")€{0,1,..., M —1}x{0,1,..., M —1} and (k, k') e N x
N such that i <i’ and i +kM =i’ +k'M, then (k —k')M >0, k—k'>1 and so
i’ — i > M, the last inequality leads to a contradiction since i’ —i <i’ <M — 1. O

Proof of Theorem 2. From the definition of the beta-expansion of a real number in an
arbitrary base B8, we see that the set Zg is 1-dense; thus, each finite sum Zl<i<n Zg,
where n is a positive rational integer, is relatively dense. By the inclusion

> Zg C Bupy,
1<i<n
we have that the set ) 0, _;, Zg is discrete when B is a Pisot number (recall that each set
B, is discrete when 8 is a Pisot number). It follows, in particular, that 0 is not a limit point
of Y 1—;<o, Zg, and so by the equalities Zg = —Zg and
2. Zp— D Le= ), Zp
I<i<n I<i<n 1<i<2n
we have that the set ), _;, Zg is uniformly discrete; thus, ) | _;, Zg is a Delaunay set
and Theorem 2(i) is true, since ) _, <i<2n Zg is also a Delaunay set.
Now, assume that ;v Zg is a Meyer set for some N € Z*. Tt is clear that

Theorem 2(ii) is a corollary of Theorems 1 and 2(i), when N >2, as Ng — Ng — Ng
CZpg+7Zg+7Zg and Zg+ Zpg+ Zg is contained in a (uniformly) discrete set
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(by the same arguments it suffices to show that Zg + Zg + Zg is discrete when N = 1). In
fact, using the above-mentioned result of Lagarias, we can easily show Theorem 2(ii) for
any N > 1. Indeed, when X is a Meyer set and X — X C X + F, where F is a finite set,
note that X — X is a Delaunay set,

X-X)-X-X)CX+F-X+FH=X-X)+(F-F)

and so X — X is a Meyer set, as F — F is a finite subset of R. It follows that
DoicieNZg =D 1<ien Lp =7 ~i<an ZLp is a Meyer set, and by induction we have that
each set of the form o

> s,

1<i<2"N

where n € N, is also a Meyer set. Moreover, since any finite sum ), _;_, Zg, where
m € Z*, is relatively dense and is contained in a uniformly discrete set (for instance we
have )\ _; ., Zg C D1 —i<omy Zg), we deduce that ), _;_,. Zg is a Delaunay set; thus
> <i<om Zp is a Delaunay set and so 3, _;_,, Zg is a Meyer set. Finally, note that
Theorem 2(ii) together with Theorem 1 yield_in;mediately Theorem 2(iii). O

Proof of Theorem 3. Clearly, B is a Pisot number when it is a rational integer. Assume that
B ¢ N. Let p be a sufficiently large rational integer so that

BY +1 < pPt!
and
1(BP) <.

Such an integer p exists, since the first inequality holds trivially when p is large, and the
second inequality follows from the fact that if there is n € N such that if 7(8") = 8" and
I1(B"+1) = B"*1 then B is an algebraic integer, g = "1 /" = (1(B"t")/1(B")) € Q,
and so 8 € N. Let

x:=1(B")+1.
Then,

B <x < BP4+1<pPt!,
X

1
l<— <14+ — <2,
BP BP

ep(x)=1andr,(x) < 1/B7; thus,
x=10---0e_1---),

where e_; > 1, and
x ¢ Ng.

Since x € Fing, there is a positive rational integer m such that
x=(10---0e_1---e_p);
in particular, we have

x=pP te 1B Fe a4 e mf
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It follows immediately from the last equality that 8 is an algebraic integer, and if y is a
conjugate of 8 over Q, then

2

x=yP ey T ey ey ™

and so

B —yP =) eyt —p7h).
k=1

Hence, for || > 1 we see that

1B? —vPl N,k —k 1 1
——— =) (y "I+ < +—
18) ,; -1 p—1
and so y = B, since otherwise lim sup , [y” — B”| = oo (indeed, without loss of generality
sety = |y|ei”’, where t € [0, 1] and i2=—1. Clearly, we have lim,,_, o, |y" — 8| = o0

when r =0 and y # 8. If t =a/b, where a € ZT and b € Z+, then |y2b+! — b+l
> |y |70+ sin(we)| for all neN, and so lim,_ o |p20F! — 20+ = 00, except
when ¢ = 1; for r = 1 we have lim,__ o |y?"t! — 2"*!| = co. Finally, if 7 ¢ Q, then
(F(tn)),en is dense mod(1) and so there is a sequence (ny)reN of positive rational integers
such that limg_, o F(tng) =1/2; thus limp_ oo |y 2% — B2%| = limg—, oo (|7 |*™
+ B%") = 00). Note also, when |y | = 1, that 1/y is a conjugate of B (1/y is the complex
conjugate of y) and so is 1/; thus,

x=B""+e 1B+ -+e_up",
and so
m=p,
since we have £_,, > 1 and x < BP*!. It follows by the inequalities
x<lyP ey ey IS b4 e S TB)m+ 1),

that x < I(B)(p + 1), and this last relation leads to a contradiction when p is large (recall
that x > B7). Hence, |y| < 1 and B is a Pisot number. Now, suppose that y is a positive
real number. Then, the inequality y8 > 1 (if y8 < 1, then the norm of 8 over Q will be 0)
together with the relation x = y? +e_1y "' 4+ - +e_,,y ™" yield

ﬁm+1_1
)C<l+8_1/3+"'+8—m,3m51(ﬂ)—

3

B—1
thus, m is large when p is so. It follows when 8 has a real conjugate, say n, satisfying
y=n<l
that
1 1 L . .
e m S ey = =0 =y <1
yrent o

and so y = n, since limy,— o (1/y™ — 1/7™) = co when y # n. Consequently, the Pisot
number B can not have more than one positive conjugate. Finally, note that the inclusion
N[B] C Fing has been proved in [12] when B is a quadratic Pisot number with a positive
conjugate. O
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Proof of Theorem 4. In a similar manner as in the beginning of the proof of Theorem 3,
suppose that 8 ¢ N and let
x:=1(BP)+1,

where p €N is sufficiently large so that g7 + 1 < fP*! and 1(BP) < BP. Let 8 be a
positive real number satisfying
x+38<pl+1.

From the hypothesis, there are y and z € Fing, such that
y=x-+2z

and
7 <9$.

Hence,
B <y<pl+1<prt,

1< (y/BP) <14+ (1/BP) <2, ep(y) =1 and r,(y) < (1/B7); thus, there is a positive
rational integer m such that

y=(10--0e_1 - e_p),
where e_,, > 1,andso y = 87 + 5_1;3_1 + 8_2,3_2 4+ 4B Let
Z=(M-KN-K—1"""N—K—t)s
where K € N and ¢ € N. Then,
x=BP e B4 de B
— kBN kBT kBTN,
X,Bu — ‘Bu+p 4 8_1,3'471 4o+ S—mﬁuim
— kB kBT g BT,

where u = max(m, K + t), and so f is an algebraic integer. Let y be a conjugate of 8 over
@ with modulus greater than one. Then,

x=yP ey T+ ey

—-ky Nk kTR,
and so
u
B —yP =Y sy =B,
i=1
where s; € {—1(B),...,0,...,I(B)} foreachi € {0, 1, ..., u}. Hence,
1B —v?I 1
Iy~ 1+87) < T
1) Z ly | /3 -1
and similarly as in the end of the proof of Theorem 3, the last relation leads to a
contradiction when 8 # y; thus, g is a Pisot or a Salem number. O
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