Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-11T21:29:36.675Z Has data issue: false hasContentIssue false

Formal classification of unfoldings of parabolic diffeomorphisms

Published online by Cambridge University Press:  01 August 2008

JAVIER RIBÓN*
Affiliation:
Departamento de Análise, Universidad Federal Fluminense, R. Mário Santos Braga, s/n, Niterói, RJ, Brasil (email: jfribon@impa.br)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide a complete system of invariants for the formal classification of unfoldings φ(x,x1,…,xn)=(f(x,x1,…,xn),x1,…,xn) of complex analytic germs of diffeomorphisms at that are tangent to the identity. We reduce the formal classification problem to solving a linear differential equation. Then we describe the formal invariants; their nature depends on the position of the fixed points set Fix φ with respect to the regular vector field /∂x. We get invariants specifically attached to higher dimension (n≥3), although generically they are analogous to the one-dimensional ones.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

References

[1]Artin, M.. On the solutions of analytic equations. Invent. Math. 5 (1968), 277291.Google Scholar
[2]Atiyah, M. F. and MacDonald, I. G.. Introduction to Commutative Algebra. Addison-Wesley, Reading, MA, 1969.Google Scholar
[3]Bruno, A. D.. Analytic form of differential equations. Trudy Moskov. Mat. Obshch. 25 (1971), 119262; 26 (1972), 199–239Google Scholar
[4]Camacho, C.. On the local structure of conformal mappings and holomorphic vector fields in . Astérisque 59–60 (1978), 8394.Google Scholar
[5]Gunning, R. C.. Introduction to Holomorphic Functions of Several Variables, Vol. II. Brooks/Cole, Monterey, CA, 1990.Google Scholar
[6]Elizarov, P. M., Il’yashenko, Yu. S., Scherbakov, A. A., Voronin, S. M. and Yakovenko, S. Yu.. Nonlinear Stokes Phenomena (Advances in Soviet Mathematics, 14). Ed. Yu. S. Il’yashenko. American Mathematical Society, Providence, RI, 1992.Google Scholar
[7]Kostov, V. P.. Versal deformations of differential forms of degree α on the line. Funktsional. Anal. i Prilozhen. 18(4) (1984), 8182.Google Scholar
[8]Leau, L.. Étude sur les équations functionelles à une ou plusieurs variables. Ann. Fac. Sci. Toulouse 11 (1897).CrossRefGoogle Scholar
[9]Malgrange, B.. Travaux d’Écalle et de Martinet–Ramis sur les systèmes dynamiques. Astérisque 92–93 (1982), 5973.Google Scholar
[10]Mardesic, P., Roussarie, R. and Rousseau, C.. Modulus of analytic classification of unfoldings of generic parabolic diffeomorphisms. Mosc. Math. J. 4(2) (2004), 455502.Google Scholar
[11]Martinet, J. and Ramis, J.-P.. Classification analytique des équations différentielles non linéaires résonnantes du premier ordre. Ann. Sci. École Norm. Sup. (4) 16 (1983), 571621.Google Scholar
[12]Martinet, J.. Remarques sur la bifurcation noeud-col dans le domaine complexe. Singularités d’Équations Différentielles (Dijon 1985). Astérisque 150–151 (1987), 131149.Google Scholar
[13]Pérez-Marco, R.. Fixed points and circle maps. Acta Math. (2) 179 (1997), 243294.Google Scholar
[14]Ribón, J.. Topological classification of families of diffeomorphisms without small divisors. Mem. Amer. Math. Soc. to appear.Google Scholar
[15]Ribón, J.. Modulus of analytic classification for unfoldings of resonant diffeomorphisms. Mosc. Math. J. to appear.Google Scholar
[16]Roussarie, R.. Modèles locaux de champs et de formes. Astérisque 30 (1975), 181.Google Scholar
[17]Scheja, G.. Riemannsche hebbarkeitssätze für cohomologieklassen. Math. Ann. 144 (1961), 345360.Google Scholar
[18]Siegel, C. L.. Iterations of analytic functions. Ann. of Math. 43 (1942), 807812.Google Scholar
[19]Voronin, S. M.. Analytical classification of germs of conformal mappings with identity linear part. Funct. Anal. Appl. 1(15) (1981), 117.Google Scholar
[20]Yoccoz, J.-C.. Théorème de Siegel, polynômes quadratiques et nombres de Brjuno. Astérisque 231 (1995), 388.Google Scholar